메뉴 건너뛰기




Volumn 103, Issue 6, 2018, Pages 1099-1116

Negative regulation of type I IFN signaling

Author keywords

negative regulation; type I interferon

Indexed keywords

CYTOKINE; INTERFERON; PATTERN RECOGNITION RECEPTOR; STAT2 PROTEIN; UBIQUITIN; UNTRANSLATED RNA;

EID: 85050114686     PISSN: 07415400     EISSN: 19383673     Source Type: Journal    
DOI: 10.1002/JLB.2MIR0817-342R     Document Type: Review
Times cited : (78)

References (196)
  • 1
    • 36749069393 scopus 로고    scopus 로고
    • Interferons at age 50: past, current and future impact on biomedicine
    • Borden EC, Sen GC, Uze G, et al., Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov. 2007;6:975–990.
    • (2007) Nat Rev Drug Discov. , vol.6 , pp. 975-990
    • Borden, E.C.1    Sen, G.C.2    Uze, G.3
  • 2
    • 77957745555 scopus 로고    scopus 로고
    • Type I interferon: friend or foe?
    • Trinchieri G. Type I interferon: friend or foe? J Exp Med. 2010;207:2053–2063.
    • (2010) J Exp Med. , vol.207 , pp. 2053-2063
    • Trinchieri, G.1
  • 3
    • 32944464648 scopus 로고    scopus 로고
    • Pathogen recognition and innate immunity
    • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.
    • (2006) Cell. , vol.124 , pp. 783-801
    • Akira, S.1    Uematsu, S.2    Takeuchi, O.3
  • 4
    • 84926092606 scopus 로고    scopus 로고
    • Type I interferon: a new player in TNF signaling
    • Yarilina A, Ivashkiv LB. Type I interferon: a new player in TNF signaling. Curr Dir Autoimmun. 2010;11:94–104.
    • (2010) Curr Dir Autoimmun. , vol.11 , pp. 94-104
    • Yarilina, A.1    Ivashkiv, L.B.2
  • 5
    • 0037129205 scopus 로고    scopus 로고
    • RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta
    • Takayanagi H, Kim S, Matsuo K, et al. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature. 2002;416:744–749.
    • (2002) Nature. , vol.416 , pp. 744-749
    • Takayanagi, H.1    Kim, S.2    Matsuo, K.3
  • 6
    • 0021944128 scopus 로고
    • Interferon produced endogenously in response to CSF-1 augments the functional differentiation of progeny macrophages
    • Moore RN, Pitruzzello FJ, Robinson RM, Rouse BT. Interferon produced endogenously in response to CSF-1 augments the functional differentiation of progeny macrophages. J Leukoc Biol. 1985;37:659–664.
    • (1985) J Leukoc Biol. , vol.37 , pp. 659-664
    • Moore, R.N.1    Pitruzzello, F.J.2    Robinson, R.M.3    Rouse, B.T.4
  • 7
    • 46249115827 scopus 로고    scopus 로고
    • Interferon-inducible antiviral effectors
    • Sadler AJ, Williams BR. Interferon-inducible antiviral effectors. Nat Rev Immunol. 2008;8:559–568.
    • (2008) Nat Rev Immunol. , vol.8 , pp. 559-568
    • Sadler, A.J.1    Williams, B.R.2
  • 8
    • 84959531327 scopus 로고    scopus 로고
    • Antitumour actions of interferons: implications for cancer therapy
    • Parker BS, Rautela J, Hertzog PJ. Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer 2016;16:131–144.
    • (2016) Nat Rev Cancer , vol.16 , pp. 131-144
    • Parker, B.S.1    Rautela, J.2    Hertzog, P.J.3
  • 9
    • 84913586780 scopus 로고    scopus 로고
    • Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy
    • Sistigu A, Yamazaki T, Vacchelli E, et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20:1301–1309.
    • (2014) Nat Med. , vol.20 , pp. 1301-1309
    • Sistigu, A.1    Yamazaki, T.2    Vacchelli, E.3
  • 10
    • 85009945343 scopus 로고    scopus 로고
    • The type I interferonopathies
    • Lee-Kirsch MA. The type I interferonopathies. Annu Rev Med. 2017;68:297–315.
    • (2017) Annu Rev Med. , vol.68 , pp. 297-315
    • Lee-Kirsch, M.A.1
  • 11
    • 84933279572 scopus 로고    scopus 로고
    • Aicardi-Goutieres syndrome and the type I interferonopathies
    • Crow YJ, Manel N. Aicardi-Goutieres syndrome and the type I interferonopathies. Nat Rev Immunol. 2015;15:429–440.
    • (2015) Nat Rev Immunol. , vol.15 , pp. 429-440
    • Crow, Y.J.1    Manel, N.2
  • 12
    • 49549100511 scopus 로고    scopus 로고
    • Trex1 prevents cell-intrinsic initiation of autoimmunity
    • Stetson DB, Ko JS, Heidmann T, Medzhitov R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 2008;134:587–598.
    • (2008) Cell , vol.134 , pp. 587-598
    • Stetson, D.B.1    Ko, J.S.2    Heidmann, T.3    Medzhitov, R.4
  • 14
    • 84903512661 scopus 로고    scopus 로고
    • TLR ligands up-regulate Trex1 expression in murine conventional dendritic cells through type I interferon and NF-kappaB-dependent signaling pathways
    • Xu J, Zoltick PW, Gamero AM, Gallucci S. TLR ligands up-regulate Trex1 expression in murine conventional dendritic cells through type I interferon and NF-kappaB-dependent signaling pathways. J Leukoc Biol. 2014;96:93–103.
    • (2014) J Leukoc Biol. , vol.96 , pp. 93-103
    • Xu, J.1    Zoltick, P.W.2    Gamero, A.M.3    Gallucci, S.4
  • 15
    • 84977640575 scopus 로고    scopus 로고
    • Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome
    • Meuwissen ME, Schot R, Buta S, et al. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med. 2016;213:1163–1174.
    • (2016) J Exp Med. , vol.213 , pp. 1163-1174
    • Meuwissen, M.E.1    Schot, R.2    Buta, S.3
  • 16
    • 84999850013 scopus 로고    scopus 로고
    • Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview
    • Rodero MP, Crow YJ. Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J Exp Med. 2016;213:2527–2538.
    • (2016) J Exp Med. , vol.213 , pp. 2527-2538
    • Rodero, M.P.1    Crow, Y.J.2
  • 19
    • 17644372733 scopus 로고    scopus 로고
    • IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors
    • Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol. 2005;23:275–306.
    • (2005) Annu Rev Immunol. , vol.23 , pp. 275-306
    • Liu, Y.J.1
  • 20
    • 84862104611 scopus 로고    scopus 로고
    • Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models
    • Lacey DC, Achuthan A, Fleetwood AJ, et al. Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. J Immunol. 2012;188:5752–5765.
    • (2012) J Immunol. , vol.188 , pp. 5752-5765
    • Lacey, D.C.1    Achuthan, A.2    Fleetwood, A.J.3
  • 21
    • 0033680737 scopus 로고    scopus 로고
    • Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction
    • Sato M, Suemori H, Hata N, et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 2000;13:539–548.
    • (2000) Immunity , vol.13 , pp. 539-548
    • Sato, M.1    Suemori, H.2    Hata, N.3
  • 22
    • 0035344461 scopus 로고    scopus 로고
    • A weak signal for strong responses: interferon-alpha/beta revisited
    • Taniguchi T, Takaoka A. A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol. 2001;2:378–386.
    • (2001) Nat Rev Mol Cell Biol. , vol.2 , pp. 378-386
    • Taniguchi, T.1    Takaoka, A.2
  • 24
    • 80052138380 scopus 로고    scopus 로고
    • Innate and adaptive immune responses to cell death
    • Rock KL, Lai JJ, Kono H. Innate and adaptive immune responses to cell death. Immunol Rev. 2011;243:191–205.
    • (2011) Immunol Rev. , vol.243 , pp. 191-205
    • Rock, K.L.1    Lai, J.J.2    Kono, H.3
  • 25
    • 34948820602 scopus 로고    scopus 로고
    • Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy
    • Apetoh L, Ghiringhelli F, Tesniere A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13:1050–1059.
    • (2007) Nat Med. , vol.13 , pp. 1050-1059
    • Apetoh, L.1    Ghiringhelli, F.2    Tesniere, A.3
  • 26
    • 84912128872 scopus 로고    scopus 로고
    • STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors
    • Deng L, Liang H, Xu M, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41:843–852.
    • (2014) Immunity. , vol.41 , pp. 843-852
    • Deng, L.1    Liang, H.2    Xu, M.3
  • 27
    • 84948670572 scopus 로고    scopus 로고
    • STING: infection, inflammation and cancer
    • Barber GN. STING: infection, inflammation and cancer. Nat Rev Immunol. 2015;15:760–770.
    • (2015) Nat Rev Immunol. , vol.15 , pp. 760-770
    • Barber, G.N.1
  • 28
    • 84919884654 scopus 로고    scopus 로고
    • Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production
    • White MJ, McArthur K, Metcalf D, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell. 2014;159:1549–1562.
    • (2014) Cell. , vol.159 , pp. 1549-1562
    • White, M.J.1    McArthur, K.2    Metcalf, D.3
  • 29
    • 85028315246 scopus 로고    scopus 로고
    • cGAS surveillance of micronuclei links genome instability to innate immunity
    • Mackenzie KJ, Carroll P, Martin CA, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 2017;548:461–465.
    • (2017) Nature. , vol.548 , pp. 461-465
    • Mackenzie, K.J.1    Carroll, P.2    Martin, C.A.3
  • 31
    • 0032133278 scopus 로고    scopus 로고
    • MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways
    • Medzhitov R, Preston-Hurlburt P, Kopp E Jr, et al.MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell. 1998;2:253–258.
    • (1998) Mol Cell. , vol.2 , pp. 253-258
    • Medzhitov, R.1    Preston-Hurlburt, P.2    Jr Kopp, E.3
  • 32
    • 0035817925 scopus 로고    scopus 로고
    • Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction
    • Fitzgerald KA, Palsson-McDermott EM, Bowie AG, et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature. 2001;413:78–83.
    • (2001) Nature. , vol.413 , pp. 78-83
    • Fitzgerald, K.A.1    Palsson-McDermott, E.M.2    Bowie, A.G.3
  • 33
    • 0043176281 scopus 로고    scopus 로고
    • Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway
    • Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301:640–643.
    • (2003) Science. , vol.301 , pp. 640-643
    • Yamamoto, M.1    Sato, S.2    Hemmi, H.3
  • 34
    • 0037320451 scopus 로고    scopus 로고
    • TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction
    • Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol. 2003;4:161–167.
    • (2003) Nat Immunol. , vol.4 , pp. 161-167
    • Oshiumi, H.1    Matsumoto, M.2    Funami, K.3    Akazawa, T.4    Seya, T.5
  • 35
    • 0037153191 scopus 로고    scopus 로고
    • Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4
    • Yamamoto M, Sato S, Hemmi H, et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 2002;420:324–329.
    • (2002) Nature , vol.420 , pp. 324-329
    • Yamamoto, M.1    Sato, S.2    Hemmi, H.3
  • 36
    • 0242624622 scopus 로고    scopus 로고
    • TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway
    • Yamamoto M, Sato S, Hemmi H, et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol. 2003;4:1144–1150.
    • (2003) Nat Immunol. , vol.4 , pp. 1144-1150
    • Yamamoto, M.1    Sato, S.2    Hemmi, H.3
  • 37
    • 0037153130 scopus 로고    scopus 로고
    • The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors
    • Horng T, Barton GM, Flavell RA, Medzhitov R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature. 2002;420:329–333.
    • (2002) Nature. , vol.420 , pp. 329-333
    • Horng, T.1    Barton, G.M.2    Flavell, R.A.3    Medzhitov, R.4
  • 38
    • 34247566510 scopus 로고    scopus 로고
    • The family of five: tIR-domain-containing adaptors in Toll-like receptor signalling
    • O'Neill LA, Bowie AG. The family of five: tIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7:353–364.
    • (2007) Nat Rev Immunol. , vol.7 , pp. 353-364
    • O'Neill, L.A.1    Bowie, A.G.2
  • 39
    • 77951260924 scopus 로고    scopus 로고
    • The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors
    • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–384.
    • (2010) Nat Immunol. , vol.11 , pp. 373-384
    • Kawai, T.1    Akira, S.2
  • 41
    • 34249058119 scopus 로고    scopus 로고
    • The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways
    • Zhao T, Yang L, Sun Q, et al. The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways. Nat Immunol. 2007;8:592–600.
    • (2007) Nat Immunol. , vol.8 , pp. 592-600
    • Zhao, T.1    Yang, L.2    Sun, Q.3
  • 42
    • 0030694108 scopus 로고    scopus 로고
    • IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling
    • Muzio M, Ni J, Feng P, Dixit VM. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science. 1997;278:1612–1615.
    • (1997) Science. , vol.278 , pp. 1612-1615
    • Muzio, M.1    Ni, J.2    Feng, P.3    Dixit, V.M.4
  • 44
    • 0037117543 scopus 로고    scopus 로고
    • IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase
    • Li S, Strelow A, Fontana EJ, Wesche H. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci USA. 2002;99:5567–5572.
    • (2002) Proc Natl Acad Sci USA. , vol.99 , pp. 5567-5572
    • Li, S.1    Strelow, A.2    Fontana, E.J.3    Wesche, H.4
  • 45
    • 34249078495 scopus 로고    scopus 로고
    • A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity
    • Kim TW, Staschke K, Bulek K, et al. A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity. J Exp Med. 2007;204:1025–1036.
    • (2007) J Exp Med. , vol.204 , pp. 1025-1036
    • Kim, T.W.1    Staschke, K.2    Bulek, K.3
  • 46
    • 18644376284 scopus 로고    scopus 로고
    • IRF3 mediates a TLR3/TLR4-specific antiviral gene program
    • Doyle S, Vaidya S, O'Connell R, et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity. 2002;17:251–263.
    • (2002) Immunity. , vol.17 , pp. 251-263
    • Doyle, S.1    Vaidya, S.2    O'Connell, R.3
  • 47
    • 5444274514 scopus 로고    scopus 로고
    • Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6
    • Kawai T, Sato S, Ishii KJ, et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol. 2004;5:1061–1068.
    • (2004) Nat Immunol. , vol.5 , pp. 1061-1068
    • Kawai, T.1    Sato, S.2    Ishii, K.J.3
  • 48
    • 0034619794 scopus 로고    scopus 로고
    • A Toll-like receptor recognizes bacterial DNA
    • Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408:740–745.
    • (2000) Nature. , vol.408 , pp. 740-745
    • Hemmi, H.1    Takeuchi, O.2    Kawai, T.3
  • 49
    • 1842631428 scopus 로고    scopus 로고
    • Recognition of single-stranded RNA viruses by Toll-like receptor 7
    • Lund JM, Alexopoulou L, Sato A, et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA. 2004;101:5598–5603.
    • (2004) Proc Natl Acad Sci USA. , vol.101 , pp. 5598-5603
    • Lund, J.M.1    Alexopoulou, L.2    Sato, A.3
  • 50
    • 20244388983 scopus 로고    scopus 로고
    • Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon- induction
    • Uematsu S, Sato S, Yamamoto M, et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon- induction. J Exp Med. 2005;201:915–923.
    • (2005) J Exp Med. , vol.201 , pp. 915-923
    • Uematsu, S.1    Sato, S.2    Yamamoto, M.3
  • 51
    • 20444380445 scopus 로고    scopus 로고
    • The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling
    • Schoenemeyer A, Barnes BJ, Mancl ME, et al. The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J Biol Chem. 2005;280:17005–17012.
    • (2005) J Biol Chem. , vol.280 , pp. 17005-17012
    • Schoenemeyer, A.1    Barnes, B.J.2    Mancl, M.E.3
  • 52
    • 15044345461 scopus 로고    scopus 로고
    • Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors
    • Takaoka A, Yanai H, Kondo S, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature. 2005;434:243–249.
    • (2005) Nature. , vol.434 , pp. 243-249
    • Takaoka, A.1    Yanai, H.2    Kondo, S.3
  • 53
    • 32644464262 scopus 로고    scopus 로고
    • IRF family proteins and type I interferon induction in dendritic cells
    • Tailor P, Tamura T, Ozato K. IRF family proteins and type I interferon induction in dendritic cells. Cell Res. 2006;16:134–140.
    • (2006) Cell Res. , vol.16 , pp. 134-140
    • Tailor, P.1    Tamura, T.2    Ozato, K.3
  • 54
    • 84882705934 scopus 로고    scopus 로고
    • MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades
    • Liu S, Chen J, Cai X, et al. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. Elife. 2013;2:e00785.
    • (2013) Elife. , vol.2
    • Liu, S.1    Chen, J.2    Cai, X.3
  • 55
    • 79956314622 scopus 로고    scopus 로고
    • Immune signaling by RIG-I-like receptors
    • Loo YM, Gale M, Jr. Immune signaling by RIG-I-like receptors. Immunity. 2011;34:680–692.
    • (2011) Immunity. , vol.34 , pp. 680-692
    • Loo, Y.M.1    Gale, M.2
  • 56
    • 84988566040 scopus 로고    scopus 로고
    • Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing
    • Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17:1142–1149.
    • (2016) Nat Immunol. , vol.17 , pp. 1142-1149
    • Chen, Q.1    Sun, L.2    Chen, Z.J.3
  • 57
    • 27144529182 scopus 로고    scopus 로고
    • Ubiquitylation and cell signaling
    • Haglund K, Dikic I. Ubiquitylation and cell signaling. EMBO J. 2005;24:3353–3359.
    • (2005) EMBO J. , vol.24 , pp. 3353-3359
    • Haglund, K.1    Dikic, I.2
  • 58
    • 2442643942 scopus 로고    scopus 로고
    • Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors
    • Chuang TH, Ulevitch RJ. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol. 2004;5:495–502.
    • (2004) Nat Immunol. , vol.5 , pp. 495-502
    • Chuang, T.H.1    Ulevitch, R.J.2
  • 59
    • 33748871187 scopus 로고    scopus 로고
    • The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling
    • Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, Bowie AG. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol. 2006;7:1074–1081.
    • (2006) Nat Immunol. , vol.7 , pp. 1074-1081
    • Carty, M.1    Goodbody, R.2    Schroder, M.3    Stack, J.4    Moynagh, P.N.5    Bowie, A.G.6
  • 60
    • 67349092199 scopus 로고    scopus 로고
    • TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway
    • Palsson-McDermott EM, Doyle SL, McGettrick AF, et al. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nat Immunol. 2009;10:579–586.
    • (2009) Nat Immunol. , vol.10 , pp. 579-586
    • Palsson-McDermott, E.M.1    Doyle, S.L.2    McGettrick, A.F.3
  • 61
    • 9144271703 scopus 로고    scopus 로고
    • Interaction of soluble form of recombinant extracellular TLR4 domain with MD-2 enables lipopolysaccharide binding and attenuates TLR4-mediated signaling
    • Hyakushima N, Mitsuzawa H, Nishitani C, et al. Interaction of soluble form of recombinant extracellular TLR4 domain with MD-2 enables lipopolysaccharide binding and attenuates TLR4-mediated signaling. J Immunol. 2004;173:6949–6954.
    • (2004) J Immunol. , vol.173 , pp. 6949-6954
    • Hyakushima, N.1    Mitsuzawa, H.2    Nishitani, C.3
  • 62
    • 27644548945 scopus 로고    scopus 로고
    • Negative regulation of Toll-like-receptor signaling by IRF-4
    • Negishi H, Ohba Y, Yanai H, et al. Negative regulation of Toll-like-receptor signaling by IRF-4. Proc Natl Acad Sci USA. 2005;102:15989–15994.
    • (2005) Proc Natl Acad Sci USA. , vol.102 , pp. 15989-15994
    • Negishi, H.1    Ohba, Y.2    Yanai, H.3
  • 64
    • 34247341367 scopus 로고    scopus 로고
    • TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
    • Gack MU, Shin YC, Joo CH, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature. 2007;446:916–920.
    • (2007) Nature. , vol.446 , pp. 916-920
    • Gack, M.U.1    Shin, Y.C.2    Joo, C.H.3
  • 65
    • 79251550124 scopus 로고    scopus 로고
    • Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction
    • Inn KS, Gack MU, Tokunaga F, et al. Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction. Mol Cell. 2011;41:354–365.
    • (2011) Mol Cell. , vol.41 , pp. 354-365
    • Inn, K.S.1    Gack, M.U.2    Tokunaga, F.3
  • 66
    • 84873320976 scopus 로고    scopus 로고
    • Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation
    • Chen W, Han C, Xie B, et al. Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation. Cell. 2013;152:467–478.
    • (2013) Cell. , vol.152 , pp. 467-478
    • Chen, W.1    Han, C.2    Xie, B.3
  • 67
    • 84983604685 scopus 로고    scopus 로고
    • RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation
    • Wang W, Jiang M, Liu S, et al. RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation. Proc Natl Acad Sci USA. 2016;113:9581–9586.
    • (2016) Proc Natl Acad Sci USA. , vol.113 , pp. 9581-9586
    • Wang, W.1    Jiang, M.2    Liu, S.3
  • 68
    • 84894545130 scopus 로고    scopus 로고
    • Interferon-inducible protein IFI35 negatively regulates RIG-I antiviral signaling and supports vesicular stomatitis virus replication
    • Das A, Dinh PX, Panda D, Pattnaik AK. Interferon-inducible protein IFI35 negatively regulates RIG-I antiviral signaling and supports vesicular stomatitis virus replication. J Virol. 2014;88:3103–3113.
    • (2014) J Virol. , vol.88 , pp. 3103-3113
    • Das, A.1    Dinh, P.X.2    Panda, D.3    Pattnaik, A.K.4
  • 69
    • 84924600935 scopus 로고    scopus 로고
    • NLRC5 interacts with RIG-I to induce a robust antiviral response against influenza virus infection
    • Ranjan P, Singh N, Kumar A, et al. NLRC5 interacts with RIG-I to induce a robust antiviral response against influenza virus infection. Eur J Immunol. 2015;45:758–772.
    • (2015) Eur J Immunol. , vol.45 , pp. 758-772
    • Ranjan, P.1    Singh, N.2    Kumar, A.3
  • 70
    • 79959350721 scopus 로고    scopus 로고
    • NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-kappaB signaling pathways
    • Allen IC, Moore CB, Schneider M, et al. NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-kappaB signaling pathways. Immunity. 2011;34:854–865.
    • (2011) Immunity. , vol.34 , pp. 854-865
    • Allen, I.C.1    Moore, C.B.2    Schneider, M.3
  • 71
    • 84883369480 scopus 로고    scopus 로고
    • Enhancer of zeste homolog 2 is a negative regulator of mitochondria-mediated innate immune responses
    • Chen S, Sheng C, Liu D, et al. Enhancer of zeste homolog 2 is a negative regulator of mitochondria-mediated innate immune responses. J Immunol. 2013;191:2614–2623.
    • (2013) J Immunol. , vol.191 , pp. 2614-2623
    • Chen, S.1    Sheng, C.2    Liu, D.3
  • 72
    • 70449726455 scopus 로고    scopus 로고
    • PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4
    • You F, Sun H, Zhou X, et al. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat Immunol. 2009;10:1300–1308.
    • (2009) Nat Immunol. , vol.10 , pp. 1300-1308
    • You, F.1    Sun, H.2    Zhou, X.3
  • 73
    • 84859434099 scopus 로고    scopus 로고
    • Poly(C)-binding protein 1 (PCBP1) mediates housekeeping degradation of mitochondrial antiviral signaling (MAVS)
    • Zhou X, You F, Chen H, Jiang Z. Poly(C)-binding protein 1 (PCBP1) mediates housekeeping degradation of mitochondrial antiviral signaling (MAVS). Cell Res. 2012;22:717–727.
    • (2012) Cell Res. , vol.22 , pp. 717-727
    • Zhou, X.1    You, F.2    Chen, H.3    Jiang, Z.4
  • 74
    • 62049084519 scopus 로고    scopus 로고
    • The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA
    • Zhong B, Zhang L, Lei C, et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity. 2009;30:397–407.
    • (2009) Immunity. , vol.30 , pp. 397-407
    • Zhong, B.1    Zhang, L.2    Lei, C.3
  • 75
    • 84938809934 scopus 로고    scopus 로고
    • The mitochondrial ubiquitin ligase MARCH5 resolves MAVS aggregates during antiviral signalling
    • Yoo YS, Park YY, Kim JH, et al. The mitochondrial ubiquitin ligase MARCH5 resolves MAVS aggregates during antiviral signalling. Nat Commun. 2015;6:7910.
    • (2015) Nat Commun. , vol.6 , pp. 7910
    • Yoo, Y.S.1    Park, Y.Y.2    Kim, J.H.3
  • 76
    • 84901260895 scopus 로고    scopus 로고
    • Smurf2 negatively modulates RIG-I-dependent antiviral response by targeting VISA/MAVS for ubiquitination and degradation
    • Pan Y, Li R, Meng JL, Mao HT, Zhang Y, Zhang J. Smurf2 negatively modulates RIG-I-dependent antiviral response by targeting VISA/MAVS for ubiquitination and degradation. J Immunol. 2014;192:4758–4764.
    • (2014) J Immunol. , vol.192 , pp. 4758-4764
    • Pan, Y.1    Li, R.2    Meng, J.L.3    Mao, H.T.4    Zhang, Y.5    Zhang, J.6
  • 77
    • 84872683702 scopus 로고    scopus 로고
    • The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA
    • Zhang Z, Bao M, Lu N, Weng L, Yuan B, Liu YJ. The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA. Nat Immunol. 2013;14:172–178.
    • (2013) Nat Immunol. , vol.14 , pp. 172-178
    • Zhang, Z.1    Bao, M.2    Lu, N.3    Weng, L.4    Yuan, B.5    Liu, Y.J.6
  • 78
    • 33644850482 scopus 로고    scopus 로고
    • Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20
    • Lin R, Yang L, Nakhaei P, et al. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J Biol Chem. 2006;281:2095–2103.
    • (2006) J Biol Chem. , vol.281 , pp. 2095-2103
    • Lin, R.1    Yang, L.2    Nakhaei, P.3
  • 79
    • 51049106824 scopus 로고    scopus 로고
    • The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response
    • Friedman CS, O'Donnell MA, Legarda-Addison D, et al. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep. 2008;9:930–936.
    • (2008) EMBO Rep. , vol.9 , pp. 930-936
    • Friedman, C.S.1    O'Donnell, M.A.2    Legarda-Addison, D.3
  • 80
    • 84898040489 scopus 로고    scopus 로고
    • USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors
    • Cui J, Song Y, Li Y, et al. USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors. Cell Res. 2014;24:400–416.
    • (2014) Cell Res. , vol.24 , pp. 400-416
    • Cui, J.1    Song, Y.2    Li, Y.3
  • 81
    • 84892428607 scopus 로고    scopus 로고
    • The ubiquitin-specific protease USP15 promotes RIG-I-mediated antiviral signaling by deubiquitylating TRIM25
    • Pauli EK, Chan YK, Davis ME, et al. The ubiquitin-specific protease USP15 promotes RIG-I-mediated antiviral signaling by deubiquitylating TRIM25. Sci Signal. 2014;7:ra3.
    • (2014) Sci Signal. , vol.7 , pp. ra3
    • Pauli, E.K.1    Chan, Y.K.2    Davis, M.E.3
  • 82
    • 84893721948 scopus 로고    scopus 로고
    • USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase
    • Fan Y, Mao R, Yu Y, et al. USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase. J Exp Med. 2014;211:313–328.
    • (2014) J Exp Med. , vol.211 , pp. 313-328
    • Fan, Y.1    Mao, R.2    Yu, Y.3
  • 83
    • 84894087907 scopus 로고    scopus 로고
    • Ubiquitin-specific proteases 25 negatively regulates virus-induced type I interferon signaling
    • Zhong H, Wang D, Fang L, et al. Ubiquitin-specific proteases 25 negatively regulates virus-induced type I interferon signaling. PLoS One 2013;8:e80976.
    • (2013) PLoS One , vol.8
    • Zhong, H.1    Wang, D.2    Fang, L.3
  • 84
    • 77649225756 scopus 로고    scopus 로고
    • Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes
    • Shembade N, Ma A, Harhaj EW. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 2010;327:1135–1139.
    • (2010) Science , vol.327 , pp. 1135-1139
    • Shembade, N.1    Ma, A.2    Harhaj, E.W.3
  • 85
    • 4944251748 scopus 로고    scopus 로고
    • A20 is a potent inhibitor of TLR3- and Sendai virus-induced activation of NF-kappaB and ISRE and IFN-beta promoter
    • Wang YY, Li L, Han KJ, Zhai Z, Shu HB. A20 is a potent inhibitor of TLR3- and Sendai virus-induced activation of NF-kappaB and ISRE and IFN-beta promoter. FEBS Lett. 2004;576:86–90.
    • (2004) FEBS Lett. , vol.576 , pp. 86-90
    • Wang, Y.Y.1    Li, L.2    Han, K.J.3    Zhai, Z.4    Shu, H.B.5
  • 86
    • 12444287911 scopus 로고    scopus 로고
    • A20 is a negative regulator of IFN regulatory factor 3 signaling
    • Saitoh T, Yamamoto M, Miyagishi M, et al. A20 is a negative regulator of IFN regulatory factor 3 signaling. J Immunol. 2005;174:1507–1512.
    • (2005) J Immunol. , vol.174 , pp. 1507-1512
    • Saitoh, T.1    Yamamoto, M.2    Miyagishi, M.3
  • 87
    • 36448943427 scopus 로고    scopus 로고
    • DUBA: a deubiquitinase that regulates type I interferon production
    • Kayagaki N, Phung Q, Chan S, et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 2007;318:1628–1632.
    • (2007) Science , vol.318 , pp. 1628-1632
    • Kayagaki, N.1    Phung, Q.2    Chan, S.3
  • 88
    • 84862907678 scopus 로고    scopus 로고
    • Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFalpha-induced cancer cell migration
    • Xiao N, Li H, Luo J, et al. Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFalpha-induced cancer cell migration. Biochem J. 2012;441:979–986.
    • (2012) Biochem J. , vol.441 , pp. 979-986
    • Xiao, N.1    Li, H.2    Luo, J.3
  • 89
    • 84941248283 scopus 로고    scopus 로고
    • Induction of USP25 by viral infection promotes innate antiviral responses by mediating the stabilization of TRAF3 and TRAF6
    • Lin D, Zhang M, Zhang MX, et al. Induction of USP25 by viral infection promotes innate antiviral responses by mediating the stabilization of TRAF3 and TRAF6. Proc Natl Acad Sci USA. 2015;112:11324–11329.
    • (2015) Proc Natl Acad Sci USA. , vol.112 , pp. 11324-11329
    • Lin, D.1    Zhang, M.2    Zhang, M.X.3
  • 90
    • 84877650680 scopus 로고    scopus 로고
    • TRIM11 negatively regulates IFNbeta production and antiviral activity by targeting TBK1
    • Lee Y, Song B, Park C, Kwon KS. TRIM11 negatively regulates IFNbeta production and antiviral activity by targeting TBK1. PLoS One. 2013;8:e63255.
    • (2013) PLoS One. , vol.8
    • Lee, Y.1    Song, B.2    Park, C.3    Kwon, K.S.4
  • 91
    • 84906344488 scopus 로고    scopus 로고
    • TRIM13 is a negative regulator of MDA5-mediated type I interferon production
    • Narayan K, Waggoner L, Pham ST, et al. TRIM13 is a negative regulator of MDA5-mediated type I interferon production. J Virol. 2014;88:10748–10757.
    • (2014) J Virol. , vol.88 , pp. 10748-10757
    • Narayan, K.1    Waggoner, L.2    Pham, S.T.3
  • 92
    • 84926469650 scopus 로고    scopus 로고
    • TRIM26 negatively regulates interferon-beta production and antiviral response through polyubiquitination and degradation of nuclear IRF3
    • Wang P, Zhao W, Zhao K, Zhang L, Gao C. TRIM26 negatively regulates interferon-beta production and antiviral response through polyubiquitination and degradation of nuclear IRF3. PLoS Pathog. 2015;11:e1004726.
    • (2015) PLoS Pathog. , vol.11
    • Wang, P.1    Zhao, W.2    Zhao, K.3    Zhang, L.4    Gao, C.5
  • 93
    • 84943454247 scopus 로고    scopus 로고
    • Siglec1 suppresses antiviral innate immune response by inducing TBK1 degradation via the ubiquitin ligase TRIM27
    • Zheng Q, Hou J, Zhou Y, Yang Y, Xie B, Cao X. Siglec1 suppresses antiviral innate immune response by inducing TBK1 degradation via the ubiquitin ligase TRIM27. Cell Res. 2015;25:1121–1136.
    • (2015) Cell Res. , vol.25 , pp. 1121-1136
    • Zheng, Q.1    Hou, J.2    Zhou, Y.3    Yang, Y.4    Xie, B.5    Cao, X.6
  • 94
    • 80555133291 scopus 로고    scopus 로고
    • Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7
    • Liang Q, Deng H, Li X, et al. Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7. J Immunol. 2011;187:4754–4763.
    • (2011) J Immunol. , vol.187 , pp. 4754-4763
    • Liang, Q.1    Deng, H.2    Li, X.3
  • 95
    • 40949163764 scopus 로고    scopus 로고
    • TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation
    • Shi M, Deng W, Bi E, et al. TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation. Nat Immunol. 2008;9:369–377.
    • (2008) Nat Immunol. , vol.9 , pp. 369-377
    • Shi, M.1    Deng, W.2    Bi, E.3
  • 96
    • 84867308377 scopus 로고    scopus 로고
    • TRIM38 negatively regulates TLR3-mediated IFN-beta signaling by targeting TRIF for degradation
    • Xue Q, Zhou Z, Lei X, et al. TRIM38 negatively regulates TLR3-mediated IFN-beta signaling by targeting TRIF for degradation. PLoS One. 2012;7:e46825.
    • (2012) PLoS One. , vol.7
    • Xue, Q.1    Zhou, Z.2    Lei, X.3
  • 97
    • 84945156921 scopus 로고    scopus 로고
    • TRIM38 negatively regulates TLR3/4-Mediated innate immune and inflammatory responses by two sequential and distinct mechanisms
    • Hu MM, Xie XQ, Yang Q, et al. TRIM38 negatively regulates TLR3/4-Mediated innate immune and inflammatory responses by two sequential and distinct mechanisms. J Immunol. 2015;195:4415–4425.
    • (2015) J Immunol. , vol.195 , pp. 4415-4425
    • Hu, M.M.1    Xie, X.Q.2    Yang, Q.3
  • 98
    • 73549097331 scopus 로고    scopus 로고
    • The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation
    • Nakhaei P, Mesplede T, Solis M, et al. The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation. PLoS Pathog. 2009;5:e1000650.
    • (2009) PLoS Pathog. , vol.5
    • Nakhaei, P.1    Mesplede, T.2    Solis, M.3
  • 99
    • 85020417740 scopus 로고    scopus 로고
    • The ubiquitin ligase RNF125 targets innate immune adaptor protein TRIM14 for ubiquitination and degradation
    • Jia X, Zhou H, Wu C, et al. The ubiquitin ligase RNF125 targets innate immune adaptor protein TRIM14 for ubiquitination and degradation. J Immunol. 2017;198:4652–4658.
    • (2017) J Immunol. , vol.198 , pp. 4652-4658
    • Jia, X.1    Zhou, H.2    Wu, C.3
  • 100
    • 84868554937 scopus 로고    scopus 로고
    • TRAF-interacting protein (TRIP) negatively regulates IFN-beta production and antiviral response by promoting proteasomal degradation of TANK-binding kinase 1
    • Zhang M, Wang L, Zhao X, et al. TRAF-interacting protein (TRIP) negatively regulates IFN-beta production and antiviral response by promoting proteasomal degradation of TANK-binding kinase 1. J Exp Med. 2012;209:1703–1711.
    • (2012) J Exp Med. , vol.209 , pp. 1703-1711
    • Zhang, M.1    Wang, L.2    Zhao, X.3
  • 101
    • 31344467156 scopus 로고    scopus 로고
    • Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation
    • Mansell A, Smith R, Doyle SL, et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat Immunol. 2006;7:148–155.
    • (2006) Nat Immunol. , vol.7 , pp. 148-155
    • Mansell, A.1    Smith, R.2    Doyle, S.L.3
  • 102
    • 84932633445 scopus 로고    scopus 로고
    • SOCS3 drives proteasomal degradation of TBK1 and negatively regulates antiviral innate immunity
    • Liu D, Sheng C, Gao S, et al. SOCS3 drives proteasomal degradation of TBK1 and negatively regulates antiviral innate immunity. Mol Cell Biol. 2015;35:2400–2413.
    • (2015) Mol Cell Biol. , vol.35 , pp. 2400-2413
    • Liu, D.1    Sheng, C.2    Gao, S.3
  • 103
    • 55549146091 scopus 로고    scopus 로고
    • Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3
    • Zhang M, Tian Y, Wang RP, et al. Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res. 2008;18:1096–1104.
    • (2008) Cell Res. , vol.18 , pp. 1096-1104
    • Zhang, M.1    Tian, Y.2    Wang, R.P.3
  • 104
    • 83755173110 scopus 로고    scopus 로고
    • Guanylate binding protein 4 negatively regulates virus-induced type I IFN and antiviral response by targeting IFN regulatory factor 7
    • Hu Y, Wang J, Yang B, et al. Guanylate binding protein 4 negatively regulates virus-induced type I IFN and antiviral response by targeting IFN regulatory factor 7. J Immunol. 2011;187:6456–6462.
    • (2011) J Immunol. , vol.187 , pp. 6456-6462
    • Hu, Y.1    Wang, J.2    Yang, B.3
  • 105
    • 84884275991 scopus 로고    scopus 로고
    • Negative regulation of NMI on virus-triggered type I IFN production by targeting IRF7
    • Wang J, Yang B, Hu Y, et al. Negative regulation of NMI on virus-triggered type I IFN production by targeting IRF7. J Immunol. 2013;191:3393–3399.
    • (2013) J Immunol. , vol.191 , pp. 3393-3399
    • Wang, J.1    Yang, B.2    Hu, Y.3
  • 106
    • 78650130030 scopus 로고    scopus 로고
    • The ubiquitin E3 ligase RAUL negatively regulates type I interferon through ubiquitination of the transcription factors IRF7 and IRF3
    • Yu Y, Hayward GS. The ubiquitin E3 ligase RAUL negatively regulates type I interferon through ubiquitination of the transcription factors IRF7 and IRF3. Immunity. 2010;33:863–877.
    • (2010) Immunity. , vol.33 , pp. 863-877
    • Yu, Y.1    Hayward, G.S.2
  • 107
    • 34249066486 scopus 로고    scopus 로고
    • PDLIM2-mediated termination of transcription factor NF-kappaB activation by intranuclear sequestration and degradation of the p65 subunit
    • Tanaka T, Grusby MJ, Kaisho T. PDLIM2-mediated termination of transcription factor NF-kappaB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol. 2007;8:584–591.
    • (2007) Nat Immunol. , vol.8 , pp. 584-591
    • Tanaka, T.1    Grusby, M.J.2    Kaisho, T.3
  • 108
    • 85017095383 scopus 로고    scopus 로고
    • MKRN2 is a novel ubiquitin E3 ligase for the p65 subunit of NF-kappaB and negatively regulates inflammatory responses
    • Shin C, Ito Y, Ichikawa S, Tokunaga M, Sakata-Sogawa K, Tanaka T. MKRN2 is a novel ubiquitin E3 ligase for the p65 subunit of NF-kappaB and negatively regulates inflammatory responses. Sci Rep. 2017;7:46097.
    • (2017) Sci Rep. , vol.7 , pp. 46097
    • Shin, C.1    Ito, Y.2    Ichikawa, S.3    Tokunaga, M.4    Sakata-Sogawa, K.5    Tanaka, T.6
  • 109
    • 42449121356 scopus 로고    scopus 로고
    • Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1
    • An H, Hou J, Zhou J, et al. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat Immunol. 2008;9:542–550.
    • (2008) Nat Immunol. , vol.9 , pp. 542-550
    • An, H.1    Hou, J.2    Zhou, J.3
  • 110
    • 33845438110 scopus 로고    scopus 로고
    • SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production
    • An H, Zhao W, Hou J, et al. SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity. 2006;25:919–928.
    • (2006) Immunity. , vol.25 , pp. 919-928
    • An, H.1    Zhao, W.2    Hou, J.3
  • 111
    • 85014607239 scopus 로고    scopus 로고
    • A novel function of F-Box protein FBXO17 in negative regulation of type I IFN signaling by recruiting PP2A for IFN regulatory factor 3 deactivation
    • Peng D, Wang Z, Huang A, Zhao Y, Qin FX. A novel function of F-Box protein FBXO17 in negative regulation of type I IFN signaling by recruiting PP2A for IFN regulatory factor 3 deactivation. J Immunol. 2017;198:808–819.
    • (2017) J Immunol. , vol.198 , pp. 808-819
    • Peng, D.1    Wang, Z.2    Huang, A.3    Zhao, Y.4    Qin, F.X.5
  • 112
    • 79959329537 scopus 로고    scopus 로고
    • NLRX1 negatively regulates TLR-induced NF-kappaB signaling by targeting TRAF6 and IKK
    • Xia X, Cui J, Wang HY, et al. NLRX1 negatively regulates TLR-induced NF-kappaB signaling by targeting TRAF6 and IKK. Immunity. 2011;34:843–853.
    • (2011) Immunity. , vol.34 , pp. 843-853
    • Xia, X.1    Cui, J.2    Wang, H.Y.3
  • 113
    • 77951902675 scopus 로고    scopus 로고
    • NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways
    • Cui J, Zhu L, Xia X, et al. NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell. 2010;141:483–496.
    • (2010) Cell. , vol.141 , pp. 483-496
    • Cui, J.1    Zhu, L.2    Xia, X.3
  • 114
    • 84862007380 scopus 로고    scopus 로고
    • Enhanced TLR-induced NF-kappaB signaling and type I interferon responses in NLRC5 deficient mice
    • Tong Y, Cui J, Li Q, Zou J, Wang HY, Wang RF. Enhanced TLR-induced NF-kappaB signaling and type I interferon responses in NLRC5 deficient mice. Cell Res. 2012;22:822–835.
    • (2012) Cell Res. , vol.22 , pp. 822-835
    • Tong, Y.1    Cui, J.2    Li, Q.3    Zou, J.4    Wang, H.Y.5    Wang, R.F.6
  • 115
    • 18744371050 scopus 로고    scopus 로고
    • SOCS-1 participates in negative regulation of LPS responses
    • Nakagawa R, Naka T, Tsutsui H, et al. SOCS-1 participates in negative regulation of LPS responses. Immunity. 2002;17:677–687.
    • (2002) Immunity. , vol.17 , pp. 677-687
    • Nakagawa, R.1    Naka, T.2    Tsutsui, H.3
  • 116
    • 85014644219 scopus 로고    scopus 로고
    • TTLL12 inhibits the activation of cellular antiviral signaling through interaction with VISA/MAVS
    • Ju LG, Zhu Y, Lei PJ, et al. TTLL12 inhibits the activation of cellular antiviral signaling through interaction with VISA/MAVS. J Immunol. 2017;198:1274–1284.
    • (2017) J Immunol. , vol.198 , pp. 1274-1284
    • Ju, L.G.1    Zhu, Y.2    Lei, P.J.3
  • 117
    • 66049088727 scopus 로고    scopus 로고
    • ISG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response
    • Li Y, Li C, Xue P, et al. ISG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response. Proc Natl Acad Sci USA. 2009;106:7945–7950.
    • (2009) Proc Natl Acad Sci USA. , vol.106 , pp. 7945-7950
    • Li, Y.1    Li, C.2    Xue, P.3
  • 118
    • 58049208165 scopus 로고    scopus 로고
    • Interferon-inducible protein, P56, inhibits HPV DNA replication by binding to the viral protein E1
    • Terenzi F, Saikia P, Sen GC. Interferon-inducible protein, P56, inhibits HPV DNA replication by binding to the viral protein E1. EMBO J. 2008;27:3311–3321.
    • (2008) EMBO J. , vol.27 , pp. 3311-3321
    • Terenzi, F.1    Saikia, P.2    Sen, G.C.3
  • 120
    • 84875416974 scopus 로고    scopus 로고
    • OASL1 inhibits translation of the type I interferon-regulating transcription factor IRF7
    • Lee MS, Kim B, Oh GT, Kim YJ. OASL1 inhibits translation of the type I interferon-regulating transcription factor IRF7. Nat Immunol. 2013;14:346–355.
    • (2013) Nat Immunol. , vol.14 , pp. 346-355
    • Lee, M.S.1    Kim, B.2    Oh, G.T.3    Kim, Y.J.4
  • 121
    • 84887280855 scopus 로고    scopus 로고
    • DDX24 negatively regulates cytosolic RNA-mediated innate immune signaling
    • Ma Z, Moore R, Xu X, Barber GN. DDX24 negatively regulates cytosolic RNA-mediated innate immune signaling. PLoS Pathog. 2013;9:e1003721.
    • (2013) PLoS Pathog. , vol.9
    • Ma, Z.1    Moore, R.2    Xu, X.3    Barber, G.N.4
  • 122
    • 85027516933 scopus 로고    scopus 로고
    • AGO2 negatively regulates type I interferon signaling pathway by competition binding IRF3 with CBP/p300
    • Wang S, Sun X, Yi C, et al. AGO2 negatively regulates type I interferon signaling pathway by competition binding IRF3 with CBP/p300. Front Cell Infect Microbiol. 2017;7:195.
    • (2017) Front Cell Infect Microbiol. , vol.7 , pp. 195
    • Wang, S.1    Sun, X.2    Yi, C.3
  • 123
    • 85021249908 scopus 로고    scopus 로고
    • Rubicon modulates antiviral type I interferon (IFN) signaling by targeting IFN regulatory factor 3 dimerization
    • Kim JH, Kim TH, Lee HC, et al. Rubicon modulates antiviral type I interferon (IFN) signaling by targeting IFN regulatory factor 3 dimerization. J Virol. 2017;91. doi: 10.1128/JVI.00248-17
    • (2017) J Virol. , vol.91
    • Kim, J.H.1    Kim, T.H.2    Lee, H.C.3
  • 124
    • 84859207428 scopus 로고    scopus 로고
    • Smad2 and Smad3 are redundantly essential for the suppression of iNOS synthesis in macrophages by regulating IRF3 and STAT1 pathways
    • Sugiyama Y, Kakoi K, Kimura A, et al. Smad2 and Smad3 are redundantly essential for the suppression of iNOS synthesis in macrophages by regulating IRF3 and STAT1 pathways. Int Immunol. 2012;24:253–265.
    • (2012) Int Immunol. , vol.24 , pp. 253-265
    • Sugiyama, Y.1    Kakoi, K.2    Kimura, A.3
  • 125
    • 84945157580 scopus 로고    scopus 로고
    • ATF3 is a key regulator of macrophage IFN responses
    • Labzin LI, Schmidt SV, Masters SL, et al. ATF3 is a key regulator of macrophage IFN responses. J Immunol. 2015;195:4446–4455.
    • (2015) J Immunol. , vol.195 , pp. 4446-4455
    • Labzin, L.I.1    Schmidt, S.V.2    Masters, S.L.3
  • 126
    • 79251542365 scopus 로고    scopus 로고
    • Negative regulation of IRF7 activation by activating transcription factor 4 suggests a cross-regulation between the IFN responses and the cellular integrated stress responses
    • Liang Q, Deng H, Sun CW, Townes TM, Zhu F. Negative regulation of IRF7 activation by activating transcription factor 4 suggests a cross-regulation between the IFN responses and the cellular integrated stress responses. J Immunol. 2011;186:1001–1010.
    • (2011) J Immunol. , vol.186 , pp. 1001-1010
    • Liang, Q.1    Deng, H.2    Sun, C.W.3    Townes, T.M.4    Zhu, F.5
  • 127
    • 0026725868 scopus 로고
    • Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon alpha
    • Schindler C, Fu XY, Improta T, Aebersold R, Darnell JE, Jr. Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon alpha. Proc Natl Acad Sci USA. 1992;89:7836–7839.
    • (1992) Proc Natl Acad Sci USA. , vol.89 , pp. 7836-7839
    • Schindler, C.1    Fu, X.Y.2    Improta, T.3    Aebersold, R.4    Darnell, J.E.5
  • 128
    • 85026428458 scopus 로고    scopus 로고
    • Methyltransferase SETD2-mediated methylation of STAT1 Is critical for interferon antiviral activity
    • e14.
    • Chen K, Liu J, Liu S, et al. Methyltransferase SETD2-mediated methylation of STAT1 Is critical for interferon antiviral activity. Cell. 2017;170:492–506; e14.
    • (2017) Cell. , vol.170 , pp. 492-506
    • Chen, K.1    Liu, J.2    Liu, S.3
  • 129
    • 18844457095 scopus 로고    scopus 로고
    • Mechanisms of type-I- and type-II-interferon-mediated signalling
    • Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5:375–386.
    • (2005) Nat Rev Immunol. , vol.5 , pp. 375-386
    • Platanias, L.C.1
  • 130
    • 0037204953 scopus 로고    scopus 로고
    • A road map for those who don't know JAK-STAT
    • Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT. Science 2002;296:1653–1655.
    • (2002) Science , vol.296 , pp. 1653-1655
    • Aaronson, D.S.1    Horvath, C.M.2
  • 131
    • 0029909494 scopus 로고    scopus 로고
    • Activation of different Stat5 isoforms contributes to cell-type-restricted signaling in response to interferons
    • Meinke A, Barahmand-Pour F, Wohrl S, Stoiber D, Decker T. Activation of different Stat5 isoforms contributes to cell-type-restricted signaling in response to interferons. Mol Cell Biol. 1996;16:6937–6944.
    • (1996) Mol Cell Biol. , vol.16 , pp. 6937-6944
    • Meinke, A.1    Barahmand-Pour, F.2    Wohrl, S.3    Stoiber, D.4    Decker, T.5
  • 132
    • 67249144899 scopus 로고    scopus 로고
    • Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes
    • Cheon H, Stark GR. Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes. Proc Natl Acad Sci USA. 2009;106:9373–9378.
    • (2009) Proc Natl Acad Sci USA. , vol.106 , pp. 9373-9378
    • Cheon, H.1    Stark, G.R.2
  • 133
    • 79952237300 scopus 로고    scopus 로고
    • STAT2 mediates innate immunity to dengue virus in the absence of STAT1 via the type I interferon receptor
    • Perry ST, Buck MD, Lada SM, Schindler C, Shresta S. STAT2 mediates innate immunity to dengue virus in the absence of STAT1 via the type I interferon receptor. PLoS Pathog. 2011;7:e1001297.
    • (2011) PLoS Pathog. , vol.7
    • Perry, S.T.1    Buck, M.D.2    Lada, S.M.3    Schindler, C.4    Shresta, S.5
  • 134
    • 0031048046 scopus 로고    scopus 로고
    • Stat2 is a transcriptional activator that requires sequence-specific contacts provided by stat1 and p48 for stable interaction with DNA
    • Bluyssen HA, Levy DE. Stat2 is a transcriptional activator that requires sequence-specific contacts provided by stat1 and p48 for stable interaction with DNA. J Biol Chem. 1997;272:4600–4605.
    • (1997) J Biol Chem. , vol.272 , pp. 4600-4605
    • Bluyssen, H.A.1    Levy, D.E.2
  • 135
    • 33749122058 scopus 로고    scopus 로고
    • STAT1-independent cell type-specific regulation of antiviral APOBEC3G by IFN-alpha
    • Sarkis PT, Ying S, Xu R, Yu XF. STAT1-independent cell type-specific regulation of antiviral APOBEC3G by IFN-alpha. J Immunol. 2006;177:4530–4540.
    • (2006) J Immunol. , vol.177 , pp. 4530-4540
    • Sarkis, P.T.1    Ying, S.2    Xu, R.3    Yu, X.F.4
  • 136
    • 65949099540 scopus 로고    scopus 로고
    • IRF-9/STAT2 [corrected] functional interaction drives retinoic acid-induced gene G expression independently of STAT1
    • Lou YJ, Pan XR, Jia PM, et al. IRF-9/STAT2 [corrected] functional interaction drives retinoic acid-induced gene G expression independently of STAT1. Cancer Res. 2009;69:3673–3680.
    • (2009) Cancer Res. , vol.69 , pp. 3673-3680
    • Lou, Y.J.1    Pan, X.R.2    Jia, P.M.3
  • 137
    • 84975745743 scopus 로고    scopus 로고
    • Response to interferons and antibacterial innate immunity in the absence of tyrosine-phosphorylated STAT1
    • Majoros A, Platanitis E, Szappanos D, et al. Response to interferons and antibacterial innate immunity in the absence of tyrosine-phosphorylated STAT1. EMBO Rep. 2016;17:367–382.
    • (2016) EMBO Rep. , vol.17 , pp. 367-382
    • Majoros, A.1    Platanitis, E.2    Szappanos, D.3
  • 138
    • 84995595388 scopus 로고    scopus 로고
    • STAT2 is a pervasive cytokine regulator due to its inhibition of STAT1 in multiple signaling pathways
    • Ho J, Pelzel C, Begitt A, et al. STAT2 is a pervasive cytokine regulator due to its inhibition of STAT1 in multiple signaling pathways. PLoS Biol. 2016;14:e2000117.
    • (2016) PLoS Biol. , vol.14
    • Ho, J.1    Pelzel, C.2    Begitt, A.3
  • 139
    • 36849082588 scopus 로고    scopus 로고
    • Non-conventional signal transduction by type 1 interferons: the NF-kappaB pathway
    • Du Z, Wei L, Murti A, et al. Non-conventional signal transduction by type 1 interferons: the NF-kappaB pathway. J Cell Biochem. 2007;102:1087–1094.
    • (2007) J Cell Biochem. , vol.102 , pp. 1087-1094
    • Du, Z.1    Wei, L.2    Murti, A.3
  • 140
    • 80053906125 scopus 로고    scopus 로고
    • Tyrosine phosphorylation of protein kinase D2 mediates ligand-inducible elimination of the Type 1 interferon receptor
    • Zheng H, Qian J, Baker DP, Fuchs SY. Tyrosine phosphorylation of protein kinase D2 mediates ligand-inducible elimination of the Type 1 interferon receptor. J Biol Chem. 2011;286:35733–35741.
    • (2011) J Biol Chem. , vol.286 , pp. 35733-35741
    • Zheng, H.1    Qian, J.2    Baker, D.P.3    Fuchs, S.Y.4
  • 141
    • 79251574143 scopus 로고    scopus 로고
    • Ligand-stimulated downregulation of the alpha interferon receptor: role of protein kinase D2
    • Zheng H, Qian J, Varghese B, Baker DP, Fuchs S. Ligand-stimulated downregulation of the alpha interferon receptor: role of protein kinase D2. Mol Cell Biol. 2011;31:710–720.
    • (2011) Mol Cell Biol. , vol.31 , pp. 710-720
    • Zheng, H.1    Qian, J.2    Varghese, B.3    Baker, D.P.4    Fuchs, S.5
  • 142
    • 84956658839 scopus 로고    scopus 로고
    • S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-alpha autoamplification
    • Teijaro JR, Studer S, Leaf N, et al. S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-alpha autoamplification. Proc Natl Acad Sci USA. 2016;113:1351–1356.
    • (2016) Proc Natl Acad Sci USA. , vol.113 , pp. 1351-1356
    • Teijaro, J.R.1    Studer, S.2    Leaf, N.3
  • 143
    • 0030977225 scopus 로고    scopus 로고
    • The short form of the interferon alpha/beta receptor chain 2 acts as a dominant negative for type I interferon action
    • Pfeffer LM, Basu L, Pfeffer SR, et al. The short form of the interferon alpha/beta receptor chain 2 acts as a dominant negative for type I interferon action. J Biol Chem. 1997;272:11002–11005.
    • (1997) J Biol Chem. , vol.272 , pp. 11002-11005
    • Pfeffer, L.M.1    Basu, L.2    Pfeffer, S.R.3
  • 144
    • 0034604551 scopus 로고    scopus 로고
    • Role of the intracellular domain of the human type I interferon receptor 2 chain (IFNAR2c) in interferon signaling. Expression of IFNAR2c truncation mutants in U5A cells
    • Russell-Harde D, Wagner TC, Rani MR, et al. Role of the intracellular domain of the human type I interferon receptor 2 chain (IFNAR2c) in interferon signaling. Expression of IFNAR2c truncation mutants in U5A cells. J Biol Chem. 2000;275:23981–23985.
    • (2000) J Biol Chem. , vol.275 , pp. 23981-23985
    • Russell-Harde, D.1    Wagner, T.C.2    Rani, M.R.3
  • 145
    • 0037059781 scopus 로고    scopus 로고
    • Interferon signaling is dependent on specific tyrosines located within the intracellular domain of IFNAR2c. Expression of IFNAR2c tyrosine mutants in U5A cells
    • Wagner TC, Velichko S, Vogel D, et al. Interferon signaling is dependent on specific tyrosines located within the intracellular domain of IFNAR2c. Expression of IFNAR2c tyrosine mutants in U5A cells. J Biol Chem. 2002;277:1493–1499.
    • (2002) J Biol Chem. , vol.277 , pp. 1493-1499
    • Wagner, T.C.1    Velichko, S.2    Vogel, D.3
  • 146
    • 84899538452 scopus 로고    scopus 로고
    • Soluble IFN receptor potentiates in vivo type I IFN signaling and exacerbates TLR4-mediated septic shock
    • Samarajiwa SA, Mangan NE, Hardy MP, et al. Soluble IFN receptor potentiates in vivo type I IFN signaling and exacerbates TLR4-mediated septic shock. J Immunol. 2014;192:4425–4435.
    • (2014) J Immunol. , vol.192 , pp. 4425-4435
    • Samarajiwa, S.A.1    Mangan, N.E.2    Hardy, M.P.3
  • 147
    • 0037443090 scopus 로고    scopus 로고
    • Protein ISGylation modulates the JAK-STAT signaling pathway
    • Malakhova OA, Yan M, Malakhov MP, et al. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev. 2003;17:455–460.
    • (2003) Genes Dev. , vol.17 , pp. 455-460
    • Malakhova, O.A.1    Yan, M.2    Malakhov, M.P.3
  • 148
    • 84946720236 scopus 로고    scopus 로고
    • Receptor dimerization dynamics as a regulatory valve for plasticity of type I interferon signaling
    • Wilmes S, Beutel O, Li Z, et al. Receptor dimerization dynamics as a regulatory valve for plasticity of type I interferon signaling. J Cell Biol. 2015;209:579–593.
    • (2015) J Cell Biol. , vol.209 , pp. 579-593
    • Wilmes, S.1    Beutel, O.2    Li, Z.3
  • 150
    • 58149502576 scopus 로고    scopus 로고
    • Mice lacking the ISG15 E1 enzyme UbE1L demonstrate increased susceptibility to both mouse-adapted and non-mouse-adapted influenza B virus infection
    • Lai C, Struckhoff JJ, Schneider J, et al. Mice lacking the ISG15 E1 enzyme UbE1L demonstrate increased susceptibility to both mouse-adapted and non-mouse-adapted influenza B virus infection. J Virol. 2009;83:1147–1151.
    • (2009) J Virol. , vol.83 , pp. 1147-1151
    • Lai, C.1    Struckhoff, J.J.2    Schneider, J.3
  • 151
    • 77951991690 scopus 로고    scopus 로고
    • Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification
    • Shi HX, Yang K, Liu X, et al. Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification. Mol Cell Biol. 2010;30:2424–2436.
    • (2010) Mol Cell Biol. , vol.30 , pp. 2424-2436
    • Shi, H.X.1    Yang, K.2    Liu, X.3
  • 152
    • 33744499683 scopus 로고    scopus 로고
    • Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1
    • Saitoh T, Tun-Kyi A, Ryo A, et al. Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat Immunol. 2006;7:598–605.
    • (2006) Nat Immunol. , vol.7 , pp. 598-605
    • Saitoh, T.1    Tun-Kyi, A.2    Ryo, A.3
  • 153
    • 84947461441 scopus 로고    scopus 로고
    • Type I IFN induces protein ISGylation to enhance cytokine expression and augments colonic inflammation
    • Fan JB, Miyauchi-Ishida S, Arimoto K, et al. Type I IFN induces protein ISGylation to enhance cytokine expression and augments colonic inflammation. Proc Natl Acad Sci U SA. 2015;112:14313–14318.
    • (2015) Proc Natl Acad Sci U SA. , vol.112 , pp. 14313-14318
    • Fan, J.B.1    Miyauchi-Ishida, S.2    Arimoto, K.3
  • 154
    • 85028048773 scopus 로고    scopus 로고
    • ISG'ylation increases stability of numerous proteins including Stat1, which prevents premature termination of immune response in LPS-stimulated microglia
    • Przanowski P, Loska S, Cysewski D, Dabrowski M, Kaminska B. ISG'ylation increases stability of numerous proteins including Stat1, which prevents premature termination of immune response in LPS-stimulated microglia. Neurochem Int. 2018;112:227–233.
    • (2018) Neurochem Int , vol.112 , pp. 227-233
    • Przanowski, P.1    Loska, S.2    Cysewski, D.3    Dabrowski, M.4    Kaminska, B.5
  • 155
    • 84922880395 scopus 로고    scopus 로고
    • Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation
    • Zhang X, Bogunovic D, Payelle-Brogard B, et al. Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature. 2015;517:89–93.
    • (2015) Nature. , vol.517 , pp. 89-93
    • Zhang, X.1    Bogunovic, D.2    Payelle-Brogard, B.3
  • 156
    • 80053210241 scopus 로고    scopus 로고
    • Suppressor of cytokine signaling (SOCS) 1 inhibits type I interferon (IFN) signaling via the interferon alpha receptor (IFNAR1)-associated tyrosine kinase Tyk2
    • Piganis RA, De Weerd NA, Gould JA, et al. Suppressor of cytokine signaling (SOCS) 1 inhibits type I interferon (IFN) signaling via the interferon alpha receptor (IFNAR1)-associated tyrosine kinase Tyk2. J Biol Chem. 2011;286:33811–33818.
    • (2011) J Biol Chem. , vol.286 , pp. 33811-33818
    • Piganis, R.A.1    De Weerd, N.A.2    Gould, J.A.3
  • 157
    • 68849096074 scopus 로고    scopus 로고
    • Alpha interferon induces long-lasting refractoriness of JAK-STAT signaling in the mouse liver through induction of USP18/UBP43
    • Sarasin-Filipowicz M, Wang X, Yan M, et al. Alpha interferon induces long-lasting refractoriness of JAK-STAT signaling in the mouse liver through induction of USP18/UBP43. Mol Cell Biol. 2009;29:4841–4851.
    • (2009) Mol Cell Biol. , vol.29 , pp. 4841-4851
    • Sarasin-Filipowicz, M.1    Wang, X.2    Yan, M.3
  • 158
    • 0028972719 scopus 로고
    • Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1
    • David M, Chen HE, Goelz S, Larner AC, Neel BG. Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol. 1995;15:7050–7058.
    • (1995) Mol Cell Biol. , vol.15 , pp. 7050-7058
    • David, M.1    Chen, H.E.2    Goelz, S.3    Larner, A.C.4    Neel, B.G.5
  • 159
    • 0032980574 scopus 로고    scopus 로고
    • Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway
    • You M, Yu DH, Feng GS. Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol Cell Biol. 1999;19:2416–2424.
    • (1999) Mol Cell Biol. , vol.19 , pp. 2416-2424
    • You, M.1    Yu, D.H.2    Feng, G.S.3
  • 160
    • 0035930501 scopus 로고    scopus 로고
    • TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B
    • Myers MP, Andersen JN, Cheng A, et al. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem. 2001;276:47771–47774.
    • (2001) J Biol Chem. , vol.276 , pp. 47771-47774
    • Myers, M.P.1    Andersen, J.N.2    Cheng, A.3
  • 161
    • 84955299618 scopus 로고    scopus 로고
    • TC-PTP and PTP1B: regulating JAK-STAT signaling, controlling lymphoid malignancies
    • Pike KA, Tremblay ML. TC-PTP and PTP1B: regulating JAK-STAT signaling, controlling lymphoid malignancies. Cytokine. 2016;82:52–57.
    • (2016) Cytokine. , vol.82 , pp. 52-57
    • Pike, K.A.1    Tremblay, M.L.2
  • 162
    • 0036006288 scopus 로고    scopus 로고
    • The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3
    • Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML, McGlade CJ. The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr Biol. 2002;12:446–453.
    • (2002) Curr Biol. , vol.12 , pp. 446-453
    • Simoncic, P.D.1    Lee-Loy, A.2    Barber, D.L.3    Tremblay, M.L.4    McGlade, C.J.5
  • 163
    • 0036318564 scopus 로고    scopus 로고
    • Identification of a nuclear Stat1 protein tyrosine phosphatase
    • ten
    • ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, et al. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol. 2002;22:5662–5668.
    • (2002) Mol Cell Biol. , vol.22 , pp. 5662-5668
    • Hoeve, J.1    de Jesus Ibarra-Sanchez, M.2    Fu, Y.3
  • 164
    • 46749119743 scopus 로고    scopus 로고
    • Phosphatase PTP1B negatively regulates MyD88- and TRIF-dependent proinflammatory cytokine and type I interferon production in TLR-triggered macrophages
    • Xu H, An H, Hou J, et al. Phosphatase PTP1B negatively regulates MyD88- and TRIF-dependent proinflammatory cytokine and type I interferon production in TLR-triggered macrophages. Mol Immunol. 2008;45:3545–3552.
    • (2008) Mol Immunol. , vol.45 , pp. 3545-3552
    • Xu, H.1    An, H.2    Hou, J.3
  • 165
    • 84861210911 scopus 로고    scopus 로고
    • Smurf1 protein negatively regulates interferon-gamma signaling through promoting STAT1 protein ubiquitination and degradation
    • Yuan C, Qi J, Zhao X, Gao C. Smurf1 protein negatively regulates interferon-gamma signaling through promoting STAT1 protein ubiquitination and degradation. J Biol Chem. 2012;287:17006–17015.
    • (2012) J Biol Chem. , vol.287 , pp. 17006-17015
    • Yuan, C.1    Qi, J.2    Zhao, X.3    Gao, C.4
  • 166
    • 84992623442 scopus 로고    scopus 로고
    • Global functional profiling of human ubiquitome identifies E3 ubiquitin ligase DCST1 as a novel negative regulator of Type-I interferon signaling
    • Nair S, Bist P, Dikshit N, Krishnan MN. Global functional profiling of human ubiquitome identifies E3 ubiquitin ligase DCST1 as a novel negative regulator of Type-I interferon signaling. Sci Rep. 2016;6:36179.
    • (2016) Sci Rep. , vol.6 , pp. 36179
    • Nair, S.1    Bist, P.2    Dikshit, N.3    Krishnan, M.N.4
  • 167
    • 0035853098 scopus 로고    scopus 로고
    • A transcriptional corepressor of Stat1 with an essential LXXLL signature motif
    • Liu B, Gross M, ten Hoeve J, Shuai K. A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc Natl Acad Sci USA. 2001;98:3203–3207.
    • (2001) Proc Natl Acad Sci USA. , vol.98 , pp. 3203-3207
    • Liu, B.1    Gross, M.2    ten Hoeve, J.3    Shuai, K.4
  • 168
    • 0043194033 scopus 로고    scopus 로고
    • Repression of Smad transcriptional activity by PIASy, an inhibitor of activated STAT
    • Long J, Matsuura I, He D, Wang G, Shuai K, Liu F. Repression of Smad transcriptional activity by PIASy, an inhibitor of activated STAT. Proc Natl Acad Sci USA. 2003;100:9791–9796.
    • (2003) Proc Natl Acad Sci USA. , vol.100 , pp. 9791-9796
    • Long, J.1    Matsuura, I.2    He, D.3    Wang, G.4    Shuai, K.5    Liu, F.6
  • 169
    • 4644367257 scopus 로고    scopus 로고
    • PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity
    • Liu B, Mink S, Wong KA, et al. PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat Immunol. 2004;5:891–898.
    • (2004) Nat Immunol. , vol.5 , pp. 891-898
    • Liu, B.1    Mink, S.2    Wong, K.A.3
  • 170
    • 0032169599 scopus 로고    scopus 로고
    • Inhibition of Stat1-mediated gene activation by PIAS1
    • Liu B, Liao J, Rao X, et al. Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci USA. 1998;95:10626–10631.
    • (1998) Proc Natl Acad Sci USA. , vol.95 , pp. 10626-10631
    • Liu, B.1    Liao, J.2    Rao, X.3
  • 171
    • 34547423214 scopus 로고    scopus 로고
    • Control of specificity and magnitude of NF-kappa B and STAT1-mediated gene activation through PIASy and PIAS1 cooperation
    • Tahk S, Liu B, Chernishof V, Wong KA, Wu H, Shuai K. Control of specificity and magnitude of NF-kappa B and STAT1-mediated gene activation through PIASy and PIAS1 cooperation. Proc Natl Acad Sci USA. 2007;104:11643–11648.
    • (2007) Proc Natl Acad Sci USA. , vol.104 , pp. 11643-11648
    • Tahk, S.1    Liu, B.2    Chernishof, V.3    Wong, K.A.4    Wu, H.5    Shuai, K.6
  • 172
    • 84871295536 scopus 로고    scopus 로고
    • Sprouty proteins are negative regulators of interferon (IFN) signaling and IFN-inducible biological responses
    • Sharma B, Joshi S, Sassano A, et al. Sprouty proteins are negative regulators of interferon (IFN) signaling and IFN-inducible biological responses. J Biol Chem. 2012;287:42352–42360.
    • (2012) J Biol Chem. , vol.287 , pp. 42352-42360
    • Sharma, B.1    Joshi, S.2    Sassano, A.3
  • 173
    • 85038834015 scopus 로고    scopus 로고
    • Nuclear RNF2 inhibits interferon function by promoting K33-linked STAT1 disassociation from DNA
    • Liu S, Jiang M, Wang W, et al. Nuclear RNF2 inhibits interferon function by promoting K33-linked STAT1 disassociation from DNA. Nat Immunol. 2017;19:41–52.
    • (2017) Nat Immunol. , vol.19 , pp. 41-52
    • Liu, S.1    Jiang, M.2    Wang, W.3
  • 174
    • 0033635304 scopus 로고    scopus 로고
    • CD8(+) T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-alpha/beta signaling
    • Hida S, Ogasawara K, Sato K, et al. CD8(+) T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-alpha/beta signaling. Immunity. 2000;13:643–655.
    • (2000) Immunity. , vol.13 , pp. 643-655
    • Hida, S.1    Ogasawara, K.2    Sato, K.3
  • 175
    • 1442330451 scopus 로고    scopus 로고
    • Negative regulation of IFN-alpha/beta signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells
    • Honda K, Mizutani T, Taniguchi T. Negative regulation of IFN-alpha/beta signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells. Proc Natl Acad Sci USA. 2004;101:2416–2421.
    • (2004) Proc Natl Acad Sci USA. , vol.101 , pp. 2416-2421
    • Honda, K.1    Mizutani, T.2    Taniguchi, T.3
  • 176
    • 0034515268 scopus 로고    scopus 로고
    • Immune response in Stat2 knockout mice
    • Park C, Li S, Cha E, Schindler C. Immune response in Stat2 knockout mice. Immunity 2000;13:795–804.
    • (2000) Immunity , vol.13 , pp. 795-804
    • Park, C.1    Li, S.2    Cha, E.3    Schindler, C.4
  • 177
    • 85003534277 scopus 로고    scopus 로고
    • Negative regulation of type I IFN signaling by phosphorylation of STAT2 on T387
    • Wang Y, Nan J, Willard B, Wang X, Yang J, Stark GR. Negative regulation of type I IFN signaling by phosphorylation of STAT2 on T387. EMBO J. 2017;36:202–212.
    • (2017) EMBO J. , vol.36 , pp. 202-212
    • Wang, Y.1    Nan, J.2    Willard, B.3    Wang, X.4    Yang, J.5    Stark, G.R.6
  • 178
    • 84872092694 scopus 로고    scopus 로고
    • Identification of STAT2 serine 287 as a novel regulatory phosphorylation site in type I interferon-induced cellular responses
    • Steen HC, Nogusa S, Thapa RJ, et al. Identification of STAT2 serine 287 as a novel regulatory phosphorylation site in type I interferon-induced cellular responses. J Biol Chem. 2013;288:747–758.
    • (2013) J Biol Chem. , vol.288 , pp. 747-758
    • Steen, H.C.1    Nogusa, S.2    Thapa, R.J.3
  • 179
    • 84995977107 scopus 로고    scopus 로고
    • Phosphorylation of STAT2 on serine-734 negatively regulates the IFN-alpha-induced antiviral response
    • Steen HC, Kotredes KP, Nogusa S, Harris MY, Balachandran S, Gamero AM. Phosphorylation of STAT2 on serine-734 negatively regulates the IFN-alpha-induced antiviral response. J Cell Sci. 2016;129:4190–4199.
    • (2016) J Cell Sci. , vol.129 , pp. 4190-4199
    • Steen, H.C.1    Kotredes, K.P.2    Nogusa, S.3    Harris, M.Y.4    Balachandran, S.5    Gamero, A.M.6
  • 180
    • 85011691053 scopus 로고    scopus 로고
    • STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling
    • Arimoto KI, Lochte S, Stoner SA, et al. STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling. Nat Struct Mol Biol. 2017;24:279–289.
    • (2017) Nat Struct Mol Biol. , vol.24 , pp. 279-289
    • Arimoto, K.I.1    Lochte, S.2    Stoner, S.A.3
  • 181
    • 84880018473 scopus 로고    scopus 로고
    • Usp18 deficient mammary epithelial cells create an antitumour environment driven by hypersensitivity to IFN-lambda and elevated secretion of Cxcl10
    • Burkart C, Arimoto K, Tang T, et al. Usp18 deficient mammary epithelial cells create an antitumour environment driven by hypersensitivity to IFN-lambda and elevated secretion of Cxcl10. EMBO Mol Med. 2013;5:1035–1050.
    • (2013) EMBO Mol Med. , vol.5 , pp. 1035-1050
    • Burkart, C.1    Arimoto, K.2    Tang, T.3
  • 182
    • 84868524688 scopus 로고    scopus 로고
    • MicroRNA-466l inhibits antiviral innate immune response by targeting interferon-alpha
    • Li Y, Fan X, He X, et al. MicroRNA-466l inhibits antiviral innate immune response by targeting interferon-alpha. Cell Mol Immunol. 2012;9:497–502.
    • (2012) Cell Mol Immunol. , vol.9 , pp. 497-502
    • Li, Y.1    Fan, X.2    He, X.3
  • 183
    • 77951932396 scopus 로고    scopus 로고
    • MicroRNA regulation of IFN-beta protein expression: rapid and sensitive modulation of the innate immune response
    • Witwer KW, Sisk JM, Gama L, Clements JE. MicroRNA regulation of IFN-beta protein expression: rapid and sensitive modulation of the innate immune response. J Immunol. 2010;184:2369–2376.
    • (2010) J Immunol. , vol.184 , pp. 2369-2376
    • Witwer, K.W.1    Sisk, J.M.2    Gama, L.3    Clements, J.E.4
  • 184
    • 84998880913 scopus 로고    scopus 로고
    • MicroRNA-22 negatively regulates poly(I:c)-triggered type I interferon and inflammatory cytokine production via targeting mitochondrial antiviral signaling protein (MAVS)
    • Wan S, Ashraf U, Ye J, et al. MicroRNA-22 negatively regulates poly(I:c)-triggered type I interferon and inflammatory cytokine production via targeting mitochondrial antiviral signaling protein (MAVS). Oncotarget. 2016;7:76667–76683.
    • (2016) Oncotarget. , vol.7 , pp. 76667-76683
    • Wan, S.1    Ashraf, U.2    Ye, J.3
  • 185
    • 84896838762 scopus 로고    scopus 로고
    • Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon
    • Ho BC, Yu IS, Lu LF, et al. Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat Commun. 2014;5:3344.
    • (2014) Nat Commun. , vol.5 , pp. 3344
    • Ho, B.C.1    Yu, I.S.2    Lu, L.F.3
  • 186
    • 65249138193 scopus 로고    scopus 로고
    • MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins
    • Tang Y, Luo X, Cui H, et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 2009;60:1065–1075.
    • (2009) Arthritis Rheum. , vol.60 , pp. 1065-1075
    • Tang, Y.1    Luo, X.2    Cui, H.3
  • 187
    • 84855931651 scopus 로고    scopus 로고
    • The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-alpha receptor
    • Papadopoulou AS, Dooley J, Linterman MA, et al. The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-alpha receptor. Nat Immunol. 2011;13:181–187.
    • (2011) Nat Immunol. , vol.13 , pp. 181-187
    • Papadopoulou, A.S.1    Dooley, J.2    Linterman, M.A.3
  • 188
    • 84995471895 scopus 로고    scopus 로고
    • Hepatitis-C-virus-induced microRNAs dampen interferon-mediated antiviral signaling
    • Jarret A, McFarland AP, Horner SM, et al. Hepatitis-C-virus-induced microRNAs dampen interferon-mediated antiviral signaling. Nat Med. 2016;22:1475–1481.
    • (2016) Nat Med. , vol.22 , pp. 1475-1481
    • Jarret, A.1    McFarland, A.P.2    Horner, S.M.3
  • 189
    • 77951587074 scopus 로고    scopus 로고
    • Global changes of mRNA expression reveals an increased activity of the interferon-induced signal transducer and activator of transcription (STAT) pathway by repression of miR-221/222 in glioblastoma U251 cells
    • Zhang C, Han L, Zhang A, et al. Global changes of mRNA expression reveals an increased activity of the interferon-induced signal transducer and activator of transcription (STAT) pathway by repression of miR-221/222 in glioblastoma U251 cells. Int J Oncol. 2010;36:1503–1512.
    • (2010) Int J Oncol. , vol.36 , pp. 1503-1512
    • Zhang, C.1    Han, L.2    Zhang, A.3
  • 190
    • 84881219431 scopus 로고    scopus 로고
    • MicroRNA profiling of Sendai virus-infected A549 cells identifies miR-203 as an interferon-inducible regulator of IFIT1/ISG56
    • Buggele WA, Horvath CM. MicroRNA profiling of Sendai virus-infected A549 cells identifies miR-203 as an interferon-inducible regulator of IFIT1/ISG56. J Virol. 2013;87:9260–9270.
    • (2013) J Virol. , vol.87 , pp. 9260-9270
    • Buggele, W.A.1    Horvath, C.M.2
  • 191
    • 85015368237 scopus 로고    scopus 로고
    • MicroRNA-302d targets IRF9 to regulate the IFN-induced gene expression in SLE
    • Smith S, Fernando T, Wu PW, et al. MicroRNA-302d targets IRF9 to regulate the IFN-induced gene expression in SLE. J Autoimmun. 2017;79:105–111.
    • (2017) J Autoimmun. , vol.79 , pp. 105-111
    • Smith, S.1    Fernando, T.2    Wu, P.W.3
  • 192
    • 84910625872 scopus 로고    scopus 로고
    • NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription
    • Ouyang J, Zhu X, Chen Y, et al. NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription. Cell Host Microbe 2014;16:616–626.
    • (2014) Cell Host Microbe , vol.16 , pp. 616-626
    • Ouyang, J.1    Zhu, X.2    Chen, Y.3
  • 193
    • 84919377990 scopus 로고    scopus 로고
    • Negative regulation of the interferon response by an interferon-induced long non-coding RNA
    • Kambara H, Niazi F, Kostadinova L, et al. Negative regulation of the interferon response by an interferon-induced long non-coding RNA. Nucleic Acids Res. 2014;42:10668–10680.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 10668-10680
    • Kambara, H.1    Niazi, F.2    Kostadinova, L.3
  • 195
    • 33645214607 scopus 로고    scopus 로고
    • Adjuvant activity of interferon alpha: mechanism(s) of action
    • Tovey MG, Lallemand C, Meritet JF, Maury C. Adjuvant activity of interferon alpha: mechanism(s) of action. Vaccine 2006;24(Suppl 2):S46–S47.
    • (2006) Vaccine , vol.24 , pp. S46-S47
    • Tovey, M.G.1    Lallemand, C.2    Meritet, J.F.3    Maury, C.4
  • 196
    • 42049096991 scopus 로고    scopus 로고
    • Type I interferons as vaccine adjuvants against infectious diseases and cancer
    • Bracci L, La Sorsa V, Belardel F, Proiett E. Type I interferons as vaccine adjuvants against infectious diseases and cancer. Expert Rev Vaccines. 2008;7:373–381.
    • (2008) Expert Rev Vaccines. , vol.7 , pp. 373-381
    • Bracci, L.1    La Sorsa, V.2    Belardel, F.3    Proiett, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.