-
1
-
-
84971577321
-
-
arxiv: 1603.04467
-
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arxiv: 1603.04467.
-
(2016)
Tensorflow: large-scale machine learning on heterogeneous distributed systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
Ghemawat, S.11
Goodfellow, I.12
Harp, A.13
Irving, G.14
Isard, M.15
Jia, Y.16
Jozefowicz, R.17
Kaiser, L.18
Kudlur, M.19
Levenberg, J.20
Mane, D.21
Monga, R.22
Moore, S.23
Murray, D.24
Olah, C.25
Schuster, M.26
Shlens, J.27
Steiner, B.28
Sutskever, I.29
Talwar, K.30
Tucker, P.31
Vanhoucke, V.32
Vasudevan, V.33
Viegas, F.34
Vinyals, O.35
Warden, P.36
Wattenberg, M.37
Wicke, M.38
Yu, Y.39
Zheng, X.40
more..
-
2
-
-
84990193991
-
Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning
-
Abràmoff, M.D., Lou, Y., Erginay, A., Clarida, W., Amelon, R., Folk, J.C., Niemeijer, M., Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest. Ophthalmol. Vis. Sci. 57:13 (2016), 5200–5206, 10.1167/iovs.16-19964.
-
(2016)
Invest. Ophthalmol. Vis. Sci.
, vol.57
, Issue.13
, pp. 5200-5206
-
-
Abràmoff, M.D.1
Lou, Y.2
Erginay, A.3
Clarida, W.4
Amelon, R.5
Folk, J.C.6
Niemeijer, M.7
-
3
-
-
84992530579
-
Cell segmentation proposal network for microscopy image analysis
-
Akram, S.U., Kannala, J., Eklund, L., Heikkilä, J., Cell segmentation proposal network for microscopy image analysis. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 21–29, 10.1007/978-3-319-46976-8_3.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 21-29
-
-
Akram, S.U.1
Kannala, J.2
Eklund, L.3
Heikkilä, J.4
-
4
-
-
84992490750
-
A region based convolutional network for tumor detection and classification in breast mammography
-
Akselrod-Ballin, A., Karlinsky, L., Alpert, S., Hasoul, S., Ben-Ari, R., Barkan, E., A region based convolutional network for tumor detection and classification in breast mammography. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 197–205, 10.1007/978-3-319-46976-8_21.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 197-205
-
-
Akselrod-Ballin, A.1
Karlinsky, L.2
Alpert, S.3
Hasoul, S.4
Ben-Ari, R.5
Barkan, E.6
-
5
-
-
84996560126
-
Fast fully automatic segmentation of the human placenta from motion corrupted MRI
-
Alansary, A., Kamnitsas, K., Davidson, A., Khlebnikov, R., Rajchl, M., Malamateniou, C., Rutherford, M., Hajnal, J.V., Glocker, B., Rueckert, D., Kainz, B., Fast fully automatic segmentation of the human placenta from motion corrupted MRI. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 589–597, 10.1007/978-3-319-46723-8_68.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 589-597
-
-
Alansary, A.1
Kamnitsas, K.2
Davidson, A.3
Khlebnikov, R.4
Rajchl, M.5
Malamateniou, C.6
Rutherford, M.7
Hajnal, J.V.8
Glocker, B.9
Rueckert, D.10
Kainz, B.11
-
6
-
-
84969939903
-
Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images
-
Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N., Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35 (2016), 1313–1321.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1313-1321
-
-
Albarqouni, S.1
Baur, C.2
Achilles, F.3
Belagiannis, V.4
Demirci, S.5
Navab, N.6
-
7
-
-
84953218259
-
A comparative study for chest radiograph image retrieval using binary texture and deep learning classification.
-
Anavi, Y., Kogan, I., Gelbart, E., Geva, O., Greenspan, H., A comparative study for chest radiograph image retrieval using binary texture and deep learning classification. Proceedings of the IEEE Engineering in Medicine and Biology Society, 2015, 2940–2943, 10.1109/EMBC.2015.7319008.
-
(2015)
Proceedings of the IEEE Engineering in Medicine and Biology Society
, pp. 2940-2943
-
-
Anavi, Y.1
Kogan, I.2
Gelbart, E.3
Geva, O.4
Greenspan, H.5
-
8
-
-
84988876822
-
Visualizing and enhancing a deep learning framework using patients age and gender for chest X-ray image retrieval
-
Anavi, Y., Kogan, I., Gelbart, E., Geva, O., Greenspan, H., Visualizing and enhancing a deep learning framework using patients age and gender for chest X-ray image retrieval. Proceedings of the SPIE on Medical Imaging, 9785, 2016, 978510.
-
(2016)
Proceedings of the SPIE on Medical Imaging
, vol.9785
, pp. 978510
-
-
Anavi, Y.1
Kogan, I.2
Gelbart, E.3
Geva, O.4
Greenspan, H.5
-
9
-
-
84992490702
-
Multi-dimensional gated recurrent units for the segmentation of biomedical 3D-data
-
Andermatt, S., Pezold, S., Cattin, P., Multi-dimensional gated recurrent units for the segmentation of biomedical 3D-data. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 142–151.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 142-151
-
-
Andermatt, S.1
Pezold, S.2
Cattin, P.3
-
10
-
-
84968662241
-
Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
-
Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., Mougiakakou, S., Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35:5 (2016), 1207–1216, 10.1109/TMI.2016.2535865.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1207-1216
-
-
Anthimopoulos, M.1
Christodoulidis, S.2
Ebner, L.3
Christe, A.4
Mougiakakou, S.5
-
11
-
-
85026558652
-
Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks
-
arxiv: 1609.02469.
-
Antony, J., McGuinness, K., Connor, N.E.O., Moran, K., 2016. Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. arxiv: 1609.02469.
-
(2016)
-
-
Antony, J.1
McGuinness, K.2
Connor, N.E.O.3
Moran, K.4
-
12
-
-
84968865980
-
Detection of lobular structures in normal breast tissue.
-
Apou, G., Schaadt, N.S., Naegel, B., Forestier, G., Schönmeyer, R., Feuerhake, F., Wemmert, C., Grote, A., Detection of lobular structures in normal breast tissue. Comput. Biol. Med. 74 (2016), 91–102, 10.1016/j.compbiomed.2016.05.004.
-
(2016)
Comput. Biol. Med.
, vol.74
, pp. 91-102
-
-
Apou, G.1
Schaadt, N.S.2
Naegel, B.3
Forestier, G.4
Schönmeyer, R.5
Feuerhake, F.6
Wemmert, C.7
Grote, A.8
-
13
-
-
84955570567
-
Representation learning for mammography mass lesion classification with convolutional neural networks.
-
Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, J.L., Guevara Lopez, M.A., Representation learning for mammography mass lesion classification with convolutional neural networks. Comput. Methods Program. Biomed. 127 (2016), 248–257, 10.1016/j.cmpb.2015.12.014.
-
(2016)
Comput. Methods Program. Biomed.
, vol.127
, pp. 248-257
-
-
Arevalo, J.1
González, F.A.2
Ramos-Pollán, R.3
Oliveira, J.L.4
Guevara Lopez, M.A.5
-
14
-
-
79551672468
-
The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
-
Armato, S.G., McLennan, G., Bidaut, L., McNitt-Gray, M.F., Meyer, C.R., Reeves, A.P., Zhao, B., Aberle, D.R., Henschke, C.I., Hoffman, E.A., Kazerooni, E.A., MacMahon, H., Beek, E.J.R.V., Yankelevitz, D., Biancardi, A.M., Bland, P.H., Brown, M.S., Engelmann, R.M., Laderach, G.E., Max, D., Pais, R.C., Qing, D.P.Y., Roberts, R.Y., Smith, A.R., Starkey, A., Batrah, P., Caligiuri, P., Farooqi, A., Gladish, G.W., Jude, C.M., Munden, R.F., Petkovska, I., Quint, L.E., Schwartz, L.H., Sundaram, B., Dodd, L.E., Fenimore, C., Gur, D., Petrick, N., Freymann, J., Kirby, J., Hughes, B., Casteele, A.V., Gupte, S., Sallamm, M., Heath, M.D., Kuhn, M.H., Dharaiya, E., Burns, R., Fryd, D.S., Salganicoff, M., Anand, V., Shreter, U., Vastagh, S., Croft, B.Y., The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38 (2011), 915–931.
-
(2011)
Med. Phys.
, vol.38
, pp. 915-931
-
-
Armato, S.G.1
McLennan, G.2
Bidaut, L.3
McNitt-Gray, M.F.4
Meyer, C.R.5
Reeves, A.P.6
Zhao, B.7
Aberle, D.R.8
Henschke, C.I.9
Hoffman, E.A.10
Kazerooni, E.A.11
MacMahon, H.12
Beek, E.J.R.V.13
Yankelevitz, D.14
Biancardi, A.M.15
Bland, P.H.16
Brown, M.S.17
Engelmann, R.M.18
Laderach, G.E.19
Max, D.20
Pais, R.C.21
Qing, D.P.Y.22
Roberts, R.Y.23
Smith, A.R.24
Starkey, A.25
Batrah, P.26
Caligiuri, P.27
Farooqi, A.28
Gladish, G.W.29
Jude, C.M.30
Munden, R.F.31
Petkovska, I.32
Quint, L.E.33
Schwartz, L.H.34
Sundaram, B.35
Dodd, L.E.36
Fenimore, C.37
Gur, D.38
Petrick, N.39
Freymann, J.40
Kirby, J.41
Hughes, B.42
Casteele, A.V.43
Gupte, S.44
Sallamm, M.45
Heath, M.D.46
Kuhn, M.H.47
Dharaiya, E.48
Burns, R.49
Fryd, D.S.50
Salganicoff, M.51
Anand, V.52
Shreter, U.53
Vastagh, S.54
Croft, B.Y.55
more..
-
15
-
-
84958955334
-
A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI
-
Avendi, M., Kheradvar, A., Jafarkhani, H., A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30 (2016), 108–119.
-
(2016)
Med. Image Anal.
, vol.30
, pp. 108-119
-
-
Avendi, M.1
Kheradvar, A.2
Jafarkhani, H.3
-
16
-
-
84964067205
-
Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study
-
Azizi, S., Imani, F., Ghavidel, S., Tahmasebi, A., Kwak, J.T., Xu, S., Turkbey, B., Choyke, P., Pinto, P., Wood, B., Mousavi, P., Abolmaesumi, P., Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study. Int. J. Comput. Assist. Radiol. Surg. 11:6 (2016), 947–956, 10.1007/s11548-016-1395-2.
-
(2016)
Int. J. Comput. Assist. Radiol. Surg.
, vol.11
, Issue.6
, pp. 947-956
-
-
Azizi, S.1
Imani, F.2
Ghavidel, S.3
Tahmasebi, A.4
Kwak, J.T.5
Xu, S.6
Turkbey, B.7
Choyke, P.8
Pinto, P.9
Wood, B.10
Mousavi, P.11
Abolmaesumi, P.12
-
17
-
-
84992512809
-
Convolutional neural network for reconstruction of 7T-like images from 3T MRI using appearance and anatomical features
-
Bahrami, K., Shi, F., Rekik, I., Shen, D., Convolutional neural network for reconstruction of 7T-like images from 3T MRI using appearance and anatomical features. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 39–47, 10.1007/978-3-319-46976-8_5.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 39-47
-
-
Bahrami, K.1
Shi, F.2
Rekik, I.3
Shen, D.4
-
19
-
-
84943754825
-
Deep learning with non-medical training used for chest pathology identification
-
Bar, Y., Diamant, I., Wolf, L., Greenspan, H., Deep learning with non-medical training used for chest pathology identification. Proceedings of the SPIE on Medical Imaging, 9414, 2015, 94140V.
-
(2015)
Proceedings of the SPIE on Medical Imaging
, vol.9414
, pp. 94140V
-
-
Bar, Y.1
Diamant, I.2
Wolf, L.3
Greenspan, H.4
-
20
-
-
85006184186
-
Chest pathology identification using deep feature selection with non-medical training
-
Bar, Y., Diamant, I., Wolf, L., Lieberman, S., Konen, E., Greenspan, H., Chest pathology identification using deep feature selection with non-medical training. Comput. Methods Biomech. Biomed. Eng. Imag. Visual., 2016, 1–5, 10.1080/21681163.2016.1138324.
-
(2016)
Comput. Methods Biomech. Biomed. Eng. Imag. Visual.
, pp. 1-5
-
-
Bar, Y.1
Diamant, I.2
Wolf, L.3
Lieberman, S.4
Konen, E.5
Greenspan, H.6
-
21
-
-
85045059125
-
An analysis of robust cost functions for CNN in computer-aided diagnosis
-
Barbu, A., Lu, L., Roth, H., Seff, A., Summers, R.M., An analysis of robust cost functions for CNN in computer-aided diagnosis. Comput. Methods Biomech. Biomed. Eng. Imag. Visual. 2016 (2016), 1–6.
-
(2016)
Comput. Methods Biomech. Biomed. Eng. Imag. Visual.
, vol.2016
, pp. 1-6
-
-
Barbu, A.1
Lu, L.2
Roth, H.3
Seff, A.4
Summers, R.M.5
-
22
-
-
84897544737
-
Theano: new features and speed improvements
-
Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Bouchard, N., Warde-Farley, D., Bengio, Y., Theano: new features and speed improvements. Proceedings of the Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.
-
(2012)
Proceedings of the Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.5
Bergeron, A.6
Bouchard, N.7
Warde-Farley, D.8
Bengio, Y.9
-
23
-
-
85026519946
-
Multi-organ cancer classification and survival analysis
-
arxiv: 1606.00897.
-
Bauer, S., Carion, N., Schäffler, P., Fuchs, T., Wild, P., Buhmann, J. M., 2016. Multi-organ cancer classification and survival analysis. arxiv: 1606.00897.
-
(2016)
-
-
Bauer, S.1
Carion, N.2
Schäffler, P.3
Fuchs, T.4
Wild, P.5
Buhmann, J.M.6
-
24
-
-
84996563600
-
Real-time standard scan plane detection and localisation in fetal ultrasound using fully convolutional neural networks
-
Baumgartner, C.F., Kamnitsas, K., Matthew, J., Smith, S., Kainz, B., Rueckert, D., Real-time standard scan plane detection and localisation in fetal ultrasound using fully convolutional neural networks. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 203–211, 10.1007/978-3-319-46723-8_24.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 203-211
-
-
Baumgartner, C.F.1
Kamnitsas, K.2
Matthew, J.3
Smith, S.4
Kainz, B.5
Rueckert, D.6
-
25
-
-
84992504713
-
Deep learning and data labeling for medical applications
-
Ben-Cohen, A., Diamant, I., Klang, E., Amitai, M., Greenspan, H., Deep learning and data labeling for medical applications. Proceedings of the International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis Lecture Notes in Computer Science, 10008, 2016, 77–85, 10.1007/978-3-319-46976-8_9.
-
(2016)
Proceedings of the International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, Lecture Notes in Computer Science
, vol.10008
, pp. 77-85
-
-
Ben-Cohen, A.1
Diamant, I.2
Klang, E.3
Amitai, M.4
Greenspan, H.5
-
26
-
-
84872577736
-
Practical recommendations for gradient-based training of deep architectures
-
Springer Berlin Heidelberg
-
Bengio, Y., Practical recommendations for gradient-based training of deep architectures. Neural Networks: Tricks of the Trade, 2012, Springer, Berlin Heidelberg, 437–478.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 437-478
-
-
Bengio, Y.1
-
27
-
-
84879854889
-
Representation learning: a review and new perspectives
-
Bengio, Y., Courville, A., Vincent, P., Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35:8 (2013), 1798–1828, 10.1109/TPAMI.2013.50.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
28
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., Greedy layer-wise training of deep networks. Proceedings of the Advances in Neural Information Processing Systems, 2007, 153–160.
-
(2007)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
29
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Bengio, Y., Simard, P., Frasconi, P., Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5 (1994), 157–166.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
30
-
-
84992490575
-
De-noising of contrast-enhanced MRI sequences by an ensemble of expert deep neural networks
-
Benou, A., Veksler, R., Friedman, A., Raviv, T.R., De-noising of contrast-enhanced MRI sequences by an ensemble of expert deep neural networks. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 95–110.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 95-110
-
-
Benou, A.1
Veksler, R.2
Friedman, A.3
Raviv, T.R.4
-
31
-
-
84996552025
-
Topology aware fully convolutional networks for histology gland segmentation
-
BenTaieb, A., Hamarneh, G., Topology aware fully convolutional networks for histology gland segmentation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 460–468, 10.1007/978-3-319-46723-8_53.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 460-468
-
-
BenTaieb, A.1
Hamarneh, G.2
-
32
-
-
84978430436
-
Multi-loss convolutional networks for gland analysis in microscopy
-
BenTaieb, A., Kawahara, J., Hamarneh, G., Multi-loss convolutional networks for gland analysis in microscopy. Proceedingds of the IEEE International Symposium on Biomedical Imaging, 2016, 642–645, 10.1109/ISBI.2016.7493349.
-
(2016)
Proceedingds of the IEEE International Symposium on Biomedical Imaging
, pp. 642-645
-
-
BenTaieb, A.1
Kawahara, J.2
Hamarneh, G.3
-
33
-
-
84857855190
-
Random search for hyper-parameter optimization
-
Bergstra, J., Bengio, Y., Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13:1 (2012), 281–305.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, Issue.1
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
34
-
-
84992484462
-
Longitudinal multiple sclerosis lesion segmentation using multi-view convolutional neural networks
-
Birenbaum, A., Greenspan, H., Longitudinal multiple sclerosis lesion segmentation using multi-view convolutional neural networks. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 58–67, 10.1007/978-3-319-46976-8_7.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 58-67
-
-
Birenbaum, A.1
Greenspan, H.2
-
35
-
-
84897570416
-
Manifold learning of brain MRIs by deep learning
-
Brosch, T., Tam, R., Manifold learning of brain MRIs by deep learning. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 8150, 2013, 633–640, 10.1007/978-3-642-40763-5_78.
-
(2013)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.8150
, pp. 633-640
-
-
Brosch, T.1
Tam, R.2
-
36
-
-
84968586012
-
Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
-
Brosch, T., Tang, L.Y., Yoo, Y., Li, D.K., Traboulsee, A., Tam, R., Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35:5 (2016), 1229–1239, 10.1109/TMI.2016.2528821.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1229-1239
-
-
Brosch, T.1
Tang, L.Y.2
Yoo, Y.3
Li, D.K.4
Traboulsee, A.5
Tam, R.6
-
37
-
-
84906987758
-
Modeling the variability in brain morphology and lesion distribution in multiple sclerosis by deep learning
-
Brosch, T., Yoo, Y., Li, D.K.B., Traboulsee, A., Tam, R., Modeling the variability in brain morphology and lesion distribution in multiple sclerosis by deep learning. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 8674, 2014, 462–469, 10.1007/978-3-319-10470-6_58.
-
(2014)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.8674
, pp. 462-469
-
-
Brosch, T.1
Yoo, Y.2
Li, D.K.B.3
Traboulsee, A.4
Tam, R.5
-
38
-
-
84978427918
-
Detection of age-related macular degeneration via deep learning
-
Burlina, P., Freund, D.E., Joshi, N., Wolfson, Y., Bressler, N.M., Detection of age-related macular degeneration via deep learning. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 184–188, 10.1109/ISBI.2016.7493240.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 184-188
-
-
Burlina, P.1
Freund, D.E.2
Joshi, N.3
Wolfson, Y.4
Bressler, N.M.5
-
39
-
-
84989865281
-
Deep learning for tissue microarray image-based outcome prediction in patients with colorectal cancer
-
Bychkov, D., Turkki, R., Haglund, C., Linder, N., Lundin, J., Deep learning for tissue microarray image-based outcome prediction in patients with colorectal cancer. Proceedings of the SPIE on Medical Imaging, 9791, 2016, 979115.
-
(2016)
Proceedings of the SPIE on Medical Imaging
, vol.9791
, pp. 979115
-
-
Bychkov, D.1
Turkki, R.2
Haglund, C.3
Linder, N.4
Lundin, J.5
-
40
-
-
84996564548
-
Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks
-
Cai, J., Lu, L., Zhang, Z., Xing, F., Yang, L., Yin, Q., Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 442–450, 10.1007/978-3-319-46723-8_51.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 442-450
-
-
Cai, J.1
Lu, L.2
Zhang, Z.3
Xing, F.4
Yang, L.5
Yin, Q.6
-
41
-
-
84963930727
-
Multi-modal vertebrae recognition using transformed deep convolution network.
-
Cai, Y., Landis, M., Laidley, D.T., Kornecki, A., Lum, A., Li, S., Multi-modal vertebrae recognition using transformed deep convolution network. Comput. Med. Imaging Graph 51 (2016), 11–19, 10.1016/j.compmedimag.2016.02.002.
-
(2016)
Comput. Med. Imaging Graph
, vol.51
, pp. 11-19
-
-
Cai, Y.1
Landis, M.2
Laidley, D.T.3
Kornecki, A.4
Lum, A.5
Li, S.6
-
42
-
-
84884546164
-
Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data
-
Carneiro, G., Nascimento, J.C., Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013), 2592–2607, 10.1109/TPAMI.2013.96.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, pp. 2592-2607
-
-
Carneiro, G.1
Nascimento, J.C.2
-
43
-
-
84857295176
-
The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods
-
Carneiro, G., Nascimento, J.C., Freitas, A., The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans. Image Process, 2012, 968–982, 10.1109/TIP.2011.2169273.
-
(2012)
IEEE Trans. Image Process
, pp. 968-982
-
-
Carneiro, G.1
Nascimento, J.C.2
Freitas, A.3
-
44
-
-
85021115846
-
Automated 5-year mortality prediction using deep learning and radiomics features from chest computed tomography
-
arxiv: 1607.00267.
-
Carneiro, G., Oakden-Rayner, L., Bradley, A.P., Nascimento, J., Palmer, L., 2016. Automated 5-year mortality prediction using deep learning and radiomics features from chest computed tomography. arxiv: 1607.00267.
-
(2016)
-
-
Carneiro, G.1
Oakden-Rayner, L.2
Bradley, A.P.3
Nascimento, J.4
Palmer, L.5
-
45
-
-
85000512565
-
Bladder cancer segmentation in CT for treatment response assessment: application of deep-learning convolution neural network-a pilot study
-
Cha, K.H., Hadjiiski, L.M., Samala, R.K., Chan, H.-P., Cohan, R.H., Caoili, E.M., Paramagul, C., Alva, A., Weizer, A.Z., Bladder cancer segmentation in CT for treatment response assessment: application of deep-learning convolution neural network-a pilot study. Tomography 2 (2016), 421–429, 10.18383/j.tom.2016.00184.
-
(2016)
Tomography
, vol.2
, pp. 421-429
-
-
Cha, K.H.1
Hadjiiski, L.M.2
Samala, R.K.3
Chan, H.-P.4
Cohan, R.H.5
Caoili, E.M.6
Paramagul, C.7
Alva, A.8
Weizer, A.Z.9
-
46
-
-
85044858639
-
Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications
-
Chang, H., Han, J., Zhong, C., Snijders, A., Mao, J.-H., Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications. IEEE Trans. Pattern Anal. Mach. Intell., 2017, 10.1109/TPAMI.2017.2656884.
-
(2017)
IEEE Trans. Pattern Anal. Mach. Intell.
-
-
Chang, H.1
Han, J.2
Zhong, C.3
Snijders, A.4
Mao, J.-H.5
-
47
-
-
84995466936
-
Improving airway segmentation in computed tomography using leak detection with convolutional networks
-
Charbonnier, J., van Rikxoort, E., Setio, A., Schaefer-Prokop, C., van Ginneken, B., Ciompi, F., Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med. Image Anal. 36 (2017), 52–60, 10.1016/j.media.2016.11.001.
-
(2017)
Med. Image Anal.
, vol.36
, pp. 52-60
-
-
Charbonnier, J.1
van Rikxoort, E.2
Setio, A.3
Schaefer-Prokop, C.4
van Ginneken, B.5
Ciompi, F.6
-
48
-
-
84947424557
-
Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks
-
Chen, H., Dou, Q., Ni, D., Cheng, J.-Z., Qin, J., Li, S., Heng, P.-A., Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9349, 2015, 507–514, 10.1007/978-3-319-24553-9_62.
-
(2015)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9349
, pp. 507-514
-
-
Chen, H.1
Dou, Q.2
Ni, D.3
Cheng, J.-Z.4
Qin, J.5
Li, S.6
Heng, P.-A.7
-
49
-
-
85026517840
-
-
Voxresnet: deep voxelwise residual networks for volumetric brain segmentation. arxiv: 1608.05895
-
Chen, H., Dou, Q., Yu, L., Heng, P.-A., 2016a. Voxresnet: deep voxelwise residual networks for volumetric brain segmentation. arxiv: 1608.05895.
-
(2016)
-
-
Chen, H.1
Dou, Q.2
Yu, L.3
Heng, P.-A.4
-
50
-
-
84940970126
-
Standard plane localization in fetal ultrasound via domain transferred deep neural networks
-
Chen, H., Ni, D., Qin, J., Li, S., Yang, X., Wang, T., Heng, P.A., Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J. Biomed. Health Inform. 19:5 (2015), 1627–1636, 10.1109/JBHI.2015.2425041.
-
(2015)
IEEE J. Biomed. Health Inform.
, vol.19
, Issue.5
, pp. 1627-1636
-
-
Chen, H.1
Ni, D.2
Qin, J.3
Li, S.4
Yang, X.5
Wang, T.6
Heng, P.A.7
-
51
-
-
84997796752
-
DCAN: Deep contour-aware networks for accurate gland segmentation
-
Chen, H., Qi, X., Yu, L., Heng, P.-A., DCAN: Deep contour-aware networks for accurate gland segmentation. Med. Image Anal. 36 (2017), 135–146, 10.1016/j.media.2016.11.004.
-
(2017)
Med. Image Anal.
, vol.36
, pp. 135-146
-
-
Chen, H.1
Qi, X.2
Yu, L.3
Heng, P.-A.4
-
52
-
-
84947419089
-
Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks
-
Chen, H., Shen, C., Qin, J., Ni, D., Shi, L., Cheng, J.C.Y., Heng, P.-A., Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9349, 2015, 515–522, 10.1007/978-3-319-24553-9_63.
-
(2015)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9349
, pp. 515-522
-
-
Chen, H.1
Shen, C.2
Qin, J.3
Ni, D.4
Shi, L.5
Cheng, J.C.Y.6
Heng, P.-A.7
-
53
-
-
84978397845
-
Automated mitosis detection with deep regression networks
-
Chen, H., Wang, X., Heng, P.A., Automated mitosis detection with deep regression networks. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 1204–1207, 10.1109/ISBI.2016.7493482.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 1204-1207
-
-
Chen, H.1
Wang, X.2
Heng, P.A.3
-
54
-
-
84996520815
-
Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images
-
Chen, H., Zheng, Y., Park, J.-H., Heng, P.-A., Zhou, S.K., Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 487–495, 10.1007/978-3-319-46723-8_56.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 487-495
-
-
Chen, H.1
Zheng, Y.2
Park, J.-H.3
Heng, P.-A.4
Zhou, S.K.5
-
55
-
-
85016371655
-
Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation
-
Chen, J., Yang, L., Zhang, Y., Alber, M., Chen, D.Z., Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation. Proceedings of the Advances in Neural Information Processing Systems, 2016, 3036–3044.
-
(2016)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 3036-3044
-
-
Chen, J.1
Yang, L.2
Zhang, Y.3
Alber, M.4
Chen, D.Z.5
-
56
-
-
85015080978
-
Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images.
-
Chen, S., Qin, J., Ji, X., Lei, B., Wang, T., Ni, D., Cheng, J.-Z., Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images. IEEE Trans. Med. Imaging 36:3 (2017), 802–804, 10.1109/TMI.2016.2629462.
-
(2017)
IEEE Trans. Med. Imaging
, vol.36
, Issue.3
, pp. 802-804
-
-
Chen, S.1
Qin, J.2
Ji, X.3
Lei, B.4
Wang, T.5
Ni, D.6
Cheng, J.-Z.7
-
57
-
-
84953278476
-
Glaucoma detection based on deep convolutional neural network
-
Chen, X., Xu, Y., Wong, D.W.K., Wong, T.Y., Liu, J., Glaucoma detection based on deep convolutional neural network. Proceedings of the IEEE Engineering in Medicine and Biology Society, 2015, 715–718, 10.1109/EMBC.2015.7318462.
-
(2015)
Proceedings of the IEEE Engineering in Medicine and Biology Society
, pp. 715-718
-
-
Chen, X.1
Xu, Y.2
Wong, D.W.K.3
Wong, T.Y.4
Liu, J.5
-
58
-
-
84964292829
-
Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans.
-
Cheng, J.-Z., Ni, D., Chou, Y.-H., Qin, J., Tiu, C.-M., Chang, Y.-C., Huang, C.-S., Shen, D., Chen, C.-M., Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Nat. Sci. Rep., 6, 2016, 24454, 10.1038/srep24454.
-
(2016)
Nat. Sci. Rep.
, vol.6
, pp. 24454
-
-
Cheng, J.-Z.1
Ni, D.2
Chou, Y.-H.3
Qin, J.4
Tiu, C.-M.5
Chang, Y.-C.6
Huang, C.-S.7
Shen, D.8
Chen, C.-M.9
-
59
-
-
84981731683
-
Active appearance model and deep learning for more accurate prostate segmentation on MRI
-
Cheng, R., Roth, H.R., Lu, L., Wang, S., Turkbey, B., Gandler, W., McCreedy, E.S., Agarwal, H.K., Choyke, P., Summers, R.M., McAuliffe, M.J., Active appearance model and deep learning for more accurate prostate segmentation on MRI. Proceedings of the SPIE on Medical Imaging, 9784, 2016, 97842I.
-
(2016)
Proceedings of the SPIE on Medical Imaging
, vol.9784
, pp. 97842I
-
-
Cheng, R.1
Roth, H.R.2
Lu, L.3
Wang, S.4
Turkbey, B.5
Gandler, W.6
McCreedy, E.S.7
Agarwal, H.K.8
Choyke, P.9
Summers, R.M.10
McAuliffe, M.J.11
-
60
-
-
85006202931
-
Deep similarity learning for multimodal medical images
-
Cheng, X., Zhang, L., Zheng, Y., Deep similarity learning for multimodal medical images. Comput. Methods Biomech. Biomed. Engin., 2015, 1–5, 10.1080/21681163.2015.1135299.
-
(2015)
Comput. Methods Biomech. Biomed. Engin.
, pp. 1-5
-
-
Cheng, X.1
Zhang, L.2
Zheng, Y.3
-
61
-
-
85026506945
-
-
Learning phrase representations using RNN encoder-decoder for statistical machine translation. arxiv: 1406.1078
-
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arxiv: 1406.1078.
-
(2014)
-
-
Cho, K.1
Van Merriënboer, B.2
Gulcehre, C.3
Bahdanau, D.4
Bougares, F.5
Schwenk, H.6
Bengio, Y.7
-
62
-
-
84994012280
-
Fast and robust segmentation of the striatum using deep convolutional neural networks
-
Choi, H., Jin, K.H., Fast and robust segmentation of the striatum using deep convolutional neural networks. J. Neurosci. Methods 274 (2016), 146–153, 10.1016/j.jneumeth.2016.10.007.
-
(2016)
J. Neurosci. Methods
, vol.274
, pp. 146-153
-
-
Choi, H.1
Jin, K.H.2
-
63
-
-
84996561875
-
Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields
-
Christ, P.F., Elshaer, M.E.A., Ettlinger, F., Tatavarty, S., Bickel, M., Bilic, P., Rempfler, M., Armbruster, M., Hofmann, F., D'Anastasi, M., et al. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 415–423, 10.1007/978-3-319-46723-8_48.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 415-423
-
-
Christ, P.F.1
Elshaer, M.E.A.2
Ettlinger, F.3
Tatavarty, S.4
Bickel, M.5
Bilic, P.6
Rempfler, M.7
Armbruster, M.8
Hofmann, F.9
D'Anastasi, M.10
-
64
-
-
85014941777
-
Multi-source transfer learning with convolutional neural networks for lung pattern analysis
-
Christodoulidis, S., Anthimopoulos, M., Ebner, L., Christe, A., Mougiakakou, S., Multi-source transfer learning with convolutional neural networks for lung pattern analysis. IEEE J. Biomed. Health Inf. 21 (2017), 76–84, 10.1109/JBHI.2016.2636929.
-
(2017)
IEEE J. Biomed. Health Inf.
, vol.21
, pp. 76-84
-
-
Christodoulidis, S.1
Anthimopoulos, M.2
Ebner, L.3
Christe, A.4
Mougiakakou, S.5
-
65
-
-
84996483314
-
3D U-Net: learning dense volumetric segmentation from sparse annotation
-
Springer 1606.06650v1
-
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O., 3D U-Net: learning dense volumetric segmentation from sparse annotation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, Springer, 424–432 1606.06650v1.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 424-432
-
-
Çiçek, Ö.1
Abdulkadir, A.2
Lienkamp, S.S.3
Brox, T.4
Ronneberger, O.5
-
66
-
-
85001976294
-
Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs
-
Cicero, M., Bilbily, A., Colak, E., Dowdell, T., Gray, B., Perampaladas, K., Barfett, J., Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Invest Radiol. 52:5 (2017), 281–287, 10.1097/RLI.0000000000000341.
-
(2017)
Invest Radiol.
, vol.52
, Issue.5
, pp. 281-287
-
-
Cicero, M.1
Bilbily, A.2
Colak, E.3
Dowdell, T.4
Gray, B.5
Perampaladas, K.6
Barfett, J.7
-
67
-
-
85026503226
-
-
Towards automatic pulmonary nodule management in lung cancer screening with deep learning. arxiv: 1610.09157
-
Ciompi, F., Chung, K., van Riel, S.J., Setio, A.A.A., Gerke, P.K., Jacobs, C., Scholten, E.T., Schaefer-Prokop, C.M., Wille, M.M.W., Marchiano, A., Pastorino, U., Prokop, M., van Ginneken, B., 2016. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. arxiv: 1610.09157.
-
(2016)
-
-
Ciompi, F.1
Chung, K.2
van Riel, S.J.3
Setio, A.A.A.4
Gerke, P.K.5
Jacobs, C.6
Scholten, E.T.7
Schaefer-Prokop, C.M.8
Wille, M.M.W.9
Marchiano, A.10
Pastorino, U.11
Prokop, M.12
van Ginneken, B.13
-
68
-
-
84943752367
-
Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box
-
Ciompi, F., de Hoop, B., van Riel, S.J., Chung, K., Scholten, E.T., Oudkerk, M., de Jong, P.A., Prokop, M., van Ginneken, B., Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med. Image Anal. 26 (2015), 195–202, 10.1016/j.media.2015.08.001.
-
(2015)
Med. Image Anal.
, vol.26
, pp. 195-202
-
-
Ciompi, F.1
de Hoop, B.2
van Riel, S.J.3
Chung, K.4
Scholten, E.T.5
Oudkerk, M.6
de Jong, P.A.7
Prokop, M.8
van Ginneken, B.9
-
69
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J., Mitosis detection in breast cancer histology images with deep neural networks. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 8150, 2013, 411–418, 10.1007/978-3-642-40763-5_51.
-
(2013)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.8150
, pp. 411-418
-
-
Cireşan, D.C.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
70
-
-
84877789057
-
Deep neural networks segment neuronal membranes in electron microscopy images
-
Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J., Deep neural networks segment neuronal membranes in electron microscopy images. Proceedings of the Advances in Neural Information Processing Systems, 2012, 2843–2851.
-
(2012)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 2843-2851
-
-
Ciresan, D.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
71
-
-
84952004763
-
Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images
-
Codella, N., Cai, J., Abedini, M., Garnavi, R., Halpern, A., Smith, J.R., Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. Proceedings of the International Workshop on Machine Learning in Medical Imaging, 2015, 118–126, 10.1007/978-3-319-24888-2_15.
-
(2015)
Proceedings of the International Workshop on Machine Learning in Medical Imaging
, pp. 118-126
-
-
Codella, N.1
Cai, J.2
Abedini, M.3
Garnavi, R.4
Halpern, A.5
Smith, J.R.6
-
72
-
-
84888340666
-
Torch7: a matlab-like environment for machine learning
-
Collobert, R., Kavukcuoglu, K., Farabet, C., Torch7: a matlab-like environment for machine learning. Proceedings of the Advances in Neural Information Processing Systems, 2011.
-
(2011)
Proceedings of the Advances in Neural Information Processing Systems
-
-
Collobert, R.1
Kavukcuoglu, K.2
Farabet, C.3
-
73
-
-
84901774997
-
Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks
-
Cruz-Roa, A., Basavanhally, A., González, F., Gilmore, H., Feldman, M., Ganesan, S., Shih, N., Tomaszewski, J., Madabhushi, A., Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. Proceedings of the SPIE on Medical Imaging, 9041, 2014, 904103, 10.1117/12.2043872.
-
(2014)
Proceedings of the SPIE on Medical Imaging
, vol.9041
, pp. 904103
-
-
Cruz-Roa, A.1
Basavanhally, A.2
González, F.3
Gilmore, H.4
Feldman, M.5
Ganesan, S.6
Shih, N.7
Tomaszewski, J.8
Madabhushi, A.9
-
74
-
-
84885929616
-
A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
-
978-3-642-40763-5.
-
Cruz-Roa, A.A., Ovalle, J.E.A., Madabhushi, A., Osorio, F.A.G., A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 8150, 2013, 403–410 978-3-642-40763-5.
-
(2013)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.8150
, pp. 403-410
-
-
Cruz-Roa, A.A.1
Ovalle, J.E.A.2
Madabhushi, A.3
Osorio, F.A.G.4
-
75
-
-
85015580937
-
Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
-
Dalmis, M., Litjens, G., Holland, K., Setio, A., Mann, R., Karssemeijer, N., Gubern-Mérida, A., Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med. Phys. 44 (2017), 533–546, 10.1002/mp.12079.
-
(2017)
Med. Phys.
, vol.44
, pp. 533-546
-
-
Dalmis, M.1
Litjens, G.2
Holland, K.3
Setio, A.4
Mann, R.5
Karssemeijer, N.6
Gubern-Mérida, A.7
-
77
-
-
84992530168
-
Automatic slice identification in 3D medical images with a ConvNet regressor
-
de Vos, B.D., Viergever, M.A., de Jong, P.A., Išgum, I., Automatic slice identification in 3D medical images with a ConvNet regressor. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 161–169, 10.1007/978-3-319-46976-8_17.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 161-169
-
-
de Vos, B.D.1
Viergever, M.A.2
de Jong, P.A.3
Išgum, I.4
-
78
-
-
84981709966
-
2D image classification for 3D anatomy localization: employing deep convolutional neural networks
-
de Vos, B.D., Wolterink, J.M., de Jong, P.A., Viergever, M.A., Išgum, I., 2D image classification for 3D anatomy localization: employing deep convolutional neural networks. Proceedings of the SPIE on Medical Imaging, 9784, 2016, 97841Y, 10.1117/12.2216971.
-
(2016)
Proceedings of the SPIE on Medical Imaging
, vol.9784
, pp. 97841Y
-
-
de Vos, B.D.1
Wolterink, J.M.2
de Jong, P.A.3
Viergever, M.A.4
Išgum, I.5
-
79
-
-
84978420803
-
Classification of dermoscopy patterns using deep convolutional neural networks
-
Demyanov, S., Chakravorty, R., Abedini, M., Halpern, A., Garnavi, R., Classification of dermoscopy patterns using deep convolutional neural networks. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 364–368, 10.1109/ISBI.2016.7493284.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 364-368
-
-
Demyanov, S.1
Chakravorty, R.2
Abedini, M.3
Halpern, A.4
Garnavi, R.5
-
80
-
-
84996489144
-
The automated learning of deep features for breast mass classification from mammograms
-
Springer
-
Dhungel, N., Carneiro, G., Bradley, A.P., The automated learning of deep features for breast mass classification from mammograms. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, Springer, 106–114, 10.1007/978-3-319-46723-8_13.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 106-114
-
-
Dhungel, N.1
Carneiro, G.2
Bradley, A.P.3
-
81
-
-
85026498444
-
3D deeply supervised network for automatic liver segmentation from CT volumes
-
Dou, Q., Chen, H., Jin, Y., Yu, L., Qin, J., Heng, P.-A., 3D deeply supervised network for automatic liver segmentation from CT volumes. IEEE Transactions on Biomedical Engineering 64:7 (2016), 1558–1567.
-
(2016)
IEEE Transactions on Biomedical Engineering
, vol.64
, Issue.7
, pp. 1558-1567
-
-
Dou, Q.1
Chen, H.2
Jin, Y.3
Yu, L.4
Qin, J.5
Heng, P.-A.6
-
82
-
-
85026498444
-
Multi-level contextual 3D CNNs for false positive reduction in pulmonary nodule detection, (in press)
-
Dou, Q., Chen, H., Yu, L., Qin, J., Heng, P. A., 2017. Multi-level contextual 3D CNNs for false positive reduction in pulmonary nodule detection, (in press).
-
(2017)
-
-
Dou, Q.1
Chen, H.2
Yu, L.3
Qin, J.4
Heng, P.A.5
-
83
-
-
84953335007
-
Automatic cerebral microbleeds detection from MR images via independent subspace analysis based hierarchical features
-
Dou, Q., Chen, H., Yu, L., Shi, L., Wang, D., Mok, V.C., Heng, P.A., Automatic cerebral microbleeds detection from MR images via independent subspace analysis based hierarchical features. Proceedings of the IEEE Engineering in Medicine and Biology Society, 2015, 7933–7936, 10.1109/EMBC.2015.7320232.
-
(2015)
Proceedings of the IEEE Engineering in Medicine and Biology Society
, pp. 7933-7936
-
-
Dou, Q.1
Chen, H.2
Yu, L.3
Shi, L.4
Wang, D.5
Mok, V.C.6
Heng, P.A.7
-
84
-
-
84968542337
-
Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
-
Dou, Q., Chen, H., Yu, L., Zhao, L., Qin, J., Wang, D., Mok, V.C., Shi, L., Heng, P.-A., Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans. Med. Imaging 35 (2016), 1182–1195.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1182-1195
-
-
Dou, Q.1
Chen, H.2
Yu, L.3
Zhao, L.4
Qin, J.5
Wang, D.6
Mok, V.C.7
Shi, L.8
Heng, P.-A.9
-
85
-
-
84992493183
-
The importance of skip connections in biomedical image segmentation
-
Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C., The importance of skip connections in biomedical image segmentation. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 179–187.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 179-187
-
-
Drozdzal, M.1
Vorontsov, E.2
Chartrand, G.3
Kadoury, S.4
Pal, C.5
-
86
-
-
85045063978
-
Computational mammography using deep neural networks
-
Dubrovina, A., Kisilev, P., Ginsburg, B., Hashoul, S., Kimmel, R., Computational mammography using deep neural networks. Comput. Methods Biomech. Biomed. Eng. Imag. Vis., 2016, 1–5.
-
(2016)
Comput. Methods Biomech. Biomed. Eng. Imag. Vis.
, pp. 1-5
-
-
Dubrovina, A.1
Kisilev, P.2
Ginsburg, B.3
Hashoul, S.4
Kimmel, R.5
-
87
-
-
84959363938
-
Stain specific standardization of whole-slide histopathological images
-
Ehteshami Bejnordi, B., Litjens, G., Timofeeva, N., Otte-Holler, I., Homeyer, A., Karssemeijer, N., van der Laak, J., Stain specific standardization of whole-slide histopathological images. IEEE Trans. Med. Imaging 35:2 (2016), 404–415, 10.1109/TMI.2015.2476509.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.2
, pp. 404-415
-
-
Ehteshami Bejnordi, B.1
Litjens, G.2
Timofeeva, N.3
Otte-Holler, I.4
Homeyer, A.5
Karssemeijer, N.6
van der Laak, J.7
-
88
-
-
84953250991
-
Automatic localization of the left ventricle in cardiac MRI images using deep learning
-
Emad, O., Yassine, I.A., Fahmy, A.S., Automatic localization of the left ventricle in cardiac MRI images using deep learning. Proceedings of the IEEE Engineering in Medicine and Biology Society, 2015, 683–686, 10.1109/EMBC.2015.7318454.
-
(2015)
Proceedings of the IEEE Engineering in Medicine and Biology Society
, pp. 683-686
-
-
Emad, O.1
Yassine, I.A.2
Fahmy, A.S.3
-
89
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S., Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 (2017), 115–118, 10.1038/nature21056.
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
Ko, J.4
Swetter, S.M.5
Blau, H.M.6
Thrun, S.7
-
90
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Farabet, C., Couprie, C., Najman, L., LeCun, Y., Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35:8 (2013), 1915–1929.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
91
-
-
85021072159
-
A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling
-
arxiv: 1505.06236.
-
Farag, A., Lu, L., Roth, H.R., Liu, J., Turkbey, E., Summers, R.M., 2015. A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. arxiv: 1505.06236.
-
(2015)
-
-
Farag, A.1
Lu, L.2
Roth, H.R.3
Liu, J.4
Turkbey, E.5
Summers, R.M.6
-
92
-
-
84953300891
-
Bacterial colony counting by convolutional neural networks
-
Ferrari, A., Lombardi, S., Signoroni, A., Bacterial colony counting by convolutional neural networks. Proceedings of the IEEE Engineering in Medicine and Biology Society., 2015, 7458–7461, 10.1109/EMBC.2015.7320116.
-
(2015)
Proceedings of the IEEE Engineering in Medicine and Biology Society.
, pp. 7458-7461
-
-
Ferrari, A.1
Lombardi, S.2
Signoroni, A.3
-
93
-
-
84948844104
-
Automatic breast density classification using a convolutional neural network architecture search procedure
-
Fonseca, P., Mendoza, J., Wainer, J., Ferrer, J., Pinto, J., Guerrero J.and Castaneda, B., Automatic breast density classification using a convolutional neural network architecture search procedure. Proceedings of the SPIE on Medical Imaging, 9413, 2015, 941428.
-
(2015)
Proceedings of the SPIE on Medical Imaging
, vol.9413
, pp. 941428
-
-
Fonseca, P.1
Mendoza, J.2
Wainer, J.3
Ferrer, J.4
Pinto, J.5
Guerrero, J.6
Castaneda, B.7
-
94
-
-
85009268742
-
Detection and labeling of vertebrae in MR images using deep learning with clinical annotations as training data
-
in press.
-
Forsberg, D., Sjöblom, E., Sunshine, J.L., Detection and labeling of vertebrae in MR images using deep learning with clinical annotations as training data. J. Digit Imaging, 2017, 10.1007/s10278-017-9945-x in press.
-
(2017)
J. Digit Imaging
-
-
Forsberg, D.1
Sjöblom, E.2
Sunshine, J.L.3
-
95
-
-
84988874558
-
Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches
-
Fotin, S.V., Yin, Y., Haldankar, H., Hoffmeister, J.W., Periaswamy, S., Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches. Proceedings of the SPIE on Medical Imaging, 9785, 2016, 97850X.
-
(2016)
Proceedings of the SPIE on Medical Imaging
, vol.9785
, pp. 97850X
-
-
Fotin, S.V.1
Yin, Y.2
Haldankar, H.3
Hoffmeister, J.W.4
Periaswamy, S.5
-
96
-
-
84996600285
-
Deep neural networks for fast segmentation of 3D medical images
-
Fritscher, K., Raudaschl, P., Zaffino, P., Spadea, M.F., Sharp, G.C., Schubert, R., Deep neural networks for fast segmentation of 3D medical images. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 158–165, 10.1007/978-3-319-46723-8_19.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 158-165
-
-
Fritscher, K.1
Raudaschl, P.2
Zaffino, P.3
Spadea, M.F.4
Sharp, G.C.5
Schubert, R.6
-
97
-
-
84996587501
-
Deepvessel: retinal vessel segmentation via?deep learning and conditional random?field
-
Fu, H., Xu, Y., Lin, S., Kee Wong, D.W., Liu, J., Deepvessel: retinal vessel segmentation via?deep learning and conditional random?field. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 132–139, 10.1007/978-3-319-46723-8_16.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 132-139
-
-
Fu, H.1
Xu, Y.2
Lin, S.3
Kee Wong, D.W.4
Liu, J.5
-
98
-
-
84978419519
-
Retinal vessel segmentation via deep learning network and fully-connected conditional random fields
-
Fu, H., Xu, Y., Wong, D.W.K., Liu, J., Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 698–701, 10.1109/ISBI.2016.7493362.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 698-701
-
-
Fu, H.1
Xu, Y.2
Wong, D.W.K.3
Liu, J.4
-
99
-
-
0019152630
-
Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
Fukushima, K., Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36:4 (1980), 193–202, 10.1007/BF00344251.
-
(1980)
Biol. Cybern.
, vol.36
, Issue.4
, pp. 193-202
-
-
Fukushima, K.1
-
100
-
-
85041046467
-
Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks
-
Gao, M., Bagci, U., Lu, L., Wu, A., Buty, M., Shin, H.-C., Roth, H., Papadakis, G.Z., Depeursinge, A., Summers, R.M., Xu, Z., Mollura, D.J., Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Comput. Methods Biomech. Biome., Eng. Imag. Vis., 2016, 1–6, 10.1080/21681163.2015.1124249.
-
(2016)
Comput. Methods Biomech. Biome., Eng. Imag. Vis.
, pp. 1-6
-
-
Gao, M.1
Bagci, U.2
Lu, L.3
Wu, A.4
Buty, M.5
Shin, H.-C.6
Roth, H.7
Papadakis, G.Z.8
Depeursinge, A.9
Summers, R.M.10
Xu, Z.11
Mollura, D.J.12
-
101
-
-
84992522033
-
Multi-label deep regression and unordered pooling for holistic interstitial lung disease pattern detection
-
Gao, M., Xu, Z., Lu, L., Harrison, A.P., Summers, R.M., Mollura, D.J., Multi-label deep regression and unordered pooling for holistic interstitial lung disease pattern detection. Proceedings of the Machine Learning in Medical Imaging Lecture Notes in Computer Science, 10019, 2016, 147–155, 10.1007/978-3-319-47157-0_18.
-
(2016)
Proceedings of the Machine Learning in Medical Imaging, Lecture Notes in Computer Science
, vol.10019
, pp. 147-155
-
-
Gao, M.1
Xu, Z.2
Lu, L.3
Harrison, A.P.4
Summers, R.M.5
Mollura, D.J.6
-
102
-
-
84978383957
-
Segmentation label propagation using deep convolutional neural networks and dense conditional random field
-
Gao, M., Xu, Z., Lu, L., Nogues, I., Summers, R., Mollura, D., Segmentation label propagation using deep convolutional neural networks and dense conditional random field. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 1265–1268, 10.1109/ISBI.2016.7493497.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 1265-1268
-
-
Gao, M.1
Xu, Z.2
Lu, L.3
Nogues, I.4
Summers, R.5
Mollura, D.6
-
103
-
-
84946714467
-
Automatic feature learning to grade nuclear cataracts based on deep learning
-
Gao, X., Lin, S., Wong, T.Y., Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Trans Biomed. Eng. 62:11 (2015), 2693–2701, 10.1109/TBME.2015.2444389.
-
(2015)
IEEE Trans Biomed. Eng.
, vol.62
, Issue.11
, pp. 2693-2701
-
-
Gao, X.1
Lin, S.2
Wong, T.Y.3
-
104
-
-
84978434539
-
Describing ultrasound video content using deep convolutional neural networks
-
Gao, Y., Maraci, M.A., Noble, J.A., Describing ultrasound video content using deep convolutional neural networks. Proceedings of the IEEE International Symposium on Biomedical, 2016, 787–790, 10.1109/ISBI.2016.7493384.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical
, pp. 787-790
-
-
Gao, Y.1
Maraci, M.A.2
Noble, J.A.3
-
105
-
-
85015719821
-
Hep-2 cell image classification with deep convolutional neural networks
-
Gao, Z., Wang, L., Zhou, L., Zhang, J., Hep-2 cell image classification with deep convolutional neural networks. J. Biomed. Health Inf 21:2 (2016), 416–428.
-
(2016)
J. Biomed. Health Inf
, vol.21
, Issue.2
, pp. 416-428
-
-
Gao, Z.1
Wang, L.2
Zhou, L.3
Zhang, J.4
-
106
-
-
85013681885
-
Deep multi-scale location-aware 3d convolutional neural networks for automated detection of lacunes of presumed vascular origin
-
Ghafoorian, M., Karssemeijer, N., Heskes, T., Bergkamp, M., Wissink, J., Obels, J., Keizer, K., de Leeuw, F.-E., van Ginneken, B., Marchiori, E., Platel, B., Deep multi-scale location-aware 3d convolutional neural networks for automated detection of lacunes of presumed vascular origin. NeuroImage. Clin. 14 (2017), 391–399, 10.1016/j.nicl.2017.01.033.
-
(2017)
NeuroImage. Clin.
, vol.14
, pp. 391-399
-
-
Ghafoorian, M.1
Karssemeijer, N.2
Heskes, T.3
Bergkamp, M.4
Wissink, J.5
Obels, J.6
Keizer, K.7
de Leeuw, F.-E.8
van Ginneken, B.9
Marchiori, E.10
Platel, B.11
-
107
-
-
84994671374
-
-
arxiv: 1610.04834
-
Ghafoorian, M., Karssemeijer, N., Heskes, T., van Uden, I., Sanchez, C., Litjens, G., de Leeuw, F.-E., van Ginneken, B., Marchiori, E., Platel, B., 2016a. Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities. arxiv: 1610.04834.
-
(2016)
Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities.
-
-
Ghafoorian, M.1
Karssemeijer, N.2
Heskes, T.3
van Uden, I.4
Sanchez, C.5
Litjens, G.6
de Leeuw, F.-E.7
van Ginneken, B.8
Marchiori, E.9
Platel, B.10
-
108
-
-
84978397925
-
Non-uniform patch sampling with deep convolutional neural networks for white matter hyperintensity segmentation
-
Ghafoorian, M., Karssemeijer, N., Heskes, T., van Uden, I.W.M., de Leeuw, F.-E., Marchiori, E., van Ginneken, B., Platel, B., Non-uniform patch sampling with deep convolutional neural networks for white matter hyperintensity segmentation. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 1414–1417, 10.1109/ISBI.2016.7493532.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 1414-1417
-
-
Ghafoorian, M.1
Karssemeijer, N.2
Heskes, T.3
van Uden, I.W.M.4
de Leeuw, F.-E.5
Marchiori, E.6
van Ginneken, B.7
Platel, B.8
-
109
-
-
84996551865
-
An artificial agent for anatomical landmark detection in medical images
-
Ghesu, F.C., Georgescu, B., Mansi, T., Neumann, D., Hornegger, J., Comaniciu, D., An artificial agent for anatomical landmark detection in medical images. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 10.1007/978-3-319-46726-9_27.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
-
-
Ghesu, F.C.1
Georgescu, B.2
Mansi, T.3
Neumann, D.4
Hornegger, J.5
Comaniciu, D.6
-
110
-
-
84968572880
-
Marginal space deep learning: efficient architecture for volumetric image parsing
-
Ghesu, F.C., Krubasik, E., Georgescu, B., Singh, V., Zheng, Y., Hornegger, J., Comaniciu, D., Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE Trans. Med. Imaging 35 (2016), 1217–1228, 10.1109/TMI.2016.2538802.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1217-1228
-
-
Ghesu, F.C.1
Krubasik, E.2
Georgescu, B.3
Singh, V.4
Zheng, Y.5
Hornegger, J.6
Comaniciu, D.7
-
111
-
-
84992489750
-
Fully automating Graf‘s method for DDH diagnosis using deep convolutional neural networks
-
Golan, D., Donner, Y., Mansi, C., Jaremko, J., Ramachandran, M., Fully automating Graf‘s method for DDH diagnosis using deep convolutional neural networks. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 130–141, 10.1007/978-3-319-46976-8_14.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 130-141
-
-
Golan, D.1
Donner, Y.2
Mansi, C.3
Jaremko, J.4
Ramachandran, M.5
-
112
-
-
84968548037
-
Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans
-
Golkov, V., Dosovitskiy, A., Sperl, J., Menzel, M., Czisch, M., Samann, P., Brox, T., Cremers, D., Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans. Med. Imaging 35 (2016), 1344–1351, 10.1109/tmi.2016.2551324.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1344-1351
-
-
Golkov, V.1
Dosovitskiy, A.2
Sperl, J.3
Menzel, M.4
Czisch, M.5
Samann, P.6
Brox, T.7
Cremers, D.8
-
113
-
-
84937849144
-
Generative adversarial nets
-
arxiv: 1406.2661.
-
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative adversarial nets. arxiv: 1406.2661.
-
(2014)
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
114
-
-
84968661778
-
Deep learning in medical imaging: overview and future promise of an exciting new technique
-
Greenspan, H., Summers, R.M., van Ginneken, B., Deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35:5 (2016), 1153–1159, 10.1109/TMI.2016.2553401.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1153-1159
-
-
Greenspan, H.1
Summers, R.M.2
van Ginneken, B.3
-
115
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs.
-
Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P.C., Mega, J.L., Webster, D.R., Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J. Am. Medd. Assoc. 316 (2016), 2402–2410, 10.1001/jama.2016.17216.
-
(2016)
J. Am. Medd. Assoc.
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
Stumpe, M.C.4
Wu, D.5
Narayanaswamy, A.6
Venugopalan, S.7
Widner, K.8
Madams, T.9
Cuadros, J.10
Kim, R.11
Raman, R.12
Nelson, P.C.13
Mega, J.L.14
Webster, D.R.15
-
116
-
-
84996503911
-
Coronary centerline extraction via optimal flow paths and CNN path pruning
-
Springer
-
Gülsün, M.A., Funka-Lea, G., Sharma, P., Rapaka, S., Zheng, Y., Coronary centerline extraction via optimal flow paths and CNN path pruning. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9902, 2016, Springer, 317–325, 10.1007/978-3-319-46726-9_37.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9902
, pp. 317-325
-
-
Gülsün, M.A.1
Funka-Lea, G.2
Sharma, P.3
Rapaka, S.4
Zheng, Y.5
-
117
-
-
85042106575
-
Automated grading of gliomas using deep learning in digital pathology images: a modular approach with ensemble of convolutional neural networks
-
Günhan Ertosun, M., Rubin, D.L., Automated grading of gliomas using deep learning in digital pathology images: a modular approach with ensemble of convolutional neural networks. Proceedings of the AMIA Annual Symposium, 2015, 1899–1908.
-
(2015)
Proceedings of the AMIA Annual Symposium
, pp. 1899-1908
-
-
Günhan Ertosun, M.1
Rubin, D.L.2
-
118
-
-
84963878431
-
Deformable MR prostate segmentation via deep feature learning and sparse patch matching
-
Guo, Y., Gao, Y., Shen, D., Deformable MR prostate segmentation via deep feature learning and sparse patch matching. IEEE Trans. Med. Imaging 35:4 (2016), 1077–1089, 10.1109/TMI.2015.2508280.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.4
, pp. 1077-1089
-
-
Guo, Y.1
Gao, Y.2
Shen, D.3
-
119
-
-
84906980652
-
Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features
-
Guo, Y., Wu, G., Commander, L.A., Szary, S., Jewells, V., Lin, W., Shen, D., Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 8674, 2014, 308–315, 10.1007/978-3-319-10470-6_39.
-
(2014)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.8674
, pp. 308-315
-
-
Guo, Y.1
Wu, G.2
Commander, L.A.3
Szary, S.4
Jewells, V.5
Lin, W.6
Shen, D.7
-
120
-
-
84992476841
-
HEp-2 cell classification using K-support spatial pooling in deep CNNs
-
Han, X.-H., Lei, J., Chen, Y.-W., HEp-2 cell classification using K-support spatial pooling in deep CNNs. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 3–11, 10.1007/978-3-319-46976-8_1.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 3-11
-
-
Han, X.-H.1
Lei, J.2
Chen, Y.-W.3
-
121
-
-
0003685133
-
Artificial Intelligence: The Very Idea
-
The MIT Press Cambridge, Mass
-
Haugeland, J., Artificial Intelligence: The Very Idea. 1985, The MIT Press, Cambridge, Mass.
-
(1985)
-
-
Haugeland, J.1
-
122
-
-
84973442994
-
Brain tumor segmentation with deep neural networks
-
Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., Larochelle, H., Brain tumor segmentation with deep neural networks. Med. Image Anal. 35 (2016), 18–31, 10.1016/j.media.2016.05.004.
-
(2016)
Med. Image Anal.
, vol.35
, pp. 18-31
-
-
Havaei, M.1
Davy, A.2
Warde-Farley, D.3
Biard, A.4
Courville, A.5
Bengio, Y.6
Pal, C.7
Jodoin, P.-M.8
Larochelle, H.9
-
123
-
-
84996504008
-
HeMIS: Hetero-modal image segmentation
-
Havaei, M., Guizard, N., Chapados, N., Bengio, Y., HeMIS: Hetero-modal image segmentation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 469–477, 10.1007/978-3-319-46723-8_54.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 469-477
-
-
Havaei, M.1
Guizard, N.2
Chapados, N.3
Bengio, Y.4
-
124
-
-
84958589374
-
Deep residual learning for image recognition
-
arxiv: 1512.03385.
-
He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. arxiv: 1512.03385.
-
(2015)
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
125
-
-
84861125212
-
A practical guide to training restricted boltzmann machines
-
Hinton, G., A practical guide to training restricted boltzmann machines. Momentum, 9(1), 2010, 926.
-
(2010)
Momentum
, vol.9
, Issue.1
, pp. 926
-
-
Hinton, G.1
-
126
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E., Osindero, S., Teh, Y.-W., A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006), 1527–1554, 10.1162/neco.2006.18.7.1527.
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
127
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313 (2006), 504–507.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
128
-
-
0031573117
-
Long short-term memory
-
Hochreiter, S., Schmidhuber, J., Long short-term memory. Neural Comput. 9:8 (1997), 1735–1780.
-
(1997)
Neural Comput.
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
129
-
-
84992511221
-
Learning thermal process representations for intraoperative analysis of cortical perfusion during ischemic strokes
-
Hoffmann, N., Koch, E., Steiner, G., Petersohn, U., Kirsch, M., Learning thermal process representations for intraoperative analysis of cortical perfusion during ischemic strokes. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 152–160.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 152-160
-
-
Hoffmann, N.1
Koch, E.2
Steiner, G.3
Petersohn, U.4
Kirsch, M.5
-
130
-
-
85015012406
-
Adaptive estimation of active contour parameters using convolutional neural networks and texture analysis
-
Hoogi, A., Subramaniam, A., Veerapaneni, R., Rubin, D., Adaptive estimation of active contour parameters using convolutional neural networks and texture analysis. IEEE Trans. Med. Imaging, 2016, 10.1109/TMI.2016.2628084.
-
(2016)
IEEE Trans. Med. Imaging
-
-
Hoogi, A.1
Subramaniam, A.2
Veerapaneni, R.3
Rubin, D.4
-
131
-
-
85009906890
-
Alzheimer's disease diagnostics by a deeply supervised adaptable 3D convolutional network
-
arxiv: 1607.00556.
-
Hosseini-Asl, E., Gimel'farb, G., El-Baz, A., 2016. Alzheimer's disease diagnostics by a deeply supervised adaptable 3D convolutional network. arxiv: 1607.00556.
-
(2016)
-
-
Hosseini-Asl, E.1
Gimel'farb, G.2
El-Baz, A.3
-
132
-
-
84997018133
-
Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets
-
Hu, P., Wu, F., Peng, J., Bao, Y., Chen, F., Kong, D., Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int. J. Comput. Assist. Radiol. Surg., 2016, 10.1007/s11548-016-1501-5.
-
(2016)
Int. J. Comput. Assist. Radiol. Surg.
-
-
Hu, P.1
Wu, F.2
Peng, J.3
Bao, Y.4
Chen, F.5
Kong, D.6
-
133
-
-
85007072153
-
Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution
-
Hu, P., Wu, F., Peng, J., Liang, P., Kong, D., Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys. Med. Biol. 61 (2016), 8676–8698, 10.1088/1361-6560/61/24/8676.
-
(2016)
Phys. Med. Biol.
, vol.61
, pp. 8676-8698
-
-
Hu, P.1
Wu, F.2
Peng, J.3
Liang, P.4
Kong, D.5
-
134
-
-
84978415201
-
Latent source mining in FMRI data via deep neural network
-
Huang, H., Hu, X., Han, J., Lv, J., Liu, N., Guo, L., Liu, T., Latent source mining in FMRI data via deep neural network. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 638–641, 10.1109/ISBI.2016.7493348.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 638-641
-
-
Huang, H.1
Hu, X.2
Han, J.3
Lv, J.4
Liu, N.5
Guo, L.6
Liu, T.7
-
135
-
-
85000428361
-
Digital mammographic tumor classification using transfer learning from deep convolutional neural networks
-
Huynh, B.Q., Li, H., Giger, M.L., Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J. Med. Imaging, 3, 2016, 034501, 10.1117/1.JMI.3.3.034501.
-
(2016)
J. Med. Imaging
, vol.3
, pp. 034501
-
-
Huynh, B.Q.1
Li, H.2
Giger, M.L.3
-
136
-
-
85026541303
-
Self-transfer learning for fully weakly supervised object localization
-
arxiv: 1602.01625.
-
Hwang, S., Kim, H., 2016. Self-transfer learning for fully weakly supervised object localization. arxiv: 1602.01625.
-
(2016)
-
-
Hwang, S.1
Kim, H.2
-
137
-
-
84988799202
-
A novel approach for tuberculosis screening based on deep convolutional neural networks
-
Hwang, S., Kim, H.-E., Jeong, J., Kim, H.-J., A novel approach for tuberculosis screening based on deep convolutional neural networks. Proceedings of the SPIE on Medical Imaging, 9785, 2016, 97852W–1, 10.1117/12.2216198.
-
(2016)
Proceedings of the SPIE on Medical Imaging
, vol.9785
, pp. 97852W-1
-
-
Hwang, S.1
Kim, H.-E.2
Jeong, J.3
Kim, H.-J.4
-
138
-
-
84996549471
-
SpineNet: automatically pinpointing classification evidence in spinal MRIs
-
Jamaludin, A., Kadir, T., Zisserman, A., SpineNet: automatically pinpointing classification evidence in spinal MRIs. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 166–175, 10.1007/978-3-319-46723-8_20.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 166-175
-
-
Jamaludin, A.1
Kadir, T.2
Zisserman, A.3
-
139
-
-
84874904675
-
Breast image feature learning with adaptive deconvolutional networks
-
Jamieson, A.R., Drukker, K., Giger, M.L., Breast image feature learning with adaptive deconvolutional networks. Proceedings of the SPIE on Medical Imaging, 8315, 2012, 831506, 10.1117/12.910710.
-
(2012)
Proceedings of the SPIE on Medical Imaging
, vol.8315
, pp. 831506
-
-
Jamieson, A.R.1
Drukker, K.2
Giger, M.L.3
-
140
-
-
84978410533
-
Stain normalization using sparse autoencoders (STANOSA): application to digital pathology.
-
Janowczyk, A., Basavanhally, A., Madabhushi, A., Stain normalization using sparse autoencoders (STANOSA): application to digital pathology. Comput. Med. Imaging Graph 57 (2017), 50–61.
-
(2017)
Comput. Med. Imaging Graph
, vol.57
, pp. 50-61
-
-
Janowczyk, A.1
Basavanhally, A.2
Madabhushi, A.3
-
141
-
-
85045039617
-
A resolution adaptive deep hierarchical (RADHical) learning scheme applied to nuclear segmentation of digital pathology images
-
Janowczyk, A., Doyle, S., Gilmore, H., Madabhushi, A., A resolution adaptive deep hierarchical (RADHical) learning scheme applied to nuclear segmentation of digital pathology images. Comput. Methods.Biomech. Biomed. Eng. Imag. Vis., 2016, 1–7.
-
(2016)
Comput. Methods.Biomech. Biomed. Eng. Imag. Vis.
, pp. 1-7
-
-
Janowczyk, A.1
Doyle, S.2
Gilmore, H.3
Madabhushi, A.4
-
142
-
-
85009238256
-
Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases.
-
Janowczyk, A., Madabhushi, A., Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inf., 7, 2016, 29, 10.4103/2153-3539.186902.
-
(2016)
J. Pathol. Inf.
, vol.7
, pp. 29
-
-
Janowczyk, A.1
Madabhushi, A.2
-
143
-
-
85026503656
-
Tongue contour extraction from ultrasound images based on deep neural network
-
arxiv: 1605.05912.
-
Jaumard-Hakoun, A., Xu, K., Roussel-Ragot, P., Dreyfus, G., Denby, B., 2016. Tongue contour extraction from ultrasound images based on deep neural network. arxiv: 1605.05912.
-
(2016)
-
-
Jaumard-Hakoun, A.1
Xu, K.2
Roussel-Ragot, P.3
Dreyfus, G.4
Denby, B.5
-
144
-
-
84913580146
-
Caffe: convolutional architecture for fast feature embedding
-
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T., Caffe: convolutional architecture for fast feature embedding. Proceedings of the Twenty-Second ACM International Conference on Multimedia, 2014, 675–678, 10.1145/2647868.2654889.
-
(2014)
Proceedings of the Twenty-Second ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
145
-
-
84989960541
-
Semantic segmentation of colon glands with deep convolutional neural networks and total variation segmentation
-
arxiv: 1511.06919.
-
Kainz, P., Pfeiffer, M., Urschler, M., 2015. Semantic segmentation of colon glands with deep convolutional neural networks and total variation segmentation. arxiv: 1511.06919.
-
(2015)
-
-
Kainz, P.1
Pfeiffer, M.2
Urschler, M.3
-
146
-
-
84978387816
-
Towards grading gleason score using generically trained deep convolutional neural networks
-
Källén, H., Molin, J., Heyden, A., Lundstr, C., Aström, K., Towards grading gleason score using generically trained deep convolutional neural networks. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 1163–1167, 10.1109/ISBI.2016.7493473.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 1163-1167
-
-
Källén, H.1
Molin, J.2
Heyden, A.3
Lundstr, C.4
Aström, K.5
-
147
-
-
84968572894
-
Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
-
Kallenberg, M., Petersen, K., Nielsen, M., Ng, A., Diao, P., Igel, C., Vachon, C., Holland, K., Karssemeijer, N., Lillholm, M., Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 35 (2016), 1322–1331, 10.1109/TMI.2016.2532122.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1322-1331
-
-
Kallenberg, M.1
Petersen, K.2
Nielsen, M.3
Ng, A.4
Diao, P.5
Igel, C.6
Vachon, C.7
Holland, K.8
Karssemeijer, N.9
Lillholm, M.10
-
148
-
-
84995784237
-
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
-
Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B., Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36 (2017), 61–78, 10.1016/j.media.2016.10.004.
-
(2017)
Med. Image Anal.
, vol.36
, pp. 61-78
-
-
Kamnitsas, K.1
Ledig, C.2
Newcombe, V.F.3
Simpson, J.P.4
Kane, A.D.5
Menon, D.K.6
Rueckert, D.7
Glocker, B.8
-
150
-
-
84978411844
-
Handcrafted features with convolutional neural networks for detection of tumor cells in histology images
-
Kashif, M.N., Raza, S.E.A., Sirinukunwattana, K., Arif, M., Rajpoot, N., Handcrafted features with convolutional neural networks for detection of tumor cells in histology images. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 1029–1032, 10.1109/ISBI.2016.7493441.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 1029-1032
-
-
Kashif, M.N.1
Raza, S.E.A.2
Sirinukunwattana, K.3
Arif, M.4
Rajpoot, N.5
-
151
-
-
84978426890
-
Deep features to classify skin lesions
-
Kawahara, J., BenTaieb, A., Hamarneh, G., Deep features to classify skin lesions. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 1397–1400, 10.1109/ISBI.2016.7493528.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 1397-1400
-
-
Kawahara, J.1
BenTaieb, A.2
Hamarneh, G.3
-
152
-
-
85005767643
-
Brainnetcnn: convolutional neural networks for brain networks; towards predicting neurodevelopment
-
Kawahara, J., Brown, C.J., Miller, S.P., Booth, B.G., Chau, V., Grunau, R.E., Zwicker, J.G., Hamarneh, G., Brainnetcnn: convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage, 2016, 10.1016/j.neuroimage.2016.09.046.
-
(2016)
Neuroimage
-
-
Kawahara, J.1
Brown, C.J.2
Miller, S.P.3
Booth, B.G.4
Chau, V.5
Grunau, R.E.6
Zwicker, J.G.7
Hamarneh, G.8
-
153
-
-
84992525148
-
Multi-resolution-tract CNN with hybrid pretrained and skin-lesion trained layers
-
Kawahara, J., Hamarneh, G., Multi-resolution-tract CNN with hybrid pretrained and skin-lesion trained layers. Proceedings of the Machine Learning in Medical Imaging Lecture Notes in Computer Science, 10019, 2016, 164–171, 10.1007/978-3-319-47157-0_20.
-
(2016)
Proceedings of the Machine Learning in Medical Imaging, Lecture Notes in Computer Science
, vol.10019
, pp. 164-171
-
-
Kawahara, J.1
Hamarneh, G.2
-
154
-
-
85026546291
-
What uncertainties do we need in Bayesian deep learning for computer vision? arXiv
-
arXiv: 1703.04977.
-
Kendall, A., Gal, Y., 2017. What uncertainties do we need in Bayesian deep learning for computer vision? arXiv: 1703.04977.
-
(2017)
-
-
Kendall, A.1
Gal, Y.2
-
155
-
-
84976273604
-
A deep semantic mobile application for thyroid cytopathology
-
Kim, E., Cortre-Real, M., Baloch, Z., A deep semantic mobile application for thyroid cytopathology. Proceedings of the SPIE on Medical Imaging, 9789, 2016, 97890A.
-
(2016)
Proceedings of the SPIE on Medical Imaging
, vol.9789
, pp. 97890A
-
-
Kim, E.1
Cortre-Real, M.2
Baloch, Z.3
-
156
-
-
84990061840
-
Scale-invariant feature learning using deconvolutional neural networks for weakly-supervised semantic segmentation
-
arxiv: 1602.04984.
-
Kim, H., Hwang, S., 2016. Scale-invariant feature learning using deconvolutional neural networks for weakly-supervised semantic segmentation. arxiv: 1602.04984.
-
(2016)
-
-
Kim, H.1
Hwang, S.2
-
157
-
-
84941964814
-
Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
-
Kim, J., Calhoun, V.D., Shim, E., Lee, J.-H., Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage 124 (2016), 127–146.
-
(2016)
Neuroimage
, vol.124
, pp. 127-146
-
-
Kim, J.1
Calhoun, V.D.2
Shim, E.3
Lee, J.-H.4
-
158
-
-
84919810317
-
Auto-encoding variational bayes
-
arxiv: 1312.6114.
-
Kingma, D. P., Welling, M., 2013. Auto-encoding variational bayes. arxiv: 1312.6114.
-
(2013)
-
-
Kingma, D.P.1
Welling, M.2
-
159
-
-
84992504708
-
Medical image description using multi-task-loss CNN
-
Springer
-
Kisilev, P., Sason, E., Barkan, E., Hashoul, S., Medical image description using multi-task-loss CNN. Proceedings of the International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, 2016, Springer, 121–129.
-
(2016)
Proceedings of the International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
, pp. 121-129
-
-
Kisilev, P.1
Sason, E.2
Barkan, E.3
Hashoul, S.4
-
160
-
-
84959203985
-
Deep MRI brain extraction: a 3D convolutional neural network for skull stripping.
-
Kleesiek, J., Urban, G., Hubert, A., Schwarz, D., Maier-Hein, K., Bendszus, M., Biller, A., Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. Neuroimage 129 (2016), 460–469, 10.1016/j.neuroimage.2016.01.024.
-
(2016)
Neuroimage
, vol.129
, pp. 460-469
-
-
Kleesiek, J.1
Urban, G.2
Hubert, A.3
Schwarz, D.4
Maier-Hein, K.5
Bendszus, M.6
Biller, A.7
-
161
-
-
84996602481
-
Recognizing end-diastole and end-systole frames via deep temporal regression network
-
Kong, B., Zhan, Y., Shin, M., Denny, T., Zhang, S., Recognizing end-diastole and end-systole frames via deep temporal regression network. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 264–272, 10.1007/978-3-319-46726-9_31.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 264-272
-
-
Kong, B.1
Zhan, Y.2
Shin, M.3
Denny, T.4
Zhang, S.5
-
162
-
-
85016248526
-
Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network
-
Kooi, T., van Ginneken, B., Karssemeijer, N., den Heeten, A., Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Med. Phys 44:3 (2017), 1017–1027.
-
(2017)
Med. Phys
, vol.44
, Issue.3
, pp. 1017-1027
-
-
Kooi, T.1
van Ginneken, B.2
Karssemeijer, N.3
den Heeten, A.4
-
163
-
-
84980350859
-
Large scale deep learning for computer aided detection of mammographic lesions
-
Kooi, T., Litjens, G., van Ginneken, B., Gubern-Mérida, A., Sánchez, C.I., Mann, R., den Heeten, A., Karssemeijer, N., Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35 (2016), 303–312, 10.1016/j.media.2016.07.007.
-
(2016)
Med. Image Anal.
, vol.35
, pp. 303-312
-
-
Kooi, T.1
Litjens, G.2
van Ginneken, B.3
Gubern-Mérida, A.4
Sánchez, C.I.5
Mann, R.6
den Heeten, A.7
Karssemeijer, N.8
-
164
-
-
84996538881
-
Model-based segmentation of vertebral bodies from MR images with 3D CNNs
-
Springer
-
Korez, R., Likar, B., Pernuš, F., Vrtovec, T., Model-based segmentation of vertebral bodies from MR images with 3D CNNs. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, Springer, 433–441, 10.1007/978-3-319-46723-8_50.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 433-441
-
-
Korez, R.1
Likar, B.2
Pernuš, F.3
Vrtovec, T.4
-
165
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G., Imagenet classification with deep convolutional neural networks. Proceedings of the Advances in Neural Information Processing Systems, 2012, 1097–1105.
-
(2012)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
166
-
-
84978437175
-
Plane identification in fetal ultrasound images using saliency maps and convolutional neural networks
-
Kumar, A., Sridar, P., Quinton, A., Kumar, R.K., Feng, D., Nanan, R., Kim, J., Plane identification in fetal ultrasound images using saliency maps and convolutional neural networks. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 791–794, 10.1109/ISBI.2016.7493385.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 791-794
-
-
Kumar, A.1
Sridar, P.2
Quinton, A.3
Kumar, R.K.4
Feng, D.5
Nanan, R.6
Kim, J.7
-
167
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86 (1998), 2278–2324, 10.1109/5.726791.
-
(1998)
Proc. IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
168
-
-
85014891180
-
A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound
-
Lekadir, K., Galimzianova, A., Betriu, A., Del Mar Vila, M., Igual, L., Rubin, D.L., Fernandez, E., Radeva, P., Napel, S., A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE J. Biomed. Health Inf. 21 (2017), 48–55, 10.1109/JBHI.2016.2631401.
-
(2017)
IEEE J. Biomed. Health Inf.
, vol.21
, pp. 48-55
-
-
Lekadir, K.1
Galimzianova, A.2
Betriu, A.3
Del Mar Vila, M.4
Igual, L.5
Rubin, D.L.6
Fernandez, E.7
Radeva, P.8
Napel, S.9
-
169
-
-
84988849403
-
Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest CT
-
978511-1–978511-6
-
Lessmann, N., Isgum, I., Setio, A.A., de Vos, B.D., Ciompi, F., de Jong, P.A., Oudkerk, M., Mali, W.P.T.M., Viergever, M.A., van Ginneken, B., Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest CT. Proceedings of the SPIE on Medical Imaging, 9785, 2016, 10.1117/12.2216978 978511-1–978511-6.
-
(2016)
Proceedings of the SPIE on Medical Imaging
, vol.9785
-
-
Lessmann, N.1
Isgum, I.2
Setio, A.A.3
de Vos, B.D.4
Ciompi, F.5
de Jong, P.A.6
Oudkerk, M.7
Mali, W.P.T.M.8
Viergever, M.A.9
van Ginneken, B.10
-
170
-
-
84906979740
-
Deep learning based imaging data completion for improved brain disease diagnosis
-
Li, R., Zhang, W., Suk, H.-I., Wang, L., Li, J., Shen, D., Ji, S., Deep learning based imaging data completion for improved brain disease diagnosis. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 8675, 2014, 305–312.
-
(2014)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.8675
, pp. 305-312
-
-
Li, R.1
Zhang, W.2
Suk, H.-I.3
Wang, L.4
Li, J.5
Shen, D.6
Ji, S.7
-
171
-
-
85008883816
-
Pulmonary nodule classification with deep convolutional neural networks on computed tomography images
-
Li, W., Cao, P., Zhao, D., Wang, J., Pulmonary nodule classification with deep convolutional neural networks on computed tomography images. Comput. Math. Methods Med., 2016, 6215085, 10.1155/2016/6215085.
-
(2016)
Comput. Math. Methods Med.
, pp. 6215085
-
-
Li, W.1
Cao, P.2
Zhao, D.3
Wang, J.4
-
172
-
-
84992478150
-
Automatic segmentation of liver tumor in CT images with deep convolutional neural networks
-
Li, W., Jia, F., Hu, Q., Automatic segmentation of liver tumor in CT images with deep convolutional neural networks. J. Comput. Commun. 3:11 (2015), 146–151.
-
(2015)
J. Comput. Commun.
, vol.3
, Issue.11
, pp. 146-151
-
-
Li, W.1
Jia, F.2
Hu, Q.3
-
173
-
-
84978423862
-
Gland segmentation in colon histology images using hand-crafted features and convolutional neural networks
-
Li, W., Manivannan, S., Akbar, S., Zhang, J., Trucco, E., McKenna, S.J., Gland segmentation in colon histology images using hand-crafted features and convolutional neural networks. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 1405–1408, 10.1109/ISBI.2016.7493530.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 1405-1408
-
-
Li, W.1
Manivannan, S.2
Akbar, S.3
Zhang, J.4
Trucco, E.5
McKenna, S.J.6
-
174
-
-
84897576138
-
Representation learning: A unified deep learning framework for automatic prostate mr segmentation
-
Liao, S., Gao, Y., Oto, A., Shen, D., Representation learning: A unified deep learning framework for automatic prostate mr segmentation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 8150, 2013, 254–261, 10.1007/978-3-642-40763-5_32.
-
(2013)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.8150
, pp. 254-261
-
-
Liao, S.1
Gao, Y.2
Oto, A.3
Shen, D.4
-
175
-
-
84939241380
-
Network in network
-
arxiv: 1312.4400.
-
Lin, M., Chen, Q., Yan, S., 2013. Network in network. arxiv: 1312.4400.
-
(2013)
-
-
Lin, M.1
Chen, Q.2
Yan, S.3
-
176
-
-
84970028091
-
Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
-
Litjens, G., Sánchez, C.I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I., Hulsbergen-van de Kaa, C., Bult, P., van Ginneken, B., van der Laak, J., Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Nat. Sci. Rep., 6, 2016, 26286, 10.1038/srep26286.
-
(2016)
Nat. Sci. Rep.
, vol.6
, pp. 26286
-
-
Litjens, G.1
Sánchez, C.I.2
Timofeeva, N.3
Hermsen, M.4
Nagtegaal, I.5
Kovacs, I.6
Hulsbergen-van de Kaa, C.7
Bult, P.8
van Ginneken, B.9
van der Laak, J.10
-
177
-
-
84978420807
-
Colitis detection on computed tomography using regional convolutional neural networks
-
Liu, J., Wang, D., Wei, Z., Lu, L., Kim, L., Turkbey, E., Summers, R.M., Colitis detection on computed tomography using regional convolutional neural networks. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 863–866, 10.1109/ISBI.2016.7493402.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 863-866
-
-
Liu, J.1
Wang, D.2
Wei, Z.3
Lu, L.4
Kim, L.5
Turkbey, E.6
Summers, R.M.7
-
178
-
-
85007228588
-
Generating binary tags for fast medical image retrieval based on convolutional nets and Radon transform
-
arxiv:1604.04676
-
Liu, X., Tizhoosh, H.R., Kofman, J., Generating binary tags for fast medical image retrieval based on convolutional nets and Radon transform. Proceedings of the International Joint Conference on Neural Networks, 2016 arxiv:1604.04676.
-
(2016)
Proceedings of the International Joint Conference on Neural Networks
-
-
Liu, X.1
Tizhoosh, H.R.2
Kofman, J.3
-
179
-
-
85026555757
-
Detecting cancer metastases on gigapixel pathology images
-
arxiv: 1703.02442.
-
Liu, Y., Gadepalli, K., Norouzi, M., Dahl, G. E., Kohlberger, T., Boyko, A., Venugopalan, S., Timofeev, A., Nelson, P. Q., Corrado, G. S., Hipp, J. D., Peng, L., Stumpe, M. C., 2017. Detecting cancer metastases on gigapixel pathology images. arxiv: 1703.02442.
-
(2017)
-
-
Liu, Y.1
Gadepalli, K.2
Norouzi, M.3
Dahl, G.E.4
Kohlberger, T.5
Boyko, A.6
Venugopalan, S.7
Timofeev, A.8
Nelson, P.Q.9
Corrado, G.S.10
Hipp, J.D.11
Peng, L.12
Stumpe, M.C.13
-
180
-
-
0029546663
-
Artificial convolution neural network techniques and applications for lung nodule detection
-
Lo, S.-C., Lou, S.-L., Lin, J.-S., Freedman, M.T., Chien, M.V., Mun, S.K., Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans. Med. Imaging 14 (1995), 711–718, 10.1109/42.476112.
-
(1995)
IEEE Trans. Med. Imaging
, vol.14
, pp. 711-718
-
-
Lo, S.-C.1
Lou, S.-L.2
Lin, J.-S.3
Freedman, M.T.4
Chien, M.V.5
Mun, S.K.6
-
181
-
-
84937144752
-
Fully convolutional networks for semantic segmentation
-
arxiv: 1411.4038.
-
Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. arxiv: 1411.4038.
-
(2015)
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
182
-
-
84986243843
-
Automatic 3D liver location and segmentation via convolutional neural network and graph cut
-
Lu, F., Wu, F., Hu, P., Peng, Z., Kong, D., Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int. J. Comput. Assist. Radiol. Surg. 12 (2017), 171–182, 10.1007/s11548-016-1467-3.
-
(2017)
Int. J. Comput. Assist. Radiol. Surg.
, vol.12
, pp. 171-182
-
-
Lu, F.1
Wu, F.2
Hu, P.3
Peng, Z.4
Kong, D.5
-
183
-
-
84992509181
-
Robust 3d organ localization with dual learning architectures and fusion
-
Lu, X., Xu, D., Liu, D., Robust 3d organ localization with dual learning architectures and fusion. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 12–20, 10.1007/978-3-319-46976-8_2.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 12-20
-
-
Lu, X.1
Xu, D.2
Liu, D.3
-
184
-
-
84988489794
-
A pre-trained convolutional neural network based method for thyroid nodule diagnosis.
-
Ma, J., Wu, F., Zhu, J., Xu, D., Kong, D., A pre-trained convolutional neural network based method for thyroid nodule diagnosis. Ultrasonics 73 (2017), 221–230, 10.1016/j.ultras.2016.09.011.
-
(2017)
Ultrasonics
, vol.73
, pp. 221-230
-
-
Ma, J.1
Wu, F.2
Zhu, J.3
Xu, D.4
Kong, D.5
-
185
-
-
84992476909
-
Retinal image quality classification using saliency maps and CNNs
-
Mahapatra, D., Roy, P.K., Sedai, S., Garnavi, R., Retinal image quality classification using saliency maps and CNNs. Proceedings of the Machine Learning in Medical Imaging Lecture Notes in Computer Science, 10019, 2016, 172–179, 10.1007/978-3-319-47157-0_21.
-
(2016)
Proceedings of the Machine Learning in Medical Imaging, Lecture Notes in Computer Science
, vol.10019
, pp. 172-179
-
-
Mahapatra, D.1
Roy, P.K.2
Sedai, S.3
Garnavi, R.4
-
186
-
-
84885927068
-
Classification of mitotic figures with convolutional neural networks and seeded blob features.
-
Malon, C.D., Cosatto, E., Classification of mitotic figures with convolutional neural networks and seeded blob features. J. Pathol. Inform., 2013, 10.4103/2153-3539.112694.
-
(2013)
J. Pathol. Inform.
-
-
Malon, C.D.1
Cosatto, E.2
-
187
-
-
84996486562
-
Deep retinal image understanding
-
Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Gool, L., Deep retinal image understanding. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 140–148, 10.1007/978-3-319-46723-8_17.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 140-148
-
-
Maninis, K.-K.1
Pont-Tuset, J.2
Arbeláez, P.3
Gool, L.4
-
188
-
-
84982833827
-
Deep learning guided partitioned shape model for anterior visual pathway segmentation
-
Mansoor, A., Cerrolaza, J., Idrees, R., Biggs, E., Alsharid, M., Avery, R., Linguraru, M.G., Deep learning guided partitioned shape model for anterior visual pathway segmentation. IEEE Trans. Med. Imaging 35:8 (2016), 1856–1865, 10.1109/TMI.2016.2535222.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.8
, pp. 1856-1865
-
-
Mansoor, A.1
Cerrolaza, J.2
Idrees, R.3
Biggs, E.4
Alsharid, M.5
Avery, R.6
Linguraru, M.G.7
-
189
-
-
84996477495
-
A hierarchical convolutional neural network for mitosis detection in phase-contrast microscopy images
-
Mao, Y., Yin, Z., A hierarchical convolutional neural network for mitosis detection in phase-contrast microscopy images. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 685–692, 10.1007/978-3-319-46723-8_79.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 685-692
-
-
Mao, Y.1
Yin, Z.2
-
190
-
-
85026518980
-
Towards automated melanoma screening: exploring transfer learning schemes
-
arxiv: 1609.01228.
-
Menegola, A., Fornaciali, M., Pires, R., Avila, S., Valle, E., 2016. Towards automated melanoma screening: exploring transfer learning schemes. arxiv: 1609.01228.
-
(2016)
-
-
Menegola, A.1
Fornaciali, M.2
Pires, R.3
Avila, S.4
Valle, E.5
-
191
-
-
85011280482
-
Dense volume-to-volume vascular boundary detection
-
arxiv: 1605.08401.
-
Merkow, J., Kriegman, D., Marsden, A., Tu, Z., 2016. Dense volume-to-volume vascular boundary detection. arxiv: 1605.08401.
-
(2016)
-
-
Merkow, J.1
Kriegman, D.2
Marsden, A.3
Tu, Z.4
-
192
-
-
84968662562
-
A CNN regression approach for real-time 2D/3D registration
-
Miao, S., Wang, Z.J., Liao, R., A CNN regression approach for real-time 2D/3D registration. IEEE Trans. Med. Imaging 35:5 (2016), 1352–1363, 10.1109/TMI.2016.2521800.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1352-1363
-
-
Miao, S.1
Wang, Z.J.2
Liao, R.3
-
193
-
-
85026554487
-
-
Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. arxiv: 1601.07014
-
Milletari, F., Ahmadi, S.-A., Kroll, C., Plate, A., Rozanski, V., Maiostre, J., Levin, J., Dietrich, O., Ertl-Wagner, B., Bötzel, K., Navab, N., 2016a. Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. arxiv: 1601.07014.
-
(2016)
-
-
Milletari, F.1
Ahmadi, S.-A.2
Kroll, C.3
Plate, A.4
Rozanski, V.5
Maiostre, J.6
Levin, J.7
Dietrich, O.8
Ertl-Wagner, B.9
Bötzel, K.10
Navab, N.11
-
194
-
-
85026531336
-
-
V-Net: fully convolutional neural networks for volumetric medical image segmentation. arxiv: 1606.04797
-
Milletari, F., Navab, N., Ahmadi, S.-A., 2016b. V-Net: fully convolutional neural networks for volumetric medical image segmentation. arxiv: 1606.04797.
-
(2016)
-
-
Milletari, F.1
Navab, N.2
Ahmadi, S.-A.3
-
195
-
-
84978435470
-
Structure-based assessment of cancerous mitochondria using deep networks
-
Mishra, M., Schmitt, S., Wang, L., Strasser, M.K., Marr, C., Navab, N., Zischka, H., Peng, T., Structure-based assessment of cancerous mitochondria using deep networks. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 545–548, 10.1109/ISBI.2016.7493327.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 545-548
-
-
Mishra, M.1
Schmitt, S.2
Wang, L.3
Strasser, M.K.4
Marr, C.5
Navab, N.6
Zischka, H.7
Peng, T.8
-
196
-
-
84968626579
-
Automatic segmentation of MR brain images with a convolutional neural network
-
Moeskops, P., Viergever, M.A., Mendrik, A.M., de Vries, L.S., Benders, M.J.N.L., Isgum, I., Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans. Med. Imaging 35:5 (2016), 1252–1262, 10.1109/TMI.2016.2548501.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1252-1262
-
-
Moeskops, P.1
Viergever, M.A.2
Mendrik, A.M.3
de Vries, L.S.4
Benders, M.J.N.L.5
Isgum, I.6
-
197
-
-
84996503302
-
Deep learning for multi-task medical image segmentation in multiple modalities
-
Moeskops, P., Wolterink, J.M., Velden, B.H.M., Gilhuijs, K.G.A., Leiner, T., Viergever, M.A., Isgum, I., Deep learning for multi-task medical image segmentation in multiple modalities. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 478–486, 10.1007/978-3-319-46723-8_55.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 478-486
-
-
Moeskops, P.1
Wolterink, J.M.2
Velden, B.H.M.3
Gilhuijs, K.G.A.4
Leiner, T.5
Viergever, M.A.6
Isgum, I.7
-
198
-
-
85010676902
-
Explaining nonlinear classification decisions with deep taylor decomposition
-
Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.-R., Explaining nonlinear classification decisions with deep taylor decomposition. Pattern Recognit. 65 (2017), 211–222.
-
(2017)
Pattern Recognit.
, vol.65
, pp. 211-222
-
-
Montavon, G.1
Lapuschkin, S.2
Binder, A.3
Samek, W.4
Müller, K.-R.5
-
199
-
-
84996538550
-
A cross-modality neural network transform for semi-automatic medical image annotation
-
Moradi, M., Guo, Y., Gur, Y., Negahdar, M., Syeda-Mahmood, T., A cross-modality neural network transform for semi-automatic medical image annotation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 300–307, 10.1007/978-3-319-46723-8_35.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 300-307
-
-
Moradi, M.1
Guo, Y.2
Gur, Y.3
Negahdar, M.4
Syeda-Mahmood, T.5
-
200
-
-
84978401178
-
A hybrid learning approach for semantic labeling of cardiac CT slices and recognition of body position
-
Moradi, M., Gur, Y., Wang, H., Prasanna, P., Syeda-Mahmood, T., A hybrid learning approach for semantic labeling of cardiac CT slices and recognition of body position. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 10.1109/ISBI.2016.7493533.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
-
-
Moradi, M.1
Gur, Y.2
Wang, H.3
Prasanna, P.4
Syeda-Mahmood, T.5
-
201
-
-
84988876000
-
Deep transfer learning of virtual endoluminal views for the detection of polyps in CT colonography
-
Nappi, J.J., Hironaka, T., Regge, D., Yoshida, H., Deep transfer learning of virtual endoluminal views for the detection of polyps in CT colonography. Proceedings of the Medical Imaging, 2016, 97852B, 10.1117/12.2217260.
-
(2016)
Proceedings of the Medical Imaging
, pp. 97852B
-
-
Nappi, J.J.1
Hironaka, T.2
Regge, D.3
Yoshida, H.4
-
202
-
-
84978394494
-
Multi-atlas segmentation using manifold learning with deep belief networks
-
Nascimento, J.C., Carneiro, G., Multi-atlas segmentation using manifold learning with deep belief networks. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 867–871, 10.1109/ISBI.2016.7493403.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 867-871
-
-
Nascimento, J.C.1
Carneiro, G.2
-
203
-
-
84978204565
-
Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance
-
Ngo, T.A., Lu, Z., Carneiro, G., Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med. Image Anal. 35 (2017), 159–171, 10.1016/j.media.2016.05.009.
-
(2017)
Med. Image Anal.
, vol.35
, pp. 159-171
-
-
Ngo, T.A.1
Lu, Z.2
Carneiro, G.3
-
204
-
-
84992513308
-
Estimating CT image from MRI data using 3D fully convolutional networks
-
Nie, D., Cao, X., Gao, Y., Wang, L., Shen, D., Estimating CT image from MRI data using 3D fully convolutional networks. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 170–178, 10.1007/978-3-319-46976-8_18.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 170-178
-
-
Nie, D.1
Cao, X.2
Gao, Y.3
Wang, L.4
Shen, D.5
-
205
-
-
84978427941
-
Fully convolutional networks for multi-modality isointense infant brain image segmentation
-
Nie, D., Wang, L., Gao, Y., Shen, D., Fully convolutional networks for multi-modality isointense infant brain image segmentation. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 1342–1345, 10.1109/ISBI.2016.7493515.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 1342-1345
-
-
Nie, D.1
Wang, L.2
Gao, Y.3
Shen, D.4
-
206
-
-
84996490301
-
3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients
-
Nie, D., Zhang, H., Adeli, E., Liu, L., Shen, D., 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 212–220, 10.1007/978-3-319-46723-8_25.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 212-220
-
-
Nie, D.1
Zhang, H.2
Adeli, E.3
Liu, L.4
Shen, D.5
-
207
-
-
84996524177
-
Automatic lymph node cluster segmentation using holistically-nested neural networks and structured optimization in CT images
-
Nogues, I., Lu, L., Wang, X., Roth, H., Bertasius, G., Lay, N., Shi, J., Tsehay, Y., Summers, R.M., Automatic lymph node cluster segmentation using holistically-nested neural networks and structured optimization in CT images. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 388–397, 10.1007/978-3-319-46723-8_45.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 388-397
-
-
Nogues, I.1
Lu, L.2
Wang, X.3
Roth, H.4
Bertasius, G.5
Lay, N.6
Shi, J.7
Tsehay, Y.8
Summers, R.M.9
-
208
-
-
84996536677
-
Multi-input cardiac image super-resolution using convolutional neural networks
-
Oktay, O., Bai, W., Lee, M., Guerrero, R., Kamnitsas, K., Caballero, J., Marvao, A., Cook, S., O'Regan, D., Rueckert, D., Multi-input cardiac image super-resolution using convolutional neural networks. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9902, 2016, 246–254, 10.1007/978-3-319-46726-9_29.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9902
, pp. 246-254
-
-
Oktay, O.1
Bai, W.2
Lee, M.3
Guerrero, R.4
Kamnitsas, K.5
Caballero, J.6
Marvao, A.7
Cook, S.8
O'Regan, D.9
Rueckert, D.10
-
209
-
-
84980348164
-
Ensembles of deep learning architectures for the early diagnosis of the Alzheimer's disease
-
Ortiz, A., Munilla, J., Górriz, J.M., Ramírez, J., Ensembles of deep learning architectures for the early diagnosis of the Alzheimer's disease. Int. J. Neural Syst., 26, 2016, 1650025, 10.1142/S0129065716500258.
-
(2016)
Int. J. Neural Syst.
, vol.26
, pp. 1650025
-
-
Ortiz, A.1
Munilla, J.2
Górriz, J.M.3
Ramírez, J.4
-
210
-
-
85026509457
-
A unified framework for tumor proliferation score prediction in breast histopathology
-
arxiv: 1612.07180.
-
Paeng, K., Hwang, S., Park, S., Kim, M., Kim, S., 2016. A unified framework for tumor proliferation score prediction in breast histopathology. arxiv: 1612.07180.
-
(2016)
-
-
Paeng, K.1
Hwang, S.2
Park, S.3
Kim, M.4
Kim, S.5
-
211
-
-
84953251269
-
Brain tumor grading based on neural networks and convolutional neural networks
-
Pan, Y., Huang, W., Lin, Z., Zhu, W., Zhou, J., Wong, J., Ding, Z., Brain tumor grading based on neural networks and convolutional neural networks. Proceedings of the IEEE Engineering in Medicine and Biology Society, 2015, 699–702, 10.1109/EMBC.2015.7318458.
-
(2015)
Proceedings of the IEEE Engineering in Medicine and Biology Society
, pp. 699-702
-
-
Pan, Y.1
Huang, W.2
Lin, Z.3
Zhu, W.4
Zhou, J.5
Wong, J.6
Ding, Z.7
-
212
-
-
84981325983
-
Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks
-
arxiv: 1502.02506.
-
Payan, A., Montana, G., 2015. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. arxiv: 1502.02506.
-
(2015)
-
-
Payan, A.1
Montana, G.2
-
213
-
-
84996484135
-
Regressing heatmaps for multiple landmark localization using CNNs
-
Payer, C., Stern, D., Bischof, H., Urschler, M., Regressing heatmaps for multiple landmark localization using CNNs. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 230–238, 10.1007/978-3-319-46723-8_27.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 230-238
-
-
Payer, C.1
Stern, D.2
Bischof, H.3
Urschler, M.4
-
214
-
-
84968610616
-
Brain tumor segmentation using convolutional neural networks in MRI images
-
Pereira, S., Pinto, A., Alves, V., Silva, C.A., Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35:5 (2016), 1240–1251.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1240-1251
-
-
Pereira, S.1
Pinto, A.2
Alves, V.3
Silva, C.A.4
-
215
-
-
84978427634
-
Transfer learning of a convolutional neural network for HEp-2 cell image classification
-
Phan, H.T.H., Kumar, A., Kim, J., Feng, D., Transfer learning of a convolutional neural network for HEp-2 cell image classification. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 1208–1211, 10.1109/ISBI.2016.7493483.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 1208-1211
-
-
Phan, H.T.H.1
Kumar, A.2
Kim, J.3
Feng, D.4
-
216
-
-
85006042818
-
Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia
-
Pinaya, W.H.L., Gadelha, A., Doyle, O.M., Noto, C., Zugman, A., Cordeiro, Q., Jackowski, A.P., Bressan, R.A., Sato, J.R., Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Nat. Sci. Rep., 6, 2016, 38897, 10.1038/srep38897.
-
(2016)
Nat. Sci. Rep.
, vol.6
, pp. 38897
-
-
Pinaya, W.H.L.1
Gadelha, A.2
Doyle, O.M.3
Noto, C.4
Zugman, A.5
Cordeiro, Q.6
Jackowski, A.P.7
Bressan, R.A.8
Sato, J.R.9
-
217
-
-
84905900149
-
Deep learning for neuroimaging: a validation study
-
Plis, S.M., Hjelm, D.R., Salakhutdinov, R., Allen, E.A., Bockholt, H.J., Long, J.D., Johnson, H.J., Paulsen, J.S., Turner, J.A., Calhoun, V.D., Deep learning for neuroimaging: a validation study. Front. Neurosci., 2014, 10.3389/fnins.2014.00229.
-
(2014)
Front. Neurosci.
-
-
Plis, S.M.1
Hjelm, D.R.2
Salakhutdinov, R.3
Allen, E.A.4
Bockholt, H.J.5
Long, J.D.6
Johnson, H.J.7
Paulsen, J.S.8
Turner, J.A.9
Calhoun, V.D.10
-
218
-
-
85011950355
-
Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation
-
arxiv: 1608.03974.
-
Poudel, R. P. K., Lamata, P., Montana, G., 2016. Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. arxiv: 1608.03974.
-
(2016)
-
-
Poudel, R.P.K.1
Lamata, P.2
Montana, G.3
-
219
-
-
84885933775
-
Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network
-
Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M., Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 8150, 2013, 246–253, 10.1007/978-3-642-40763-5_31.
-
(2013)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.8150
, pp. 246-253
-
-
Prasoon, A.1
Petersen, K.2
Igel, C.3
Lauze, F.4
Dam, E.5
Nielsen, M.6
-
220
-
-
84978683018
-
Segmentation of the foveal microvasculature using deep learning networks.
-
Prentasic, P., Heisler, M., Mammo, Z., Lee, S., Merkur, A., Navajas, E., Beg, M.F., Sarunic, M., Loncaric, S., Segmentation of the foveal microvasculature using deep learning networks. J. Biomed. Opt., 21, 2016, 75008, 10.1117/1.JBO.21.7.075008.
-
(2016)
J. Biomed. Opt.
, vol.21
, pp. 75008
-
-
Prentasic, P.1
Heisler, M.2
Mammo, Z.3
Lee, S.4
Merkur, A.5
Navajas, E.6
Beg, M.F.7
Sarunic, M.8
Loncaric, S.9
-
221
-
-
84991705069
-
Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion
-
Prentasic, P., Loncaric, S., Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput. Methods Programs Biomed. 137 (2016), 281–292, 10.1016/j.cmpb.2016.09.018.
-
(2016)
Comput. Methods Programs Biomed.
, vol.137
, pp. 281-292
-
-
Prentasic, P.1
Loncaric, S.2
-
222
-
-
84988896932
-
An initial investigation on developing a new method to predict short-term breast cancer risk based on deep learning technology
-
Qiu, Y., Wang, Y., Yan, S., Tan, M., Cheng, S., Liu, H., Zheng, B., An initial investigation on developing a new method to predict short-term breast cancer risk based on deep learning technology. Proceedings of the SPIE Medical Imaging, 9785, 2016, 978521.
-
(2016)
Proceedings of the SPIE Medical Imaging
, vol.9785
, pp. 978521
-
-
Qiu, Y.1
Wang, Y.2
Yan, S.3
Tan, M.4
Cheng, S.5
Liu, H.6
Zheng, B.7
-
223
-
-
85018405750
-
Deep convolutional neural networks for microscopy-based point of care diagnostics
-
arxiv: 1608.02989.
-
Quinn, J.A., Nakasi, R., Mugagga, P.K.B., Byanyima, P., Lubega, W., Andama, A., 2016. Deep convolutional neural networks for microscopy-based point of care diagnostics. arxiv: 1608.02989.
-
(2016)
-
-
Quinn, J.A.1
Nakasi, R.2
Mugagga, P.K.B.3
Byanyima, P.4
Lubega, W.5
Andama, A.6
-
224
-
-
85012110429
-
Deepcut: object segmentation from bounding box annotations using convolutional neural networks
-
Rajchl, M., Lee, M.C., Oktay, O., Kamnitsas, K., Passerat-Palmbach, J., Bai, W., Kainz, B., Rueckert, D., Deepcut: object segmentation from bounding box annotations using convolutional neural networks. IEEE Trans. Med. Imaging 36:2 (2017), 674–683, 10.1109/TMI.2016.2621185.
-
(2017)
IEEE Trans. Med. Imaging
, vol.36
, Issue.2
, pp. 674-683
-
-
Rajchl, M.1
Lee, M.C.2
Oktay, O.3
Kamnitsas, K.4
Passerat-Palmbach, J.5
Bai, W.6
Kainz, B.7
Rueckert, D.8
-
225
-
-
85012234596
-
Learning under distributed weak supervision
-
arxiv: 1606.01100.
-
Rajchl, M., Lee, M. C., Schrans, F., Davidson, A., Passerat-Palmbach, J., Tarroni, G., Alansary, A., Oktay, O., Kainz, B., Rueckert, D., 2016. Learning under distributed weak supervision. arxiv: 1606.01100.
-
(2016)
-
-
Rajchl, M.1
Lee, M.C.2
Schrans, F.3
Davidson, A.4
Passerat-Palmbach, J.5
Tarroni, G.6
Alansary, A.7
Oktay, O.8
Kainz, B.9
Rueckert, D.10
-
226
-
-
84991063753
-
High-throughput classification of radiographs using deep convolutional neural networks
-
Rajkomar, A., Lingam, S., Taylor, A.G., Blum, M., Mongan, J., High-throughput classification of radiographs using deep convolutional neural networks. J. Digit. Imaging 30 (2017), 95–101, 10.1007/s10278-016-9914-9.
-
(2017)
J. Digit. Imaging
, vol.30
, pp. 95-101
-
-
Rajkomar, A.1
Lingam, S.2
Taylor, A.G.3
Blum, M.4
Mongan, J.5
-
227
-
-
85014952213
-
Deep learning for health informatics.
-
Ravi, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., Yang, G.-Z., Deep learning for health informatics. IEEE J. Biomed. Health Inf. 21 (2017), 4–21, 10.1109/JBHI.2016.2636665.
-
(2017)
IEEE J. Biomed. Health Inf.
, vol.21
, pp. 4-21
-
-
Ravi, D.1
Wong, C.2
Deligianni, F.3
Berthelot, M.4
Andreu-Perez, J.5
Lo, B.6
Yang, G.-Z.7
-
228
-
-
84978402696
-
Hybrid approach for automatic segmentation of fetal abdomen from ultrasound images using deep learning
-
Ravishankar, H., Prabhu, S.M., Vaidya, V., Singhal, N., Hybrid approach for automatic segmentation of fetal abdomen from ultrasound images using deep learning. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 779–782, 10.1109/ISBI.2016.7493382.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 779-782
-
-
Ravishankar, H.1
Prabhu, S.M.2
Vaidya, V.3
Singhal, N.4
-
229
-
-
84992520985
-
Understanding the mechanisms of deep transfer learning for medical images
-
Ravishankar, H., Sudhakar, P., Venkataramani, R., Thiruvenkadam, S., Annangi, P., Babu, N., Vaidya, V., Understanding the mechanisms of deep transfer learning for medical images. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 188–196.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 188-196
-
-
Ravishankar, H.1
Sudhakar, P.2
Venkataramani, R.3
Thiruvenkadam, S.4
Annangi, P.5
Babu, N.6
Vaidya, V.7
-
230
-
-
84994475835
-
Microscopic medical image classification framework via deep learning and shearlet transform
-
Rezaeilouyeh, H., Mollahosseini, A., Mahoor, M.H., Microscopic medical image classification framework via deep learning and shearlet transform. J. Med. Imaging, 3(4), 2016, 044501, 10.1117/1.JMI.3.4.044501.
-
(2016)
J. Med. Imaging
, vol.3
, Issue.4
, pp. 044501
-
-
Rezaeilouyeh, H.1
Mollahosseini, A.2
Mahoor, M.H.3
-
231
-
-
84986296988
-
Automated tubule nuclei quantification and correlation with Oncotype DX risk categories in ER+ breast cancer whole slide images
-
Romo-Bucheli, D., Janowczyk, A., Gilmore, H., Romero, E., Madabhushi, A., Automated tubule nuclei quantification and correlation with Oncotype DX risk categories in ER+ breast cancer whole slide images. Nat. Sci. Rep., 6, 2016, 32706, 10.1038/srep32706.
-
(2016)
Nat. Sci. Rep.
, vol.6
, pp. 32706
-
-
Romo-Bucheli, D.1
Janowczyk, A.2
Gilmore, H.3
Romero, E.4
Madabhushi, A.5
-
232
-
-
84951834022
-
U-net: convolutional networks for biomedical image segmentation
-
Ronneberger, O., Fischer, P., Brox, T., U-net: convolutional networks for biomedical image segmentation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9351, 2015, 234–241, 10.1007/978-3-319-24574-4_28.
-
(2015)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9351
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
233
-
-
84944317431
-
Anatomy-specific classification of medical images using deep convolutional nets
-
Roth, H.R., Lee, C.T., Shin, H.-C., Seff, A., Kim, L., Yao, J., Lu, L., Summers, R.M., Anatomy-specific classification of medical images using deep convolutional nets. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2015, 101–104, 10.1109/ISBI.2015.7163826.
-
(2015)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 101-104
-
-
Roth, H.R.1
Lee, C.T.2
Shin, H.-C.3
Seff, A.4
Kim, L.5
Yao, J.6
Lu, L.7
Summers, R.M.8
-
234
-
-
84947475390
-
DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation
-
Roth, H.R., Lu, L., Farag, A., Shin, H.-C., Liu, J., Turkbey, E.B., Summers, R.M., DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9349, 2015, 556–564, 10.1007/978-3-319-24553-9_68.
-
(2015)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9349
, pp. 556-564
-
-
Roth, H.R.1
Lu, L.2
Farag, A.3
Shin, H.-C.4
Liu, J.5
Turkbey, E.B.6
Summers, R.M.7
-
235
-
-
84996483366
-
Spatial aggregation of holistically-nested networks for automated pancreas segmentation
-
Roth, H.R., Lu, L., Farag, A., Sohn, A., Summers, R.M., Spatial aggregation of holistically-nested networks for automated pancreas segmentation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 451–459.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 451-459
-
-
Roth, H.R.1
Lu, L.2
Farag, A.3
Sohn, A.4
Summers, R.M.5
-
236
-
-
84969916782
-
Improving computer-aided detection using convolutional neural networks and random view aggregation
-
Roth, H.R., Lu, L., Liu, J., Yao, J., Seff, A., Cherry, K., Kim, L., Summers, R.M., Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans. Med. Imaging 35:5 (2016), 1170–1181, 10.1109/TMI.2015.2482920.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1170-1181
-
-
Roth, H.R.1
Lu, L.2
Liu, J.3
Yao, J.4
Seff, A.5
Cherry, K.6
Kim, L.7
Summers, R.M.8
-
237
-
-
84909644435
-
A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations
-
Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M., A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 8673, 2014, 520–527, 10.1007/978-3-319-10404-1_65.
-
(2014)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.8673
, pp. 520-527
-
-
Roth, H.R.1
Lu, L.2
Seff, A.3
Cherry, K.M.4
Hoffman, J.5
Wang, S.6
Liu, J.7
Turkbey, E.8
Summers, R.M.9
-
238
-
-
84988909680
-
Deep convolutional networks for automated detection of posterior-element fractures on spine CT
-
Roth, H.R., Wang, Y., Yao, J., Lu, L., Burns, J.E., Summers, R.M., Deep convolutional networks for automated detection of posterior-element fractures on spine CT. Proceedings of the SPIE of Medical Imaging, 9785, 2016, 97850P.
-
(2016)
Proceedings of the SPIE of Medical Imaging
, vol.9785
, pp. 97850P
-
-
Roth, H.R.1
Wang, Y.2
Yao, J.3
Lu, L.4
Burns, J.E.5
Summers, R.M.6
-
239
-
-
84927509750
-
Detection of sclerotic spine metastases via random aggregation of deep convolutional?neural network classifications
-
Roth, H.R., Yao, J., Lu, L., Stieger, J., Burns, J.E., Summers, R.M., Detection of sclerotic spine metastases via random aggregation of deep convolutional?neural network classifications. Proceedings of the Recent Advances in Computational Methods and Clinical Applications for Spine Imaging Lecture Notes in Computational Vision and Biomechanics, 20, 2015, 3–12, 10.1007/978-3-319-14148-0_1.
-
(2015)
Proceedings of the Recent Advances in Computational Methods and Clinical Applications for Spine Imaging, Lecture Notes in Computational Vision and Biomechanics
, vol.20
, pp. 3-12
-
-
Roth, H.R.1
Yao, J.2
Lu, L.3
Stieger, J.4
Burns, J.E.5
Summers, R.M.6
-
240
-
-
85020275100
-
Deep active contours
-
arxiv: 1607.05074.
-
Rupprecht, C., Huaroc, E., Baust, M., Navab, N., 2016. Deep active contours. arxiv: 1607.05074.
-
(2016)
-
-
Rupprecht, C.1
Huaroc, E.2
Baust, M.3
Navab, N.4
-
241
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L., Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115:3 (2014), 1–42.
-
(2014)
Int. J. Comput. Vis.
, vol.115
, Issue.3
, pp. 1-42
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
242
-
-
0030270445
-
Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images
-
Sahiner, B., Chan, H.-P., Petrick, N., Wei, D., Helvie, M.A., Adler, D.D., Goodsitt, M.M., Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans. Med. Imaging 15 (1996), 598–610, 10.1109/42.538937.
-
(1996)
IEEE Trans. Med. Imaging
, vol.15
, pp. 598-610
-
-
Sahiner, B.1
Chan, H.-P.2
Petrick, N.3
Wei, D.4
Helvie, M.A.5
Adler, D.D.6
Goodsitt, M.M.7
-
243
-
-
84988896904
-
Deep-learning convolution neural network for computer-aided detection of microcalcifications in digital breast tomosynthesis
-
Samala, R.K., Chan, H.-P., Hadjiiski, L., Cha, K., Helvie, M.A., Deep-learning convolution neural network for computer-aided detection of microcalcifications in digital breast tomosynthesis. Proceedings of the SPIE on Medical Imaging, 9785, 2016, 97850Y.
-
(2016)
Proceedings of the SPIE on Medical Imaging
, vol.9785
, pp. 97850Y
-
-
Samala, R.K.1
Chan, H.-P.2
Hadjiiski, L.3
Cha, K.4
Helvie, M.A.5
-
244
-
-
85000788384
-
Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography
-
Samala, R.K., Chan, H.-P., Hadjiiski, L., Helvie, M.A., Wei, J., Cha, K., Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med. Phys. 43:12 (2016), 6654–6666.
-
(2016)
Med. Phys.
, vol.43
, Issue.12
, pp. 6654-6666
-
-
Samala, R.K.1
Chan, H.-P.2
Hadjiiski, L.3
Helvie, M.A.4
Wei, J.5
Cha, K.6
-
245
-
-
85006734427
-
Classification of Alzheimer's disease using fmri data and deep learning convolutional neural networks
-
arxiv: 1603.08631.
-
Sarraf, S., Tofighi, G., 2016. Classification of Alzheimer's disease using fmri data and deep learning convolutional neural networks. arxiv: 1603.08631.
-
(2016)
-
-
Sarraf, S.1
Tofighi, G.2
-
246
-
-
85051630830
-
H&e-stained whole slide deep learning predicts SPOP mutation state in prostate cancer
-
arxiv: 064279. 10.1101/064279
-
Schaumberg, A.J., Rubin, M.A., Fuchs, T.J., 2016. H&e-stained whole slide deep learning predicts SPOP mutation state in prostate cancer. arxiv: 064279 http://biorxiv.org/content/early/2016/07/21/064279.full.pdf. 10.1101/064279.
-
(2016)
-
-
Schaumberg, A.J.1
Rubin, M.A.2
Fuchs, T.J.3
-
247
-
-
84983548350
-
Predicting semantic descriptions from medical images with convolutional neural networks
-
Schlegl, T., Waldstein, S.M., Vogl, W.-D., Schmidt-Erfurth, U., Langs, G., Predicting semantic descriptions from medical images with convolutional neural networks. Proceedings of the Information Processing in Medical Imaging Lecture Notes in Computer Science, 9123, 2015, 437–448, 10.1007/978-3-319-19992-4_34.
-
(2015)
Proceedings of the Information Processing in Medical Imaging, Lecture Notes in Computer Science
, vol.9123
, pp. 437-448
-
-
Schlegl, T.1
Waldstein, S.M.2
Vogl, W.-D.3
Schmidt-Erfurth, U.4
Langs, G.5
-
248
-
-
85009253047
-
Empirical comparison of color normalization methods for epithelial-stromal classification in h and e images
-
Sethi, A., Sha, L., Vahadane, A.R., Deaton, R.J., Kumar, N., Macias, V., Gann, P.H., Empirical comparison of color normalization methods for epithelial-stromal classification in h and e images. J. Pathol. Inf., 7, 2016, 17, 10.4103/2153-3539.179984.
-
(2016)
J. Pathol. Inf.
, vol.7
, pp. 17
-
-
Sethi, A.1
Sha, L.2
Vahadane, A.R.3
Deaton, R.J.4
Kumar, N.5
Macias, V.6
Gann, P.H.7
-
249
-
-
84968638584
-
Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks
-
Setio, A.A.A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., van Riel, S., Wille, M.W., Naqibullah, M., Sanchez, C., van Ginneken, B., Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35:5 (2016), 1160–1169, 10.1109/TMI.2016.2536809.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1160-1169
-
-
Setio, A.A.A.1
Ciompi, F.2
Litjens, G.3
Gerke, P.4
Jacobs, C.5
van Riel, S.6
Wille, M.W.7
Naqibullah, M.8
Sanchez, C.9
van Ginneken, B.10
-
250
-
-
84994193791
-
Whole image synthesis using a deep encoder–decoder network
-
Sevetlidis, V., Giuffrida, M.V., Tsaftaris, S.A., Whole image synthesis using a deep encoder–decoder network. Proceedings of the Simulation and Synthesis in Medical Imaging Lecture Notes in Computer Science, 9968, 2016, 127–137, 10.1007/978-3-319-46630-9_13.
-
(2016)
Proceedings of the Simulation and Synthesis in Medical Imaging, Lecture Notes in Computer Science
, vol.9968
, pp. 127-137
-
-
Sevetlidis, V.1
Giuffrida, M.V.2
Tsaftaris, S.A.3
-
251
-
-
84981747676
-
Deeply learnt hashing forests for content based image retrieval in prostate MR images
-
Shah, A., Conjeti, S., Navab, N., Katouzian, A., Deeply learnt hashing forests for content based image retrieval in prostate MR images. Proceedings of the SPIE on Medical Imaging, 9784, 2016, 978414.
-
(2016)
Proceedings of the SPIE on Medical Imaging
, vol.9784
, pp. 978414
-
-
Shah, A.1
Conjeti, S.2
Navab, N.3
Katouzian, A.4
-
252
-
-
84978430327
-
Sub-cortical brain structure segmentation using F-CNNs
-
Shakeri, M., Tsogkas, S., Ferrante, E., Lippe, S., Kadoury, S., Paragios, N., Kokkinos, I., Sub-cortical brain structure segmentation using F-CNNs. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 269–272, 10.1109/ISBI.2016.7493261.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 269-272
-
-
Shakeri, M.1
Tsogkas, S.2
Ferrante, E.3
Lippe, S.4
Kadoury, S.5
Paragios, N.6
Kokkinos, I.7
-
253
-
-
85021145223
-
Deep learning in medical image analysis.
-
Shen, D., Wu, G., Suk, H.-I., Deep learning in medical image analysis. Annu. Rev. Biomed. Eng., 2017, 10.1146/annurev-bioeng-071516-044442.
-
(2017)
Annu. Rev. Biomed. Eng.
-
-
Shen, D.1
Wu, G.2
Suk, H.-I.3
-
254
-
-
84943382491
-
Automatic localization of vertebrae based on convolutional neural networks
-
Shen, W., Yang, F., Mu, W., Yang, C., Yang, X., Tian, J., Automatic localization of vertebrae based on convolutional neural networks. Proceedings of the SPIE on Medical Imaging, 9413, 2015, 94132E.
-
(2015)
Proceedings of the SPIE on Medical Imaging
, vol.9413
, pp. 94132E
-
-
Shen, W.1
Yang, F.2
Mu, W.3
Yang, C.4
Yang, X.5
Tian, J.6
-
255
-
-
84996497545
-
Learning from experts: Developing transferable deep features for patient-level lung cancer prediction
-
Shen, W., Zhou, M., Yang, F., Dong, D., Yang, C., Zang, Y., Tian, J., Learning from experts: Developing transferable deep features for patient-level lung cancer prediction. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 124–131, 10.1007/978-3-319-46723-8_15.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 124-131
-
-
Shen, W.1
Zhou, M.2
Yang, F.3
Dong, D.4
Yang, C.5
Zang, Y.6
Tian, J.7
-
256
-
-
84983670549
-
Multi-scale convolutional neural networks for lung nodule classification
-
Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J., Multi-scale convolutional neural networks for lung nodule classification. Proceedings of the Information Processing in Medical Imaging Lecture Notes in Computer Science, 9123, 2015, 588–599, 10.1007/978-3-319-19992-4_46.
-
(2015)
Proceedings of the Information Processing in Medical Imaging, Lecture Notes in Computer Science
, vol.9123
, pp. 588-599
-
-
Shen, W.1
Zhou, M.2
Yang, F.3
Yang, C.4
Tian, J.5
-
257
-
-
85040340661
-
Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of aLzheimer's disease
-
in press
-
Shi, J., Zheng, X., Li, Y., Zhang, Q., Ying, S., Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of aLzheimer's disease. IEEE J. Biomed. Health Inf., 2017, 10.1109/JBHI.2017.2655720 in press.
-
(2017)
IEEE J. Biomed. Health Inf.
-
-
Shi, J.1
Zheng, X.2
Li, Y.3
Zhang, Q.4
Ying, S.5
-
258
-
-
84959244105
-
Interleaved text/image deep mining on a very large-scale radiology database
-
Shin, H.-C., Lu, L., Kim, L., Seff, A., Yao, J., Summers, R.M., Interleaved text/image deep mining on a very large-scale radiology database. Proceedings of the Computer Vision and Pattern Recognition, 2015, 1090–1099, 10.1109/CVPR.2015.7298712.
-
(2015)
Proceedings of the Computer Vision and Pattern Recognition
, pp. 1090-1099
-
-
Shin, H.-C.1
Lu, L.2
Kim, L.3
Seff, A.4
Yao, J.5
Summers, R.M.6
-
259
-
-
84879853539
-
Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
-
Shin, H.-C., Orton, M.R., Collins, D.J., Doran, S.J., Leach, M.O., Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013), 1930–1943, 10.1109/TPAMI.2012.277.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, pp. 1930-1943
-
-
Shin, H.-C.1
Orton, M.R.2
Collins, D.J.3
Doran, S.J.4
Leach, M.O.5
-
260
-
-
84986277510
-
-
Learning to read chest x-rays: recurrent neural cascade model for automated image annotation. arxiv: 1603.08486
-
Shin, H.-C., Roberts, K., Lu, L., Demner-Fushman, D., Yao, J., Summers, R. M., 2016a. Learning to read chest x-rays: recurrent neural cascade model for automated image annotation. arxiv: 1603.08486.
-
(2016)
-
-
Shin, H.-C.1
Roberts, K.2
Lu, L.3
Demner-Fushman, D.4
Yao, J.5
Summers, R.M.6
-
261
-
-
84969962996
-
Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
-
Shin, H.-C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35:5 (2016), 1285–1298, 10.1109/TMI.2016.2528162.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1285-1298
-
-
Shin, H.-C.1
Roth, H.R.2
Gao, M.3
Lu, L.4
Xu, Z.5
Nogues, I.6
Yao, J.7
Mollura, D.8
Summers, R.M.9
-
262
-
-
84953213008
-
Automatic detection of cell divisions (mitosis) in live-imaging microscopy images using convolutional neural networks
-
Shkolyar, A., Gefen, A., Benayahu, D., Greenspan, H., Automatic detection of cell divisions (mitosis) in live-imaging microscopy images using convolutional neural networks. Proceedings of the IEEE Engineering in Medicine and Biology Society, 2015, 743–746, 10.1109/EMBC.2015.7318469.
-
(2015)
Proceedings of the IEEE Engineering in Medicine and Biology Society
, pp. 743-746
-
-
Shkolyar, A.1
Gefen, A.2
Benayahu, D.3
Greenspan, H.4
-
263
-
-
84996598572
-
A deep metric for multimodal registration
-
Simonovsky, M., Gutiérrez-Becker, B., Mateus, D., Navab, N., Komodakis, N., A deep metric for multimodal registration. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9902, 2016, 10–18, 10.1007/978-3-319-46726-9_2.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9902
, pp. 10-18
-
-
Simonovsky, M.1
Gutiérrez-Becker, B.2
Mateus, D.3
Navab, N.4
Komodakis, N.5
-
264
-
-
84925410541
-
Very deep convolutional networks for large-scale image recognition
-
arxiv: 1409.1556.
-
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arxiv: 1409.1556.
-
(2014)
-
-
Simonyan, K.1
Zisserman, A.2
-
265
-
-
84968542311
-
Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
-
Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.-W., Snead, D.R., Cree, I.A., Rajpoot, N.M., Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35:5 (2016), 1196–1206.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1196-1206
-
-
Sirinukunwattana, K.1
Raza, S.E.A.2
Tsang, Y.-W.3
Snead, D.R.4
Cree, I.A.5
Rajpoot, N.M.6
-
266
-
-
84992530069
-
Vessel detection in ultrasound images using deep convolutional neural networks
-
Smistad, E., Løvstakken, L., Vessel detection in ultrasound images using deep convolutional neural networks. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 30–38, 10.1007/978-3-319-46976-8_4.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 30-38
-
-
Smistad, E.1
Løvstakken, L.2
-
267
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
Snoek, J., Larochelle, H., Adams, R.P., Practical Bayesian optimization of machine learning algorithms. Proceedings of the Advances in Neural Information Processing Systems, 2012, 2951–2959.
-
(2012)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 2951-2959
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
268
-
-
85017836610
-
Accurate cervical cell segmentation from overlapping clumps in pap smear images
-
Song, Y., Tan, E.-L., Jiang, X., Cheng, J.-Z., Ni, D., Chen, S., Lei, B., Wang, T., Accurate cervical cell segmentation from overlapping clumps in pap smear images. IEEE Trans. Med. Imaging 36 (2017), 288–300, 10.1109/TMI.2016.2606380.
-
(2017)
IEEE Trans. Med. Imaging
, vol.36
, pp. 288-300
-
-
Song, Y.1
Tan, E.-L.2
Jiang, X.3
Cheng, J.-Z.4
Ni, D.5
Chen, S.6
Lei, B.7
Wang, T.8
-
269
-
-
84950238277
-
Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning
-
Song, Y., Zhang, L., Chen, S., Ni, D., Lei, B., Wang, T., Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning. IEEE Trans. Biomed. Eng. 62:10 (2015), 2421–2433, 10.1109/TBME.2015.2430895.
-
(2015)
IEEE Trans. Biomed. Eng.
, vol.62
, Issue.10
, pp. 2421-2433
-
-
Song, Y.1
Zhang, L.2
Chen, S.3
Ni, D.4
Lei, B.5
Wang, T.6
-
270
-
-
84993995751
-
Deep learning for automated skeletal bone age assessment in X-ray images
-
Spampinato, C., Palazzo, S., Giordano, D., Aldinucci, M., Leonardi, R., Deep learning for automated skeletal bone age assessment in X-ray images. Med. Image Anal. 36 (2017), 41–51, 10.1016/j.media.2016.10.010.
-
(2017)
Med. Image Anal.
, vol.36
, pp. 41-51
-
-
Spampinato, C.1
Palazzo, S.2
Giordano, D.3
Aldinucci, M.4
Leonardi, R.5
-
271
-
-
84962006941
-
Striving for simplicity: the all convolutional net
-
arxiv: 1412.6806.
-
Springenberg, J. T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for simplicity: the all convolutional net. arxiv: 1412.6806.
-
(2014)
-
-
Springenberg, J.T.1
Dosovitskiy, A.2
Brox, T.3
Riedmiller, M.4
-
272
-
-
84996522064
-
Automated age estimation from hand MRI volumes using deep learning
-
Štern, D., Payer, C., Lepetit, V., Urschler, M., Automated age estimation from hand MRI volumes using deep learning. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 194–202, 10.1007/978-3-319-46723-8_23.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 194-202
-
-
Štern, D.1
Payer, C.2
Lepetit, V.3
Urschler, M.4
-
273
-
-
84965136278
-
Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation
-
Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J., Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation. Proceedings of the Advances in Neural Information Processing Systems, 2015, 2998–3006.
-
(2015)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 2998-3006
-
-
Stollenga, M.F.1
Byeon, W.2
Liwicki, M.3
Schmidhuber, J.4
-
274
-
-
84907019192
-
Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
-
Suk, H.-I., Lee, S.-W., Shen, D., Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101 (2014), 569–582, 10.1016/j.neuroimage.2014.06.077.
-
(2014)
Neuroimage
, vol.101
, pp. 569-582
-
-
Suk, H.-I.1
Lee, S.-W.2
Shen, D.3
-
275
-
-
84923814844
-
Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
-
Suk, H.-I., Lee, S.-W., Shen, D., Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220 (2015), 841–859, 10.1007/s00429-013-0687-3.
-
(2015)
Brain Struct. Funct.
, vol.220
, pp. 841-859
-
-
Suk, H.-I.1
Lee, S.-W.2
Shen, D.3
-
276
-
-
84885898432
-
Deep learning-based feature representation for AD/MCI classification
-
Suk, H.-I., Shen, D., Deep learning-based feature representation for AD/MCI classification. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 8150, 2013, 583–590, 10.1007/978-3-642-40763-5_72.
-
(2013)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.8150
, pp. 583-590
-
-
Suk, H.-I.1
Shen, D.2
-
277
-
-
84992513254
-
Deep ensemble sparse regression network for Alzheimer's disease diagnosis
-
Suk, H.-I., Shen, D., Deep ensemble sparse regression network for Alzheimer's disease diagnosis. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 10019, 2016, 113–121, 10.1007/978-3-319-47157-0_14.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.10019
, pp. 113-121
-
-
Suk, H.-I.1
Shen, D.2
-
278
-
-
84957052106
-
State-space model with deep learning for functional dynamics estimation in resting-state FMRI
-
Suk, H.-I., Wee, C.-Y., Lee, S.-W., Shen, D., State-space model with deep learning for functional dynamics estimation in resting-state FMRI. Neuroimage 129 (2016), 292–307, 10.1016/j.neuroimage.2016.01.005.
-
(2016)
Neuroimage
, vol.129
, pp. 292-307
-
-
Suk, H.-I.1
Wee, C.-Y.2
Lee, S.-W.3
Shen, D.4
-
279
-
-
84997173216
-
Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data.
-
Sun, W., Tseng, T.-L. B., Zhang, J., Qian, W., Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput. Med. Imaging Graph, 2016, 10.1016/j.compmedimag.2016.07.004.
-
(2016)
Comput. Med. Imaging Graph
-
-
Sun, W.1
Tseng, T.-L.B.2
Zhang, J.3
Qian, W.4
-
280
-
-
84988820235
-
Computer aided lung cancer diagnosis with deep learning algorithms
-
Sun, W., Zheng, B., Qian, W., Computer aided lung cancer diagnosis with deep learning algorithms. Proceedings of the SPIE Medical Imaging, 9785, 2016, 97850Z.
-
(2016)
Proceedings of the SPIE Medical Imaging
, vol.9785
, pp. 97850Z
-
-
Sun, W.1
Zheng, B.2
Qian, W.3
-
281
-
-
84943578706
-
Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images
-
Suzani, A., Rasoulian, A., Seitel, A., Fels, S., Rohling, R., Abolmaesumi, P., Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images. Proceedings of the SPIE Medical Imaging, 9415, 2015, 941514.
-
(2015)
Proceedings of the SPIE Medical Imaging
, vol.9415
, pp. 941514
-
-
Suzani, A.1
Rasoulian, A.2
Seitel, A.3
Fels, S.4
Rohling, R.5
Abolmaesumi, P.6
-
282
-
-
84964983441
-
Going deeper with convolutions
-
arxiv: 1409.4842.
-
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2014. Going deeper with convolutions. arxiv: 1409.4842.
-
(2014)
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
283
-
-
84988883594
-
Deep learning for electronic cleansing in dual-energy ct colonography
-
Tachibana, R., Näppi, J.J., Hironaka, T., Kim, S.H., Yoshida, H., Deep learning for electronic cleansing in dual-energy ct colonography. Proceedings of the SPIE Medical Imaging, 9785, 2016, 97851M.
-
(2016)
Proceedings of the SPIE Medical Imaging
, vol.9785
, pp. 97851M
-
-
Tachibana, R.1
Näppi, J.J.2
Hironaka, T.3
Kim, S.H.4
Yoshida, H.5
-
284
-
-
84951010232
-
Computer-aided pulmonary embolism detection using a novel vessel-aligned multi-planar image representation and convolutional neural networks
-
Tajbakhsh, N., Gotway, M.B., Liang, J., Computer-aided pulmonary embolism detection using a novel vessel-aligned multi-planar image representation and convolutional neural networks. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9350, 2015, 62–69, 10.1007/978-3-319-24571-3_8.
-
(2015)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9350
, pp. 62-69
-
-
Tajbakhsh, N.1
Gotway, M.B.2
Liang, J.3
-
285
-
-
84983655863
-
A comprehensive computer-aided polyp detection system for colonoscopy videos
-
Tajbakhsh, N., Gurudu, S.R., Liang, J., A comprehensive computer-aided polyp detection system for colonoscopy videos. Proceedings of the Information Processing in Medical Imaging Lecture Notes in Computer Science, 9123, 2015, 327–338, 10.1007/978-3-319-19992-4_25.
-
(2015)
Proceedings of the Information Processing in Medical Imaging, Lecture Notes in Computer Science
, vol.9123
, pp. 327-338
-
-
Tajbakhsh, N.1
Gurudu, S.R.2
Liang, J.3
-
286
-
-
84968649810
-
Convolutional neural networks for medical image analysis: fine tuning or full training?
-
Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J., Convolutional neural networks for medical image analysis: fine tuning or full training?. IEEE Trans. Med. Imaging 35:5 (2016), 1299–1312.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1299-1312
-
-
Tajbakhsh, N.1
Shin, J.Y.2
Gurudu, S.R.3
Hurst, R.T.4
Kendall, C.B.5
Gotway, M.B.6
Liang, J.7
-
287
-
-
84988844623
-
Increasing CAD system efficacy for lung texture analysis using a convolutional network
-
97850Q–97850Q
-
Tarando, S.R., Fetita, C., Faccinetto, A., Yves, P., Increasing CAD system efficacy for lung texture analysis using a convolutional network. Proceedings of the SPIE on Medical Imaging, 9785, 2016 97850Q–97850Q.
-
(2016)
Proceedings of the SPIE on Medical Imaging
, vol.9785
-
-
Tarando, S.R.1
Fetita, C.2
Faccinetto, A.3
Yves, P.4
-
288
-
-
85010865010
-
Deep learning convolutional networks for multiphoton microscopy vasculature segmentation
-
arxiv: 1606.02382.
-
Teikari, P., Santos, M., Poon, C., Hynynen, K., 2016. Deep learning convolutional networks for multiphoton microscopy vasculature segmentation. arxiv: 1606.02382.
-
(2016)
-
-
Teikari, P.1
Santos, M.2
Poon, C.3
Hynynen, K.4
-
289
-
-
84969776874
-
Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique
-
Teramoto, A., Fujita, H., Yamamuro, O., Tamaki, T., Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med. Phys. 43 (2016), 2821–2827, 10.1118/1.4948498.
-
(2016)
Med. Phys.
, vol.43
, pp. 2821-2827
-
-
Teramoto, A.1
Fujita, H.2
Yamamuro, O.3
Tamaki, T.4
-
290
-
-
85006184532
-
Convolutional networks for kidney segmentation in contrast-enhanced CT scans
-
Thong, W., Kadoury, S., Piché, N., Pal, C.J., Convolutional networks for kidney segmentation in contrast-enhanced CT scans. Computer. Methods Biomech. Biomed. Eng. Imag. Vis., 2016, 1–6, 10.1080/21681163.2016.1148636.
-
(2016)
Computer. Methods Biomech. Biomed. Eng. Imag. Vis.
, pp. 1-6
-
-
Thong, W.1
Kadoury, S.2
Piché, N.3
Pal, C.J.4
-
291
-
-
85011314659
-
A fully convolutional neural network for cardiac segmentation in short-axis MRI
-
arxiv: 1604.00494.
-
Tran, P.V., 2016. A fully convolutional neural network for cardiac segmentation in short-axis MRI. arxiv: 1604.00494.
-
(2016)
-
-
Tran, P.V.1
-
292
-
-
85009285527
-
Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples.
-
Turkki, R., Linder, N., Kovanen, P.E., Pellinen, T., Lundin, J., Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples. J. Pathol. Inf., 7, 2016, 38, 10.4103/2153-3539.189703.
-
(2016)
J. Pathol. Inf.
, vol.7
, pp. 38
-
-
Turkki, R.1
Linder, N.2
Kovanen, P.E.3
Pellinen, T.4
Lundin, J.5
-
293
-
-
85013103816
-
Endonet: a deep architecture for recognition tasks on laparoscopic videos
-
Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., de Mathelin, M., Padoy, N., Endonet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36 (2017), 86–97, 10.1109/TMI.2016.2593957.
-
(2017)
IEEE Trans. Med. Imaging
, vol.36
, pp. 86-97
-
-
Twinanda, A.P.1
Shehata, S.2
Mutter, D.3
Marescaux, J.4
de Mathelin, M.5
Padoy, N.6
-
294
-
-
85007413319
-
Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis
-
van der Burgh, H.K., Schmidt, R., Westeneng, H.-J., de Reus, M.A., van den Berg, L.H., van den Heuvel, M.P., Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. Neuroimage Clin. 13 (2017), 361–369, 10.1016/j.nicl.2016.10.008.
-
(2017)
Neuroimage Clin.
, vol.13
, pp. 361-369
-
-
van der Burgh, H.K.1
Schmidt, R.2
Westeneng, H.-J.3
de Reus, M.A.4
van den Berg, L.H.5
van den Heuvel, M.P.6
-
295
-
-
84943812643
-
Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans
-
van Ginneken, B., Setio, A.A., Jacobs, C., Ciompi, F., Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2015, 286–289, 10.1109/ISBI.2015.7163869.
-
(2015)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 286-289
-
-
van Ginneken, B.1
Setio, A.A.2
Jacobs, C.3
Ciompi, F.4
-
296
-
-
84968665432
-
Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images
-
van Grinsven, M.J.J.P., van Ginneken, B., Hoyng, C.B., Theelen, T., Sánchez, C.I., Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans. Med. Imaging 35:5 (2016), 1273–1284, 10.1109/TMI.2016.2526689.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1273-1284
-
-
van Grinsven, M.J.J.P.1
van Ginneken, B.2
Hoyng, C.B.3
Theelen, T.4
Sánchez, C.I.5
-
297
-
-
84968572560
-
Combining generative and discriminative representation learning for lung CT analysis with convolutional Restricted Boltzmann machines
-
van Tulder, G., de Bruijne, M., Combining generative and discriminative representation learning for lung CT analysis with convolutional Restricted Boltzmann machines. IEEE Trans. Med. Imaging 35:5 (2016), 1262–1272.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1262-1272
-
-
van Tulder, G.1
de Bruijne, M.2
-
298
-
-
84996565667
-
Cutting out the middleman: measuring nuclear area in histopathology slides without segmentation
-
Veta, M., van Diest, P.J., Pluim, J.P.W., Cutting out the middleman: measuring nuclear area in histopathology slides without segmentation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 632–639.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 632-639
-
-
Veta, M.1
van Diest, P.J.2
Pluim, J.P.W.3
-
299
-
-
79551480483
-
Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
-
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371–3408.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
300
-
-
84955242467
-
Automatic liver tumor segmentation in follow-up CT studies using convolutional neural networks
-
Vivanti, R., Ephrat, A., Joskowicz, L., Karaaslan, O., Lev-Cohain, N., Sosna, J., Automatic liver tumor segmentation in follow-up CT studies using convolutional neural networks. Proceedings of the Patch-Based Methods in Medical Image Processing Workshop, MICCAI’2015, 2015, 54–61.
-
(2015)
Proceedings of the Patch-Based Methods in Medical Image Processing Workshop, MICCAI’2015
, pp. 54-61
-
-
Vivanti, R.1
Ephrat, A.2
Joskowicz, L.3
Karaaslan, O.4
Lev-Cohain, N.5
Sosna, J.6
-
301
-
-
85008152020
-
Lung nodule classification using deep feature fusion in chest radiography
-
Wang, C., Elazab, A., Wu, J., Hu, Q., Lung nodule classification using deep feature fusion in chest radiography. Comput. Med. Imaging Graph, 2016, 10.1016/j.compmedimag.2016.11.004.
-
(2016)
Comput. Med. Imaging Graph
-
-
Wang, C.1
Elazab, A.2
Wu, J.3
Hu, Q.4
-
302
-
-
84953275577
-
A unified framework for automatic wound segmentation and analysis with deep convolutional neural networks
-
Wang, C., Yan, X., Smith, M., Kochhar, K., Rubin, M., Warren, S.M., Wrobel, J., Lee, H., A unified framework for automatic wound segmentation and analysis with deep convolutional neural networks. Proceedings of the IEEE Engineering in Medicine and Biology Society, 2015, 2415–2418, 10.1109/EMBC.2015.7318881.
-
(2015)
Proceedings of the IEEE Engineering in Medicine and Biology Society
, pp. 2415-2418
-
-
Wang, C.1
Yan, X.2
Smith, M.3
Kochhar, K.4
Rubin, M.5
Warren, S.M.6
Wrobel, J.7
Lee, H.8
-
303
-
-
85026522933
-
-
Deep learning for identifying metastatic breast cancer. arxiv: 1606.05718
-
Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A. H., 2016b. Deep learning for identifying metastatic breast cancer. arxiv: 1606.05718.
-
(2016)
-
-
Wang, D.1
Khosla, A.2
Gargeya, R.3
Irshad, H.4
Beck, A.H.5
-
304
-
-
85009115445
-
A perspective on deep imaging
-
Wang, G., A perspective on deep imaging. IEEE Access 4 (2016), 8914–8924.
-
(2016)
IEEE Access
, vol.4
, pp. 8914-8924
-
-
Wang, G.1
-
305
-
-
84923019397
-
Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features
-
Wang, H., Cruz-Roa, A., Basavanhally, A., Gilmore, H., Shih, N., Feldman, M., Tomaszewski, J., Gonzalez, F., Madabhushi, A., Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J. Med. Imaging, 1, 2014, 034003, 10.1117/1.JMI.1.3.034003.
-
(2014)
J. Med. Imaging
, vol.1
, pp. 034003
-
-
Wang, H.1
Cruz-Roa, A.2
Basavanhally, A.3
Gilmore, H.4
Shih, N.5
Feldman, M.6
Tomaszewski, J.7
Gonzalez, F.8
Madabhushi, A.9
-
306
-
-
85019258762
-
Detecting cardiovascular disease from mammograms with deep learning
-
Wang, J., Ding, H., Azamian, F., Zhou, B., Iribarren, C., Molloi, S., Baldi, P., Detecting cardiovascular disease from mammograms with deep learning. IEEE Trans. Med. Imaging, 2017, 10.1109/TMI.2017.2655486.
-
(2017)
IEEE Trans. Med. Imaging
-
-
Wang, J.1
Ding, H.2
Azamian, F.3
Zhou, B.4
Iribarren, C.5
Molloi, S.6
Baldi, P.7
-
307
-
-
84996523381
-
A deep learning approach for semantic segmentation in histology tissue images
-
Springer
-
Wang, J., MacKenzie, J.D., Ramachandran, R., Chen, D.Z., A deep learning approach for semantic segmentation in histology tissue images. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, Springer, 176–184, 10.1007/978-3-319-46723-8_21.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 176-184
-
-
Wang, J.1
MacKenzie, J.D.2
Ramachandran, R.3
Chen, D.Z.4
-
308
-
-
84996486520
-
Subtype cell detection with an accelerated deep convolution neural network
-
Wang, S., Yao, J., Xu, Z., Huang, J., Subtype cell detection with an accelerated deep convolution neural network. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 640–648, 10.1007/978-3-319-46723-8_74.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 640-648
-
-
Wang, S.1
Yao, J.2
Xu, Z.3
Huang, J.4
-
309
-
-
85026514524
-
-
Unsupervised category discovery via looped deep pseudo-task optimization using a large scale radiology image database. arxiv: 1603.07965
-
Wang, X., Lu, L., Shin, H.-c., Kim, L., Nogues, I., Yao, J., Summers, R., 2016e. Unsupervised category discovery via looped deep pseudo-task optimization using a large scale radiology image database. arxiv: 1603.07965.
-
(2016)
-
-
Wang, X.1
Lu, L.2
Shin, H.-C.3
Kim, L.4
Nogues, I.5
Yao, J.6
Summers, R.7
-
310
-
-
84975747881
-
Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks
-
Wolterink, J.M., Leiner, T., de Vos, B.D., van Hamersvelt, R.W., Viergever, M.A., Isgum, I., Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med. Image Anal. 34 (2016), 123–136, 10.1016/j.media.2016.04.004.
-
(2016)
Med. Image Anal.
, vol.34
, pp. 123-136
-
-
Wolterink, J.M.1
Leiner, T.2
de Vos, B.D.3
van Hamersvelt, R.W.4
Viergever, M.A.5
Isgum, I.6
-
311
-
-
84992507355
-
Automated retinopathy of prematurity case detection with convolutional neural networks
-
Worrall, D.E., Wilson, C.M., Brostow, G.J., Automated retinopathy of prematurity case detection with convolutional neural networks. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 68–76, 10.1007/978-3-319-46976-8_8.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 68-76
-
-
Worrall, D.E.1
Wilson, C.M.2
Brostow, G.J.3
-
312
-
-
84978370232
-
Deep vessel tracking: a generalized probabilistic approach via deep learning
-
Wu, A., Xu, Z., Gao, M., Buty, M., Mollura, D.J., Deep vessel tracking: a generalized probabilistic approach via deep learning. proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 1363–1367, 10.1109/ISBI.2016.7493520.
-
(2016)
proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 1363-1367
-
-
Wu, A.1
Xu, Z.2
Gao, M.3
Buty, M.4
Mollura, D.J.5
-
313
-
-
84892841517
-
Unsupervised deep feature learning for deformable registration of MR brain images
-
Wu, G., Kim, M., Wang, Q., Gao, Y., Liao, S., Shen, D., Unsupervised deep feature learning for deformable registration of MR brain images. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 8150, 2013, 649–656, 10.1007/978-3-642-40763-5_80.
-
(2013)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.8150
, pp. 649-656
-
-
Wu, G.1
Kim, M.2
Wang, Q.3
Gao, Y.4
Liao, S.5
Shen, D.6
-
314
-
-
85045044675
-
Microscopy cell counting and detection with fully convolutional regression networks
-
Xie, W., Noble, J.A., Zisserman, A., Microscopy cell counting and detection with fully convolutional regression networks. Comput. Methods Biomech. Biomed. Eng. Imaging Vis., 2016, 1–10.
-
(2016)
Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
, pp. 1-10
-
-
Xie, W.1
Noble, J.A.2
Zisserman, A.3
-
315
-
-
84951843710
-
Deep voting: a robust approach toward nucleus localization in microscopy images
-
Xie, Y., Kong, X., Xing, F., Liu, F., Su, H., Yang, L., Deep voting: a robust approach toward nucleus localization in microscopy images. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9351, 2015, 374–382, 10.1007/978-3-319-24574-4_45.
-
(2015)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9351
, pp. 374-382
-
-
Xie, Y.1
Kong, X.2
Xing, F.3
Liu, F.4
Su, H.5
Yang, L.6
-
316
-
-
84951858138
-
Beyond classification: structured regression for robust cell detection using convolutional neural network
-
Xie, Y., Xing, F., Kong, X., Su, H., Yang, L., Beyond classification: structured regression for robust cell detection using convolutional neural network. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9351, 2015, 358–365, 10.1007/978-3-319-24574-4_43.
-
(2015)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9351
, pp. 358-365
-
-
Xie, Y.1
Xing, F.2
Kong, X.3
Su, H.4
Yang, L.5
-
317
-
-
84996598758
-
Spatial clockwork recurrent neural network for muscle perimysium segmentation
-
Springer
-
Xie, Y., Zhang, Z., Sapkota, M., Yang, L., Spatial clockwork recurrent neural network for muscle perimysium segmentation. Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, Springer, 185–193, 10.1007/978-3-319-46723-8_22.
-
(2016)
Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 185-193
-
-
Xie, Y.1
Zhang, Z.2
Sapkota, M.3
Yang, L.4
-
318
-
-
84959431409
-
An automatic learning-based framework for robust nucleus segmentation
-
Xing, F., Xie, Y., Yang, L., An automatic learning-based framework for robust nucleus segmentation. IEEE Trans. Med. Imaging 35:2 (2016), 550–566, 10.1109/TMI.2015.2481436.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.2
, pp. 550-566
-
-
Xing, F.1
Xie, Y.2
Yang, L.3
-
319
-
-
84977845763
-
A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images
-
Xu, J., Luo, X., Wang, G., Gilmore, H., Madabhushi, A., A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191 (2016), 214–223, 10.1016/j.neucom.2016.01.034.
-
(2016)
Neurocomputing
, vol.191
, pp. 214-223
-
-
Xu, J.1
Luo, X.2
Wang, G.3
Gilmore, H.4
Madabhushi, A.5
-
320
-
-
84959375736
-
Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
-
Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A., Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35 (2016), 119–130, 10.1109/TMI.2015.2458702.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 119-130
-
-
Xu, J.1
Xiang, L.2
Liu, Q.3
Gilmore, H.4
Wu, J.5
Tang, J.6
Madabhushi, A.7
-
321
-
-
84996561744
-
Multimodal deep learning for cervical dysplasia diagnosis
-
Xu, T., Zhang, H., Huang, X., Zhang, S., Metaxas, D.N., Multimodal deep learning for cervical dysplasia diagnosis. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 115–123, 10.1007/978-3-319-46723-8_14.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 115-123
-
-
Xu, T.1
Zhang, H.2
Huang, X.3
Zhang, S.4
Metaxas, D.N.5
-
322
-
-
85026517159
-
-
Gland instance segmentation by deep multichannel side supervision. arxiv: 1607.03222
-
Xu, Y., Li, Y., Liu, M., Wang, Y., Lai, M., Chang, E. I.-C., 2016d. Gland instance segmentation by deep multichannel side supervision. arxiv: 1607.03222.
-
(2016)
-
-
Xu, Y.1
Li, Y.2
Liu, M.3
Wang, Y.4
Lai, M.5
Chang, E.I.-C.6
-
323
-
-
84905230329
-
Deep learning of feature representation with multiple instance learning for medical image analysis
-
Xu, Y., Mo, T., Feng, Q., Zhong, P., Lai, M., Chang, E.I.C., Deep learning of feature representation with multiple instance learning for medical image analysis. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, 1626–1630, 10.1109/ICASSP.2014.6853873.
-
(2014)
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp. 1626-1630
-
-
Xu, Y.1
Mo, T.2
Feng, Q.3
Zhong, P.4
Lai, M.5
Chang, E.I.C.6
-
324
-
-
84996486980
-
Detecting 10,000 Cells in one second
-
Xu, Z., Huang, J., Detecting 10,000 Cells in one second. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 676–684, 10.1007/978-3-319-46723-8_78.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 676-684
-
-
Xu, Z.1
Huang, J.2
-
325
-
-
85008433248
-
CNN-SVM For microvascular morphological type recognition with data augmentation
-
Xue, D.-X., Zhang, R., Feng, H., Wang, Y.-L., CNN-SVM For microvascular morphological type recognition with data augmentation. J. Med. Biol. Eng. 36 (2016), 755–764, 10.1007/s40846-016-0182-4.
-
(2016)
J. Med. Biol. Eng.
, vol.36
, pp. 755-764
-
-
Xue, D.-X.1
Zhang, R.2
Feng, H.3
Wang, Y.-L.4
-
326
-
-
84968680221
-
Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition
-
Yan, Z., Zhan, Y., Peng, Z., Liao, S., Shinagawa, Y., Zhang, S., Metaxas, D.N., Zhou, X.S., Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition. IEEE Trans. Med. Imaging 35:5 (2016), 1332–1343.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, Issue.5
, pp. 1332-1343
-
-
Yan, Z.1
Zhan, Y.2
Peng, Z.3
Liao, S.4
Shinagawa, Y.5
Zhang, S.6
Metaxas, D.N.7
Zhou, X.S.8
-
327
-
-
84944328800
-
Automated anatomical landmark detection on distal femur surface using convolutional neural network
-
Yang, D., Zhang, S., Yan, Z., Tan, C., Li, K., Metaxas, D., Automated anatomical landmark detection on distal femur surface using convolutional neural network. proceedings of the IEEE International Symposium on Biomedical Imaging, 2015, 17–21, 10.1109/isbi.2015.7163806.
-
(2015)
proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 17-21
-
-
Yang, D.1
Zhang, S.2
Yan, Z.3
Tan, C.4
Li, K.5
Metaxas, D.6
-
328
-
-
84996602227
-
Deep fusion net for multi-atlas segmentation: Application to cardiac mr images
-
Yang, H., Sun, J., Li, H., Wang, L., Xu, Z., Deep fusion net for multi-atlas segmentation: Application to cardiac mr images. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 521–528, 10.1007/978-3-319-46723-8_60.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 521-528
-
-
Yang, H.1
Sun, J.2
Li, H.3
Wang, L.4
Xu, Z.5
-
329
-
-
84996587625
-
3d segmentation of glial cells using fully convolutional networks and k-terminal cut
-
Springer
-
Yang, L., Zhang, Y., Guldner, I.H., Zhang, S., Chen, D.Z., 3d segmentation of glial cells using fully convolutional networks and k-terminal cut. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, Springer, 658–666, 10.1007/978-3-319-46723-8_76.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 658-666
-
-
Yang, L.1
Zhang, Y.2
Guldner, I.H.3
Zhang, S.4
Chen, D.Z.5
-
330
-
-
84984611707
-
Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain.
-
Yang, W., Chen, Y., Liu, Y., Zhong, L., Qin, G., Lu, Z., Feng, Q., Chen, W., Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain. Med. Image Anal. 35 (2016), 421–433, 10.1016/j.media.2016.08.004.
-
(2016)
Med. Image Anal.
, vol.35
, pp. 421-433
-
-
Yang, W.1
Chen, Y.2
Liu, Y.3
Zhong, L.4
Qin, G.5
Lu, Z.6
Feng, Q.7
Chen, W.8
-
331
-
-
84992512218
-
Fast predictive image registration
-
Yang, X., Kwitt, R., Niethammer, M., Fast predictive image registration. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 48–57, 10.1007/978-3-319-46976-8_6.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 48-57
-
-
Yang, X.1
Kwitt, R.2
Niethammer, M.3
-
332
-
-
84996604212
-
Imaging biomarker discovery for lung cancer survival prediction
-
Yao, J., Wang, S., Zhu, X., Huang, J., Imaging biomarker discovery for lung cancer survival prediction. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9901, 2016, 649–657, 10.1007/978-3-319-46723-8_75.
-
(2016)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9901
, pp. 649-657
-
-
Yao, J.1
Wang, S.2
Zhu, X.3
Huang, J.4
-
333
-
-
84992482493
-
Deep learning of brain lesion patterns for predicting future disease activity in patients with early symptoms of multiple sclerosis
-
Yoo, Y., Tang, L.W., Brosch, T., Li, D.K.B., Metz, L., Traboulsee, A., Tam, R., Deep learning of brain lesion patterns for predicting future disease activity in patients with early symptoms of multiple sclerosis. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 86–94, 10.1007/978-3-319-46976-8_10.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 86-94
-
-
Yoo, Y.1
Tang, L.W.2
Brosch, T.3
Li, D.K.B.4
Metz, L.5
Traboulsee, A.6
Tam, R.7
-
334
-
-
84944810500
-
Predicting response to neoadjuvant chemotherapy with pet imaging using convolutional neural networks
-
Ypsilantis, P.-P., Siddique, M., Sohn, H.-M., Davies, A., Cook, G., Goh, V., Montana, G., Predicting response to neoadjuvant chemotherapy with pet imaging using convolutional neural networks. PLoS One 10:9 (2015), 1–18, 10.1371/journal.pone.0137036.
-
(2015)
PLoS One
, vol.10
, Issue.9
, pp. 1-18
-
-
Ypsilantis, P.-P.1
Siddique, M.2
Sohn, H.-M.3
Davies, A.4
Cook, G.5
Goh, V.6
Montana, G.7
-
335
-
-
85018500457
-
Automated melanoma recognition in dermoscopy images via very deep residual networks
-
Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A., Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36:4 (2017), 994–1004, 10.1109/TMI.2016.2642839.
-
(2017)
IEEE Trans. Med. Imaging
, vol.36
, Issue.4
, pp. 994-1004
-
-
Yu, L.1
Chen, H.2
Dou, Q.3
Qin, J.4
Heng, P.A.5
-
336
-
-
85026524286
-
Segmentation of fetal left ventricle in echocardiographic sequences based on dynamic convolutional neural networks
-
Yu, L., Guo, Y., Wang, Y., Yu, J., Chen, P., Segmentation of fetal left ventricle in echocardiographic sequences based on dynamic convolutional neural networks. IEEE Trans. Biomed. Eng. 64:8 (2017), 1886–1895, 10.1109/TBME.2016.2628401.
-
(2017)
IEEE Trans. Biomed. Eng.
, vol.64
, Issue.8
, pp. 1886-1895
-
-
Yu, L.1
Guo, Y.2
Wang, Y.3
Yu, J.4
Chen, P.5
-
337
-
-
85029679572
-
Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images
-
Yu, L., Yang, X., Chen, H., Qin, J., Heng, P.A., Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 2017.
-
(2017)
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
-
-
Yu, L.1
Yang, X.2
Chen, H.3
Qin, J.4
Heng, P.A.5
-
339
-
-
85026550242
-
-
Image prediction for limited-angle tomography via deep learning with convolutional neural network. arxiv: 1607.08707
-
Zhang, H., Li, L., Qiao, K., Wang, L., Yan, B., Li, L., Hu, G., 2016a. Image prediction for limited-angle tomography via deep learning with convolutional neural network. arxiv: 1607.08707.
-
(2016)
-
-
Zhang, H.1
Li, L.2
Qiao, K.3
Wang, L.4
Yan, B.5
Li, L.6
Hu, G.7
-
340
-
-
84994143505
-
Automated quality assessment of cardiac MR images using convolutional neural networks
-
Zhang, L., Gooya, A., Dong, B.H.R., Petersen, S.E., Medrano-Gracia, K.P., Frangi, A.F., Automated quality assessment of cardiac MR images using convolutional neural networks. Proceedings of the Simulation and Synthesis in Medical Imaging (SASHIMI) Lecture Notes in Computer Science, 9968, 2016, 138–145, 10.1007/978-3-319-46630-9_14.
-
(2016)
Proceedings of the Simulation and Synthesis in Medical Imaging (SASHIMI), Lecture Notes in Computer Science
, vol.9968
, pp. 138-145
-
-
Zhang, L.1
Gooya, A.2
Dong, B.H.R.3
Petersen, S.E.4
Medrano-Gracia, K.P.5
Frangi, A.F.6
-
341
-
-
84982182244
-
Deep learning based classification of breast tumors with shear-wave elastography
-
Zhang, Q., Xiao, Y., Dai, W., Suo, J., Wang, C., Shi, J., Zheng, H., Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics 72 (2016), 150–157, 10.1016/j.ultras.2016.08.004.
-
(2016)
Ultrasonics
, vol.72
, pp. 150-157
-
-
Zhang, Q.1
Xiao, Y.2
Dai, W.3
Suo, J.4
Wang, C.5
Shi, J.6
Zheng, H.7
-
342
-
-
85014897203
-
Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain
-
Zhang, R., Zheng, Y., Mak, T.W.C., Yu, R., Wong, S.H., Lau, J.Y.W., Poon, C.C.Y., Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE J. Biomed. Health Inf. 21 (2017), 41–47, 10.1109/JBHI.2016.2635662.
-
(2017)
IEEE J. Biomed. Health Inf.
, vol.21
, pp. 41-47
-
-
Zhang, R.1
Zheng, Y.2
Mak, T.W.C.3
Yu, R.4
Wong, S.H.5
Lau, J.Y.W.6
Poon, C.C.Y.7
-
343
-
-
84921492033
-
Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
-
Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., Shen, D., Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 108 (2015), 214–224, 10.1016/j.neuroimage.2014.12.061.
-
(2015)
Neuroimage
, vol.108
, pp. 214-224
-
-
Zhang, W.1
Li, R.2
Deng, H.3
Wang, L.4
Lin, W.5
Ji, S.6
Shen, D.7
-
344
-
-
84994393351
-
Automatic detection and classification of leukocytes using convolutional neural networks
-
Zhao, J., Zhang, M., Zhou, Z., Chu, J., Cao, F., Automatic detection and classification of leukocytes using convolutional neural networks. Med. Biol. Eng. Comput., 2016, 10.1007/s11517-016-1590-x.
-
(2016)
Med. Biol. Eng. Comput.
-
-
Zhao, J.1
Zhang, M.2
Zhou, Z.3
Chu, J.4
Cao, F.5
-
345
-
-
84962808545
-
Multiscale CNNs for brain tumor segmentation and diagnosis
-
Zhao, L., Jia, K., Multiscale CNNs for brain tumor segmentation and diagnosis. Comput. Math. Methods Med., 2016, 2016, 8356294, 10.1155/2016/8356294.
-
(2016)
Comput. Math. Methods Med.
, vol.2016
, pp. 8356294
-
-
Zhao, L.1
Jia, K.2
-
346
-
-
84947419800
-
3D deep learning for efficient and robust landmark detection in volumetric data
-
Zheng, Y., Liu, D., Georgescu, B., Nguyen, H., Comaniciu, D., 3D deep learning for efficient and robust landmark detection in volumetric data. Proceedings of the Medical Image Computing and Computer-Assisted Intervention Lecture Notes in Computer Science, 9349, 2015, 565–572, 10.1007/978-3-319-24553-9_69.
-
(2015)
Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science
, vol.9349
, pp. 565-572
-
-
Zheng, Y.1
Liu, D.2
Georgescu, B.3
Nguyen, H.4
Comaniciu, D.5
-
347
-
-
84992507365
-
Three-dimensional CT image segmentation by combining 2D fully convolutional network with 3D majority voting
-
Zhou, X., Ito, T., Takayama, R., Wang, S., Hara, T., Fujita, H., Three-dimensional CT image segmentation by combining 2D fully convolutional network with 3D majority voting. Proceedings of the Deep Learning in Medical Image Analysis (DLMIA) Lecture Notes in Computer Science, 10008, 2016, 111–120.
-
(2016)
Proceedings of the Deep Learning in Medical Image Analysis (DLMIA), Lecture Notes in Computer Science
, vol.10008
, pp. 111-120
-
-
Zhou, X.1
Ito, T.2
Takayama, R.3
Wang, S.4
Hara, T.5
Fujita, H.6
-
348
-
-
85016235192
-
MRI Based prostate cancer detection with high-level representation and hierarchical classification
-
in press
-
Zhu, Y., Wang, L., Liu, M., Qian, C., Yousuf, A., Oto, A., Shen, D., MRI Based prostate cancer detection with high-level representation and hierarchical classification. Med. Phys. 44:3 (2017), 1028–1039, 10.1002/mp.12116 in press.
-
(2017)
Med. Phys.
, vol.44
, Issue.3
, pp. 1028-1039
-
-
Zhu, Y.1
Wang, L.2
Liu, M.3
Qian, C.4
Yousuf, A.5
Oto, A.6
Shen, D.7
-
349
-
-
85008230293
-
Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation
-
Zilly, J., Buhmann, J.M., Mahapatra, D., Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput. Med. Imaging Graph 55 (2017), 28–41, 10.1016/j.compmedimag.2016.07.012.
-
(2017)
Comput. Med. Imaging Graph
, vol.55
, pp. 28-41
-
-
Zilly, J.1
Buhmann, J.M.2
Mahapatra, D.3
-
350
-
-
84978397862
-
Automatic segmentation of the left ventricle in cardiac CT angiography using convolutional neural networks
-
Zreik, M., Leiner, T., de Vos, B., van Hamersvelt, R., Viergever, M., Isgum, I., Automatic segmentation of the left ventricle in cardiac CT angiography using convolutional neural networks. Proceedings of the IEEE International Symposium on Biomedical Imaging, 2016, 40–43, 10.1109/ISBI.2016.7493206.
-
(2016)
Proceedings of the IEEE International Symposium on Biomedical Imaging
, pp. 40-43
-
-
Zreik, M.1
Leiner, T.2
de Vos, B.3
van Hamersvelt, R.4
Viergever, M.5
Isgum, I.6
|