메뉴 건너뛰기




Volumn 42, Issue , 2017, Pages 60-88

A survey on deep learning in medical image analysis

Author keywords

Convolutional neural networks; Deep learning; Medical imaging; Survey

Indexed keywords

CONVOLUTION; IMAGE SEGMENTATION; LEARNING ALGORITHMS; MEDICAL IMAGING; NEURAL NETWORKS; OBJECT DETECTION; SURVEYING; SURVEYS;

EID: 85026529300     PISSN: 13618415     EISSN: 13618423     Source Type: Journal    
DOI: 10.1016/j.media.2017.07.005     Document Type: Review
Times cited : (10433)

References (350)
  • 2
    • 84990193991 scopus 로고    scopus 로고
    • Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning
    • Abràmoff, M.D., Lou, Y., Erginay, A., Clarida, W., Amelon, R., Folk, J.C., Niemeijer, M., Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest. Ophthalmol. Vis. Sci. 57:13 (2016), 5200–5206, 10.1167/iovs.16-19964.
    • (2016) Invest. Ophthalmol. Vis. Sci. , vol.57 , Issue.13 , pp. 5200-5206
    • Abràmoff, M.D.1    Lou, Y.2    Erginay, A.3    Clarida, W.4    Amelon, R.5    Folk, J.C.6    Niemeijer, M.7
  • 8
    • 84988876822 scopus 로고    scopus 로고
    • Visualizing and enhancing a deep learning framework using patients age and gender for chest X-ray image retrieval
    • Anavi, Y., Kogan, I., Gelbart, E., Geva, O., Greenspan, H., Visualizing and enhancing a deep learning framework using patients age and gender for chest X-ray image retrieval. Proceedings of the SPIE on Medical Imaging, 9785, 2016, 978510.
    • (2016) Proceedings of the SPIE on Medical Imaging , vol.9785 , pp. 978510
    • Anavi, Y.1    Kogan, I.2    Gelbart, E.3    Geva, O.4    Greenspan, H.5
  • 10
    • 84968662241 scopus 로고    scopus 로고
    • Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
    • Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., Mougiakakou, S., Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35:5 (2016), 1207–1216, 10.1109/TMI.2016.2535865.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1207-1216
    • Anthimopoulos, M.1    Christodoulidis, S.2    Ebner, L.3    Christe, A.4    Mougiakakou, S.5
  • 11
    • 85026558652 scopus 로고    scopus 로고
    • Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks
    • arxiv: 1609.02469.
    • Antony, J., McGuinness, K., Connor, N.E.O., Moran, K., 2016. Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. arxiv: 1609.02469.
    • (2016)
    • Antony, J.1    McGuinness, K.2    Connor, N.E.O.3    Moran, K.4
  • 15
    • 84958955334 scopus 로고    scopus 로고
    • A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI
    • Avendi, M., Kheradvar, A., Jafarkhani, H., A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30 (2016), 108–119.
    • (2016) Med. Image Anal. , vol.30 , pp. 108-119
    • Avendi, M.1    Kheradvar, A.2    Jafarkhani, H.3
  • 18
    • 85041032661 scopus 로고    scopus 로고
    • Multi-scale structured CNN with label consistency for brain MR image segmentation
    • Bao, S., Chung, A.C., Multi-scale structured CNN with label consistency for brain MR image segmentation. Comput. Methods Biomech. Biomed. Eng. Imag. Visual., 2016, 1–5.
    • (2016) Comput. Methods Biomech. Biomed. Eng. Imag. Visual. , pp. 1-5
    • Bao, S.1    Chung, A.C.2
  • 23
    • 85026519946 scopus 로고    scopus 로고
    • Multi-organ cancer classification and survival analysis
    • arxiv: 1606.00897.
    • Bauer, S., Carion, N., Schäffler, P., Fuchs, T., Wild, P., Buhmann, J. M., 2016. Multi-organ cancer classification and survival analysis. arxiv: 1606.00897.
    • (2016)
    • Bauer, S.1    Carion, N.2    Schäffler, P.3    Fuchs, T.4    Wild, P.5    Buhmann, J.M.6
  • 26
    • 84872577736 scopus 로고    scopus 로고
    • Practical recommendations for gradient-based training of deep architectures
    • Springer Berlin Heidelberg
    • Bengio, Y., Practical recommendations for gradient-based training of deep architectures. Neural Networks: Tricks of the Trade, 2012, Springer, Berlin Heidelberg, 437–478.
    • (2012) Neural Networks: Tricks of the Trade , pp. 437-478
    • Bengio, Y.1
  • 27
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: a review and new perspectives
    • Bengio, Y., Courville, A., Vincent, P., Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35:8 (2013), 1798–1828, 10.1109/TPAMI.2013.50.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 29
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio, Y., Simard, P., Frasconi, P., Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5 (1994), 157–166.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 33
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • Bergstra, J., Bengio, Y., Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13:1 (2012), 281–305.
    • (2012) J. Mach. Learn. Res. , vol.13 , Issue.1 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 36
    • 84968586012 scopus 로고    scopus 로고
    • Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
    • Brosch, T., Tang, L.Y., Yoo, Y., Li, D.K., Traboulsee, A., Tam, R., Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35:5 (2016), 1229–1239, 10.1109/TMI.2016.2528821.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1229-1239
    • Brosch, T.1    Tang, L.Y.2    Yoo, Y.3    Li, D.K.4    Traboulsee, A.5    Tam, R.6
  • 39
    • 84989865281 scopus 로고    scopus 로고
    • Deep learning for tissue microarray image-based outcome prediction in patients with colorectal cancer
    • Bychkov, D., Turkki, R., Haglund, C., Linder, N., Lundin, J., Deep learning for tissue microarray image-based outcome prediction in patients with colorectal cancer. Proceedings of the SPIE on Medical Imaging, 9791, 2016, 979115.
    • (2016) Proceedings of the SPIE on Medical Imaging , vol.9791 , pp. 979115
    • Bychkov, D.1    Turkki, R.2    Haglund, C.3    Linder, N.4    Lundin, J.5
  • 41
    • 84963930727 scopus 로고    scopus 로고
    • Multi-modal vertebrae recognition using transformed deep convolution network.
    • Cai, Y., Landis, M., Laidley, D.T., Kornecki, A., Lum, A., Li, S., Multi-modal vertebrae recognition using transformed deep convolution network. Comput. Med. Imaging Graph 51 (2016), 11–19, 10.1016/j.compmedimag.2016.02.002.
    • (2016) Comput. Med. Imaging Graph , vol.51 , pp. 11-19
    • Cai, Y.1    Landis, M.2    Laidley, D.T.3    Kornecki, A.4    Lum, A.5    Li, S.6
  • 42
    • 84884546164 scopus 로고    scopus 로고
    • Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data
    • Carneiro, G., Nascimento, J.C., Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013), 2592–2607, 10.1109/TPAMI.2013.96.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , pp. 2592-2607
    • Carneiro, G.1    Nascimento, J.C.2
  • 43
    • 84857295176 scopus 로고    scopus 로고
    • The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods
    • Carneiro, G., Nascimento, J.C., Freitas, A., The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans. Image Process, 2012, 968–982, 10.1109/TIP.2011.2169273.
    • (2012) IEEE Trans. Image Process , pp. 968-982
    • Carneiro, G.1    Nascimento, J.C.2    Freitas, A.3
  • 44
    • 85021115846 scopus 로고    scopus 로고
    • Automated 5-year mortality prediction using deep learning and radiomics features from chest computed tomography
    • arxiv: 1607.00267.
    • Carneiro, G., Oakden-Rayner, L., Bradley, A.P., Nascimento, J., Palmer, L., 2016. Automated 5-year mortality prediction using deep learning and radiomics features from chest computed tomography. arxiv: 1607.00267.
    • (2016)
    • Carneiro, G.1    Oakden-Rayner, L.2    Bradley, A.P.3    Nascimento, J.4    Palmer, L.5
  • 45
    • 85000512565 scopus 로고    scopus 로고
    • Bladder cancer segmentation in CT for treatment response assessment: application of deep-learning convolution neural network-a pilot study
    • Cha, K.H., Hadjiiski, L.M., Samala, R.K., Chan, H.-P., Cohan, R.H., Caoili, E.M., Paramagul, C., Alva, A., Weizer, A.Z., Bladder cancer segmentation in CT for treatment response assessment: application of deep-learning convolution neural network-a pilot study. Tomography 2 (2016), 421–429, 10.18383/j.tom.2016.00184.
    • (2016) Tomography , vol.2 , pp. 421-429
    • Cha, K.H.1    Hadjiiski, L.M.2    Samala, R.K.3    Chan, H.-P.4    Cohan, R.H.5    Caoili, E.M.6    Paramagul, C.7    Alva, A.8    Weizer, A.Z.9
  • 46
    • 85044858639 scopus 로고    scopus 로고
    • Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications
    • Chang, H., Han, J., Zhong, C., Snijders, A., Mao, J.-H., Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications. IEEE Trans. Pattern Anal. Mach. Intell., 2017, 10.1109/TPAMI.2017.2656884.
    • (2017) IEEE Trans. Pattern Anal. Mach. Intell.
    • Chang, H.1    Han, J.2    Zhong, C.3    Snijders, A.4    Mao, J.-H.5
  • 47
    • 84995466936 scopus 로고    scopus 로고
    • Improving airway segmentation in computed tomography using leak detection with convolutional networks
    • Charbonnier, J., van Rikxoort, E., Setio, A., Schaefer-Prokop, C., van Ginneken, B., Ciompi, F., Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med. Image Anal. 36 (2017), 52–60, 10.1016/j.media.2016.11.001.
    • (2017) Med. Image Anal. , vol.36 , pp. 52-60
    • Charbonnier, J.1    van Rikxoort, E.2    Setio, A.3    Schaefer-Prokop, C.4    van Ginneken, B.5    Ciompi, F.6
  • 49
    • 85026517840 scopus 로고    scopus 로고
    • Voxresnet: deep voxelwise residual networks for volumetric brain segmentation. arxiv: 1608.05895
    • Chen, H., Dou, Q., Yu, L., Heng, P.-A., 2016a. Voxresnet: deep voxelwise residual networks for volumetric brain segmentation. arxiv: 1608.05895.
    • (2016)
    • Chen, H.1    Dou, Q.2    Yu, L.3    Heng, P.-A.4
  • 50
    • 84940970126 scopus 로고    scopus 로고
    • Standard plane localization in fetal ultrasound via domain transferred deep neural networks
    • Chen, H., Ni, D., Qin, J., Li, S., Yang, X., Wang, T., Heng, P.A., Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J. Biomed. Health Inform. 19:5 (2015), 1627–1636, 10.1109/JBHI.2015.2425041.
    • (2015) IEEE J. Biomed. Health Inform. , vol.19 , Issue.5 , pp. 1627-1636
    • Chen, H.1    Ni, D.2    Qin, J.3    Li, S.4    Yang, X.5    Wang, T.6    Heng, P.A.7
  • 51
    • 84997796752 scopus 로고    scopus 로고
    • DCAN: Deep contour-aware networks for accurate gland segmentation
    • Chen, H., Qi, X., Yu, L., Heng, P.-A., DCAN: Deep contour-aware networks for accurate gland segmentation. Med. Image Anal. 36 (2017), 135–146, 10.1016/j.media.2016.11.004.
    • (2017) Med. Image Anal. , vol.36 , pp. 135-146
    • Chen, H.1    Qi, X.2    Yu, L.3    Heng, P.-A.4
  • 56
    • 85015080978 scopus 로고    scopus 로고
    • Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images.
    • Chen, S., Qin, J., Ji, X., Lei, B., Wang, T., Ni, D., Cheng, J.-Z., Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images. IEEE Trans. Med. Imaging 36:3 (2017), 802–804, 10.1109/TMI.2016.2629462.
    • (2017) IEEE Trans. Med. Imaging , vol.36 , Issue.3 , pp. 802-804
    • Chen, S.1    Qin, J.2    Ji, X.3    Lei, B.4    Wang, T.5    Ni, D.6    Cheng, J.-Z.7
  • 58
    • 84964292829 scopus 로고    scopus 로고
    • Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans.
    • Cheng, J.-Z., Ni, D., Chou, Y.-H., Qin, J., Tiu, C.-M., Chang, Y.-C., Huang, C.-S., Shen, D., Chen, C.-M., Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Nat. Sci. Rep., 6, 2016, 24454, 10.1038/srep24454.
    • (2016) Nat. Sci. Rep. , vol.6 , pp. 24454
    • Cheng, J.-Z.1    Ni, D.2    Chou, Y.-H.3    Qin, J.4    Tiu, C.-M.5    Chang, Y.-C.6    Huang, C.-S.7    Shen, D.8    Chen, C.-M.9
  • 61
    • 85026506945 scopus 로고    scopus 로고
    • Learning phrase representations using RNN encoder-decoder for statistical machine translation. arxiv: 1406.1078
    • Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arxiv: 1406.1078.
    • (2014)
    • Cho, K.1    Van Merriënboer, B.2    Gulcehre, C.3    Bahdanau, D.4    Bougares, F.5    Schwenk, H.6    Bengio, Y.7
  • 62
    • 84994012280 scopus 로고    scopus 로고
    • Fast and robust segmentation of the striatum using deep convolutional neural networks
    • Choi, H., Jin, K.H., Fast and robust segmentation of the striatum using deep convolutional neural networks. J. Neurosci. Methods 274 (2016), 146–153, 10.1016/j.jneumeth.2016.10.007.
    • (2016) J. Neurosci. Methods , vol.274 , pp. 146-153
    • Choi, H.1    Jin, K.H.2
  • 66
    • 85001976294 scopus 로고    scopus 로고
    • Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs
    • Cicero, M., Bilbily, A., Colak, E., Dowdell, T., Gray, B., Perampaladas, K., Barfett, J., Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Invest Radiol. 52:5 (2017), 281–287, 10.1097/RLI.0000000000000341.
    • (2017) Invest Radiol. , vol.52 , Issue.5 , pp. 281-287
    • Cicero, M.1    Bilbily, A.2    Colak, E.3    Dowdell, T.4    Gray, B.5    Perampaladas, K.6    Barfett, J.7
  • 68
    • 84943752367 scopus 로고    scopus 로고
    • Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box
    • Ciompi, F., de Hoop, B., van Riel, S.J., Chung, K., Scholten, E.T., Oudkerk, M., de Jong, P.A., Prokop, M., van Ginneken, B., Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med. Image Anal. 26 (2015), 195–202, 10.1016/j.media.2015.08.001.
    • (2015) Med. Image Anal. , vol.26 , pp. 195-202
    • Ciompi, F.1    de Hoop, B.2    van Riel, S.J.3    Chung, K.4    Scholten, E.T.5    Oudkerk, M.6    de Jong, P.A.7    Prokop, M.8    van Ginneken, B.9
  • 82
    • 85026498444 scopus 로고    scopus 로고
    • Multi-level contextual 3D CNNs for false positive reduction in pulmonary nodule detection, (in press)
    • Dou, Q., Chen, H., Yu, L., Qin, J., Heng, P. A., 2017. Multi-level contextual 3D CNNs for false positive reduction in pulmonary nodule detection, (in press).
    • (2017)
    • Dou, Q.1    Chen, H.2    Yu, L.3    Qin, J.4    Heng, P.A.5
  • 84
    • 84968542337 scopus 로고    scopus 로고
    • Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
    • Dou, Q., Chen, H., Yu, L., Zhao, L., Qin, J., Wang, D., Mok, V.C., Shi, L., Heng, P.-A., Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans. Med. Imaging 35 (2016), 1182–1195.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1182-1195
    • Dou, Q.1    Chen, H.2    Yu, L.3    Zhao, L.4    Qin, J.5    Wang, D.6    Mok, V.C.7    Shi, L.8    Heng, P.-A.9
  • 89
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S., Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 (2017), 115–118, 10.1038/nature21056.
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3    Ko, J.4    Swetter, S.M.5    Blau, H.M.6    Thrun, S.7
  • 91
    • 85021072159 scopus 로고    scopus 로고
    • A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling
    • arxiv: 1505.06236.
    • Farag, A., Lu, L., Roth, H.R., Liu, J., Turkbey, E., Summers, R.M., 2015. A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. arxiv: 1505.06236.
    • (2015)
    • Farag, A.1    Lu, L.2    Roth, H.R.3    Liu, J.4    Turkbey, E.5    Summers, R.M.6
  • 94
    • 85009268742 scopus 로고    scopus 로고
    • Detection and labeling of vertebrae in MR images using deep learning with clinical annotations as training data
    • in press.
    • Forsberg, D., Sjöblom, E., Sunshine, J.L., Detection and labeling of vertebrae in MR images using deep learning with clinical annotations as training data. J. Digit Imaging, 2017, 10.1007/s10278-017-9945-x in press.
    • (2017) J. Digit Imaging
    • Forsberg, D.1    Sjöblom, E.2    Sunshine, J.L.3
  • 95
    • 84988874558 scopus 로고    scopus 로고
    • Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches
    • Fotin, S.V., Yin, Y., Haldankar, H., Hoffmeister, J.W., Periaswamy, S., Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches. Proceedings of the SPIE on Medical Imaging, 9785, 2016, 97850X.
    • (2016) Proceedings of the SPIE on Medical Imaging , vol.9785 , pp. 97850X
    • Fotin, S.V.1    Yin, Y.2    Haldankar, H.3    Hoffmeister, J.W.4    Periaswamy, S.5
  • 99
    • 0019152630 scopus 로고
    • Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima, K., Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36:4 (1980), 193–202, 10.1007/BF00344251.
    • (1980) Biol. Cybern. , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 103
    • 84946714467 scopus 로고    scopus 로고
    • Automatic feature learning to grade nuclear cataracts based on deep learning
    • Gao, X., Lin, S., Wong, T.Y., Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Trans Biomed. Eng. 62:11 (2015), 2693–2701, 10.1109/TBME.2015.2444389.
    • (2015) IEEE Trans Biomed. Eng. , vol.62 , Issue.11 , pp. 2693-2701
    • Gao, X.1    Lin, S.2    Wong, T.Y.3
  • 105
    • 85015719821 scopus 로고    scopus 로고
    • Hep-2 cell image classification with deep convolutional neural networks
    • Gao, Z., Wang, L., Zhou, L., Zhang, J., Hep-2 cell image classification with deep convolutional neural networks. J. Biomed. Health Inf 21:2 (2016), 416–428.
    • (2016) J. Biomed. Health Inf , vol.21 , Issue.2 , pp. 416-428
    • Gao, Z.1    Wang, L.2    Zhou, L.3    Zhang, J.4
  • 114
    • 84968661778 scopus 로고    scopus 로고
    • Deep learning in medical imaging: overview and future promise of an exciting new technique
    • Greenspan, H., Summers, R.M., van Ginneken, B., Deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35:5 (2016), 1153–1159, 10.1109/TMI.2016.2553401.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1153-1159
    • Greenspan, H.1    Summers, R.M.2    van Ginneken, B.3
  • 117
    • 85042106575 scopus 로고    scopus 로고
    • Automated grading of gliomas using deep learning in digital pathology images: a modular approach with ensemble of convolutional neural networks
    • Günhan Ertosun, M., Rubin, D.L., Automated grading of gliomas using deep learning in digital pathology images: a modular approach with ensemble of convolutional neural networks. Proceedings of the AMIA Annual Symposium, 2015, 1899–1908.
    • (2015) Proceedings of the AMIA Annual Symposium , pp. 1899-1908
    • Günhan Ertosun, M.1    Rubin, D.L.2
  • 118
    • 84963878431 scopus 로고    scopus 로고
    • Deformable MR prostate segmentation via deep feature learning and sparse patch matching
    • Guo, Y., Gao, Y., Shen, D., Deformable MR prostate segmentation via deep feature learning and sparse patch matching. IEEE Trans. Med. Imaging 35:4 (2016), 1077–1089, 10.1109/TMI.2015.2508280.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.4 , pp. 1077-1089
    • Guo, Y.1    Gao, Y.2    Shen, D.3
  • 121
    • 0003685133 scopus 로고
    • Artificial Intelligence: The Very Idea
    • The MIT Press Cambridge, Mass
    • Haugeland, J., Artificial Intelligence: The Very Idea. 1985, The MIT Press, Cambridge, Mass.
    • (1985)
    • Haugeland, J.1
  • 124
    • 84958589374 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • arxiv: 1512.03385.
    • He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. arxiv: 1512.03385.
    • (2015)
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 125
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines
    • Hinton, G., A practical guide to training restricted boltzmann machines. Momentum, 9(1), 2010, 926.
    • (2010) Momentum , vol.9 , Issue.1 , pp. 926
    • Hinton, G.1
  • 126
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.-W., A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006), 1527–1554, 10.1162/neco.2006.18.7.1527.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 127
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313 (2006), 504–507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 128
  • 130
    • 85015012406 scopus 로고    scopus 로고
    • Adaptive estimation of active contour parameters using convolutional neural networks and texture analysis
    • Hoogi, A., Subramaniam, A., Veerapaneni, R., Rubin, D., Adaptive estimation of active contour parameters using convolutional neural networks and texture analysis. IEEE Trans. Med. Imaging, 2016, 10.1109/TMI.2016.2628084.
    • (2016) IEEE Trans. Med. Imaging
    • Hoogi, A.1    Subramaniam, A.2    Veerapaneni, R.3    Rubin, D.4
  • 131
    • 85009906890 scopus 로고    scopus 로고
    • Alzheimer's disease diagnostics by a deeply supervised adaptable 3D convolutional network
    • arxiv: 1607.00556.
    • Hosseini-Asl, E., Gimel'farb, G., El-Baz, A., 2016. Alzheimer's disease diagnostics by a deeply supervised adaptable 3D convolutional network. arxiv: 1607.00556.
    • (2016)
    • Hosseini-Asl, E.1    Gimel'farb, G.2    El-Baz, A.3
  • 132
    • 84997018133 scopus 로고    scopus 로고
    • Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets
    • Hu, P., Wu, F., Peng, J., Bao, Y., Chen, F., Kong, D., Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int. J. Comput. Assist. Radiol. Surg., 2016, 10.1007/s11548-016-1501-5.
    • (2016) Int. J. Comput. Assist. Radiol. Surg.
    • Hu, P.1    Wu, F.2    Peng, J.3    Bao, Y.4    Chen, F.5    Kong, D.6
  • 133
    • 85007072153 scopus 로고    scopus 로고
    • Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution
    • Hu, P., Wu, F., Peng, J., Liang, P., Kong, D., Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys. Med. Biol. 61 (2016), 8676–8698, 10.1088/1361-6560/61/24/8676.
    • (2016) Phys. Med. Biol. , vol.61 , pp. 8676-8698
    • Hu, P.1    Wu, F.2    Peng, J.3    Liang, P.4    Kong, D.5
  • 135
    • 85000428361 scopus 로고    scopus 로고
    • Digital mammographic tumor classification using transfer learning from deep convolutional neural networks
    • Huynh, B.Q., Li, H., Giger, M.L., Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J. Med. Imaging, 3, 2016, 034501, 10.1117/1.JMI.3.3.034501.
    • (2016) J. Med. Imaging , vol.3 , pp. 034501
    • Huynh, B.Q.1    Li, H.2    Giger, M.L.3
  • 136
    • 85026541303 scopus 로고    scopus 로고
    • Self-transfer learning for fully weakly supervised object localization
    • arxiv: 1602.01625.
    • Hwang, S., Kim, H., 2016. Self-transfer learning for fully weakly supervised object localization. arxiv: 1602.01625.
    • (2016)
    • Hwang, S.1    Kim, H.2
  • 137
    • 84988799202 scopus 로고    scopus 로고
    • A novel approach for tuberculosis screening based on deep convolutional neural networks
    • Hwang, S., Kim, H.-E., Jeong, J., Kim, H.-J., A novel approach for tuberculosis screening based on deep convolutional neural networks. Proceedings of the SPIE on Medical Imaging, 9785, 2016, 97852W–1, 10.1117/12.2216198.
    • (2016) Proceedings of the SPIE on Medical Imaging , vol.9785 , pp. 97852W-1
    • Hwang, S.1    Kim, H.-E.2    Jeong, J.3    Kim, H.-J.4
  • 140
    • 84978410533 scopus 로고    scopus 로고
    • Stain normalization using sparse autoencoders (STANOSA): application to digital pathology.
    • Janowczyk, A., Basavanhally, A., Madabhushi, A., Stain normalization using sparse autoencoders (STANOSA): application to digital pathology. Comput. Med. Imaging Graph 57 (2017), 50–61.
    • (2017) Comput. Med. Imaging Graph , vol.57 , pp. 50-61
    • Janowczyk, A.1    Basavanhally, A.2    Madabhushi, A.3
  • 141
    • 85045039617 scopus 로고    scopus 로고
    • A resolution adaptive deep hierarchical (RADHical) learning scheme applied to nuclear segmentation of digital pathology images
    • Janowczyk, A., Doyle, S., Gilmore, H., Madabhushi, A., A resolution adaptive deep hierarchical (RADHical) learning scheme applied to nuclear segmentation of digital pathology images. Comput. Methods.Biomech. Biomed. Eng. Imag. Vis., 2016, 1–7.
    • (2016) Comput. Methods.Biomech. Biomed. Eng. Imag. Vis. , pp. 1-7
    • Janowczyk, A.1    Doyle, S.2    Gilmore, H.3    Madabhushi, A.4
  • 142
    • 85009238256 scopus 로고    scopus 로고
    • Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases.
    • Janowczyk, A., Madabhushi, A., Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inf., 7, 2016, 29, 10.4103/2153-3539.186902.
    • (2016) J. Pathol. Inf. , vol.7 , pp. 29
    • Janowczyk, A.1    Madabhushi, A.2
  • 143
    • 85026503656 scopus 로고    scopus 로고
    • Tongue contour extraction from ultrasound images based on deep neural network
    • arxiv: 1605.05912.
    • Jaumard-Hakoun, A., Xu, K., Roussel-Ragot, P., Dreyfus, G., Denby, B., 2016. Tongue contour extraction from ultrasound images based on deep neural network. arxiv: 1605.05912.
    • (2016)
    • Jaumard-Hakoun, A.1    Xu, K.2    Roussel-Ragot, P.3    Dreyfus, G.4    Denby, B.5
  • 145
    • 84989960541 scopus 로고    scopus 로고
    • Semantic segmentation of colon glands with deep convolutional neural networks and total variation segmentation
    • arxiv: 1511.06919.
    • Kainz, P., Pfeiffer, M., Urschler, M., 2015. Semantic segmentation of colon glands with deep convolutional neural networks and total variation segmentation. arxiv: 1511.06919.
    • (2015)
    • Kainz, P.1    Pfeiffer, M.2    Urschler, M.3
  • 154
    • 85026546291 scopus 로고    scopus 로고
    • What uncertainties do we need in Bayesian deep learning for computer vision? arXiv
    • arXiv: 1703.04977.
    • Kendall, A., Gal, Y., 2017. What uncertainties do we need in Bayesian deep learning for computer vision? arXiv: 1703.04977.
    • (2017)
    • Kendall, A.1    Gal, Y.2
  • 156
    • 84990061840 scopus 로고    scopus 로고
    • Scale-invariant feature learning using deconvolutional neural networks for weakly-supervised semantic segmentation
    • arxiv: 1602.04984.
    • Kim, H., Hwang, S., 2016. Scale-invariant feature learning using deconvolutional neural networks for weakly-supervised semantic segmentation. arxiv: 1602.04984.
    • (2016)
    • Kim, H.1    Hwang, S.2
  • 157
    • 84941964814 scopus 로고    scopus 로고
    • Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia
    • Kim, J., Calhoun, V.D., Shim, E., Lee, J.-H., Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage 124 (2016), 127–146.
    • (2016) Neuroimage , vol.124 , pp. 127-146
    • Kim, J.1    Calhoun, V.D.2    Shim, E.3    Lee, J.-H.4
  • 158
    • 84919810317 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • arxiv: 1312.6114.
    • Kingma, D. P., Welling, M., 2013. Auto-encoding variational bayes. arxiv: 1312.6114.
    • (2013)
    • Kingma, D.P.1    Welling, M.2
  • 160
    • 84959203985 scopus 로고    scopus 로고
    • Deep MRI brain extraction: a 3D convolutional neural network for skull stripping.
    • Kleesiek, J., Urban, G., Hubert, A., Schwarz, D., Maier-Hein, K., Bendszus, M., Biller, A., Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. Neuroimage 129 (2016), 460–469, 10.1016/j.neuroimage.2016.01.024.
    • (2016) Neuroimage , vol.129 , pp. 460-469
    • Kleesiek, J.1    Urban, G.2    Hubert, A.3    Schwarz, D.4    Maier-Hein, K.5    Bendszus, M.6    Biller, A.7
  • 162
    • 85016248526 scopus 로고    scopus 로고
    • Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network
    • Kooi, T., van Ginneken, B., Karssemeijer, N., den Heeten, A., Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Med. Phys 44:3 (2017), 1017–1027.
    • (2017) Med. Phys , vol.44 , Issue.3 , pp. 1017-1027
    • Kooi, T.1    van Ginneken, B.2    Karssemeijer, N.3    den Heeten, A.4
  • 167
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86 (1998), 2278–2324, 10.1109/5.726791.
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 171
    • 85008883816 scopus 로고    scopus 로고
    • Pulmonary nodule classification with deep convolutional neural networks on computed tomography images
    • Li, W., Cao, P., Zhao, D., Wang, J., Pulmonary nodule classification with deep convolutional neural networks on computed tomography images. Comput. Math. Methods Med., 2016, 6215085, 10.1155/2016/6215085.
    • (2016) Comput. Math. Methods Med. , pp. 6215085
    • Li, W.1    Cao, P.2    Zhao, D.3    Wang, J.4
  • 172
    • 84992478150 scopus 로고    scopus 로고
    • Automatic segmentation of liver tumor in CT images with deep convolutional neural networks
    • Li, W., Jia, F., Hu, Q., Automatic segmentation of liver tumor in CT images with deep convolutional neural networks. J. Comput. Commun. 3:11 (2015), 146–151.
    • (2015) J. Comput. Commun. , vol.3 , Issue.11 , pp. 146-151
    • Li, W.1    Jia, F.2    Hu, Q.3
  • 175
    • 84939241380 scopus 로고    scopus 로고
    • Network in network
    • arxiv: 1312.4400.
    • Lin, M., Chen, Q., Yan, S., 2013. Network in network. arxiv: 1312.4400.
    • (2013)
    • Lin, M.1    Chen, Q.2    Yan, S.3
  • 180
    • 0029546663 scopus 로고
    • Artificial convolution neural network techniques and applications for lung nodule detection
    • Lo, S.-C., Lou, S.-L., Lin, J.-S., Freedman, M.T., Chien, M.V., Mun, S.K., Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans. Med. Imaging 14 (1995), 711–718, 10.1109/42.476112.
    • (1995) IEEE Trans. Med. Imaging , vol.14 , pp. 711-718
    • Lo, S.-C.1    Lou, S.-L.2    Lin, J.-S.3    Freedman, M.T.4    Chien, M.V.5    Mun, S.K.6
  • 181
    • 84937144752 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • arxiv: 1411.4038.
    • Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. arxiv: 1411.4038.
    • (2015)
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 182
    • 84986243843 scopus 로고    scopus 로고
    • Automatic 3D liver location and segmentation via convolutional neural network and graph cut
    • Lu, F., Wu, F., Hu, P., Peng, Z., Kong, D., Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int. J. Comput. Assist. Radiol. Surg. 12 (2017), 171–182, 10.1007/s11548-016-1467-3.
    • (2017) Int. J. Comput. Assist. Radiol. Surg. , vol.12 , pp. 171-182
    • Lu, F.1    Wu, F.2    Hu, P.3    Peng, Z.4    Kong, D.5
  • 184
    • 84988489794 scopus 로고    scopus 로고
    • A pre-trained convolutional neural network based method for thyroid nodule diagnosis.
    • Ma, J., Wu, F., Zhu, J., Xu, D., Kong, D., A pre-trained convolutional neural network based method for thyroid nodule diagnosis. Ultrasonics 73 (2017), 221–230, 10.1016/j.ultras.2016.09.011.
    • (2017) Ultrasonics , vol.73 , pp. 221-230
    • Ma, J.1    Wu, F.2    Zhu, J.3    Xu, D.4    Kong, D.5
  • 186
    • 84885927068 scopus 로고    scopus 로고
    • Classification of mitotic figures with convolutional neural networks and seeded blob features.
    • Malon, C.D., Cosatto, E., Classification of mitotic figures with convolutional neural networks and seeded blob features. J. Pathol. Inform., 2013, 10.4103/2153-3539.112694.
    • (2013) J. Pathol. Inform.
    • Malon, C.D.1    Cosatto, E.2
  • 190
    • 85026518980 scopus 로고    scopus 로고
    • Towards automated melanoma screening: exploring transfer learning schemes
    • arxiv: 1609.01228.
    • Menegola, A., Fornaciali, M., Pires, R., Avila, S., Valle, E., 2016. Towards automated melanoma screening: exploring transfer learning schemes. arxiv: 1609.01228.
    • (2016)
    • Menegola, A.1    Fornaciali, M.2    Pires, R.3    Avila, S.4    Valle, E.5
  • 191
    • 85011280482 scopus 로고    scopus 로고
    • Dense volume-to-volume vascular boundary detection
    • arxiv: 1605.08401.
    • Merkow, J., Kriegman, D., Marsden, A., Tu, Z., 2016. Dense volume-to-volume vascular boundary detection. arxiv: 1605.08401.
    • (2016)
    • Merkow, J.1    Kriegman, D.2    Marsden, A.3    Tu, Z.4
  • 192
    • 84968662562 scopus 로고    scopus 로고
    • A CNN regression approach for real-time 2D/3D registration
    • Miao, S., Wang, Z.J., Liao, R., A CNN regression approach for real-time 2D/3D registration. IEEE Trans. Med. Imaging 35:5 (2016), 1352–1363, 10.1109/TMI.2016.2521800.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1352-1363
    • Miao, S.1    Wang, Z.J.2    Liao, R.3
  • 194
    • 85026531336 scopus 로고    scopus 로고
    • V-Net: fully convolutional neural networks for volumetric medical image segmentation. arxiv: 1606.04797
    • Milletari, F., Navab, N., Ahmadi, S.-A., 2016b. V-Net: fully convolutional neural networks for volumetric medical image segmentation. arxiv: 1606.04797.
    • (2016)
    • Milletari, F.1    Navab, N.2    Ahmadi, S.-A.3
  • 198
    • 85010676902 scopus 로고    scopus 로고
    • Explaining nonlinear classification decisions with deep taylor decomposition
    • Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.-R., Explaining nonlinear classification decisions with deep taylor decomposition. Pattern Recognit. 65 (2017), 211–222.
    • (2017) Pattern Recognit. , vol.65 , pp. 211-222
    • Montavon, G.1    Lapuschkin, S.2    Binder, A.3    Samek, W.4    Müller, K.-R.5
  • 201
    • 84988876000 scopus 로고    scopus 로고
    • Deep transfer learning of virtual endoluminal views for the detection of polyps in CT colonography
    • Nappi, J.J., Hironaka, T., Regge, D., Yoshida, H., Deep transfer learning of virtual endoluminal views for the detection of polyps in CT colonography. Proceedings of the Medical Imaging, 2016, 97852B, 10.1117/12.2217260.
    • (2016) Proceedings of the Medical Imaging , pp. 97852B
    • Nappi, J.J.1    Hironaka, T.2    Regge, D.3    Yoshida, H.4
  • 203
    • 84978204565 scopus 로고    scopus 로고
    • Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance
    • Ngo, T.A., Lu, Z., Carneiro, G., Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med. Image Anal. 35 (2017), 159–171, 10.1016/j.media.2016.05.009.
    • (2017) Med. Image Anal. , vol.35 , pp. 159-171
    • Ngo, T.A.1    Lu, Z.2    Carneiro, G.3
  • 209
    • 84980348164 scopus 로고    scopus 로고
    • Ensembles of deep learning architectures for the early diagnosis of the Alzheimer's disease
    • Ortiz, A., Munilla, J., Górriz, J.M., Ramírez, J., Ensembles of deep learning architectures for the early diagnosis of the Alzheimer's disease. Int. J. Neural Syst., 26, 2016, 1650025, 10.1142/S0129065716500258.
    • (2016) Int. J. Neural Syst. , vol.26 , pp. 1650025
    • Ortiz, A.1    Munilla, J.2    Górriz, J.M.3    Ramírez, J.4
  • 210
    • 85026509457 scopus 로고    scopus 로고
    • A unified framework for tumor proliferation score prediction in breast histopathology
    • arxiv: 1612.07180.
    • Paeng, K., Hwang, S., Park, S., Kim, M., Kim, S., 2016. A unified framework for tumor proliferation score prediction in breast histopathology. arxiv: 1612.07180.
    • (2016)
    • Paeng, K.1    Hwang, S.2    Park, S.3    Kim, M.4    Kim, S.5
  • 212
    • 84981325983 scopus 로고    scopus 로고
    • Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks
    • arxiv: 1502.02506.
    • Payan, A., Montana, G., 2015. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. arxiv: 1502.02506.
    • (2015)
    • Payan, A.1    Montana, G.2
  • 214
    • 84968610616 scopus 로고    scopus 로고
    • Brain tumor segmentation using convolutional neural networks in MRI images
    • Pereira, S., Pinto, A., Alves, V., Silva, C.A., Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35:5 (2016), 1240–1251.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1240-1251
    • Pereira, S.1    Pinto, A.2    Alves, V.3    Silva, C.A.4
  • 218
    • 85011950355 scopus 로고    scopus 로고
    • Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation
    • arxiv: 1608.03974.
    • Poudel, R. P. K., Lamata, P., Montana, G., 2016. Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. arxiv: 1608.03974.
    • (2016)
    • Poudel, R.P.K.1    Lamata, P.2    Montana, G.3
  • 221
    • 84991705069 scopus 로고    scopus 로고
    • Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion
    • Prentasic, P., Loncaric, S., Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput. Methods Programs Biomed. 137 (2016), 281–292, 10.1016/j.cmpb.2016.09.018.
    • (2016) Comput. Methods Programs Biomed. , vol.137 , pp. 281-292
    • Prentasic, P.1    Loncaric, S.2
  • 222
    • 84988896932 scopus 로고    scopus 로고
    • An initial investigation on developing a new method to predict short-term breast cancer risk based on deep learning technology
    • Qiu, Y., Wang, Y., Yan, S., Tan, M., Cheng, S., Liu, H., Zheng, B., An initial investigation on developing a new method to predict short-term breast cancer risk based on deep learning technology. Proceedings of the SPIE Medical Imaging, 9785, 2016, 978521.
    • (2016) Proceedings of the SPIE Medical Imaging , vol.9785 , pp. 978521
    • Qiu, Y.1    Wang, Y.2    Yan, S.3    Tan, M.4    Cheng, S.5    Liu, H.6    Zheng, B.7
  • 223
    • 85018405750 scopus 로고    scopus 로고
    • Deep convolutional neural networks for microscopy-based point of care diagnostics
    • arxiv: 1608.02989.
    • Quinn, J.A., Nakasi, R., Mugagga, P.K.B., Byanyima, P., Lubega, W., Andama, A., 2016. Deep convolutional neural networks for microscopy-based point of care diagnostics. arxiv: 1608.02989.
    • (2016)
    • Quinn, J.A.1    Nakasi, R.2    Mugagga, P.K.B.3    Byanyima, P.4    Lubega, W.5    Andama, A.6
  • 226
    • 84991063753 scopus 로고    scopus 로고
    • High-throughput classification of radiographs using deep convolutional neural networks
    • Rajkomar, A., Lingam, S., Taylor, A.G., Blum, M., Mongan, J., High-throughput classification of radiographs using deep convolutional neural networks. J. Digit. Imaging 30 (2017), 95–101, 10.1007/s10278-016-9914-9.
    • (2017) J. Digit. Imaging , vol.30 , pp. 95-101
    • Rajkomar, A.1    Lingam, S.2    Taylor, A.G.3    Blum, M.4    Mongan, J.5
  • 230
    • 84994475835 scopus 로고    scopus 로고
    • Microscopic medical image classification framework via deep learning and shearlet transform
    • Rezaeilouyeh, H., Mollahosseini, A., Mahoor, M.H., Microscopic medical image classification framework via deep learning and shearlet transform. J. Med. Imaging, 3(4), 2016, 044501, 10.1117/1.JMI.3.4.044501.
    • (2016) J. Med. Imaging , vol.3 , Issue.4 , pp. 044501
    • Rezaeilouyeh, H.1    Mollahosseini, A.2    Mahoor, M.H.3
  • 231
    • 84986296988 scopus 로고    scopus 로고
    • Automated tubule nuclei quantification and correlation with Oncotype DX risk categories in ER+ breast cancer whole slide images
    • Romo-Bucheli, D., Janowczyk, A., Gilmore, H., Romero, E., Madabhushi, A., Automated tubule nuclei quantification and correlation with Oncotype DX risk categories in ER+ breast cancer whole slide images. Nat. Sci. Rep., 6, 2016, 32706, 10.1038/srep32706.
    • (2016) Nat. Sci. Rep. , vol.6 , pp. 32706
    • Romo-Bucheli, D.1    Janowczyk, A.2    Gilmore, H.3    Romero, E.4    Madabhushi, A.5
  • 236
    • 84969916782 scopus 로고    scopus 로고
    • Improving computer-aided detection using convolutional neural networks and random view aggregation
    • Roth, H.R., Lu, L., Liu, J., Yao, J., Seff, A., Cherry, K., Kim, L., Summers, R.M., Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans. Med. Imaging 35:5 (2016), 1170–1181, 10.1109/TMI.2015.2482920.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1170-1181
    • Roth, H.R.1    Lu, L.2    Liu, J.3    Yao, J.4    Seff, A.5    Cherry, K.6    Kim, L.7    Summers, R.M.8
  • 242
    • 0030270445 scopus 로고    scopus 로고
    • Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images
    • Sahiner, B., Chan, H.-P., Petrick, N., Wei, D., Helvie, M.A., Adler, D.D., Goodsitt, M.M., Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans. Med. Imaging 15 (1996), 598–610, 10.1109/42.538937.
    • (1996) IEEE Trans. Med. Imaging , vol.15 , pp. 598-610
    • Sahiner, B.1    Chan, H.-P.2    Petrick, N.3    Wei, D.4    Helvie, M.A.5    Adler, D.D.6    Goodsitt, M.M.7
  • 243
    • 84988896904 scopus 로고    scopus 로고
    • Deep-learning convolution neural network for computer-aided detection of microcalcifications in digital breast tomosynthesis
    • Samala, R.K., Chan, H.-P., Hadjiiski, L., Cha, K., Helvie, M.A., Deep-learning convolution neural network for computer-aided detection of microcalcifications in digital breast tomosynthesis. Proceedings of the SPIE on Medical Imaging, 9785, 2016, 97850Y.
    • (2016) Proceedings of the SPIE on Medical Imaging , vol.9785 , pp. 97850Y
    • Samala, R.K.1    Chan, H.-P.2    Hadjiiski, L.3    Cha, K.4    Helvie, M.A.5
  • 244
    • 85000788384 scopus 로고    scopus 로고
    • Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography
    • Samala, R.K., Chan, H.-P., Hadjiiski, L., Helvie, M.A., Wei, J., Cha, K., Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med. Phys. 43:12 (2016), 6654–6666.
    • (2016) Med. Phys. , vol.43 , Issue.12 , pp. 6654-6666
    • Samala, R.K.1    Chan, H.-P.2    Hadjiiski, L.3    Helvie, M.A.4    Wei, J.5    Cha, K.6
  • 245
    • 85006734427 scopus 로고    scopus 로고
    • Classification of Alzheimer's disease using fmri data and deep learning convolutional neural networks
    • arxiv: 1603.08631.
    • Sarraf, S., Tofighi, G., 2016. Classification of Alzheimer's disease using fmri data and deep learning convolutional neural networks. arxiv: 1603.08631.
    • (2016)
    • Sarraf, S.1    Tofighi, G.2
  • 246
    • 85051630830 scopus 로고    scopus 로고
    • H&e-stained whole slide deep learning predicts SPOP mutation state in prostate cancer
    • arxiv: 064279. 10.1101/064279
    • Schaumberg, A.J., Rubin, M.A., Fuchs, T.J., 2016. H&e-stained whole slide deep learning predicts SPOP mutation state in prostate cancer. arxiv: 064279 http://biorxiv.org/content/early/2016/07/21/064279.full.pdf. 10.1101/064279.
    • (2016)
    • Schaumberg, A.J.1    Rubin, M.A.2    Fuchs, T.J.3
  • 248
    • 85009253047 scopus 로고    scopus 로고
    • Empirical comparison of color normalization methods for epithelial-stromal classification in h and e images
    • Sethi, A., Sha, L., Vahadane, A.R., Deaton, R.J., Kumar, N., Macias, V., Gann, P.H., Empirical comparison of color normalization methods for epithelial-stromal classification in h and e images. J. Pathol. Inf., 7, 2016, 17, 10.4103/2153-3539.179984.
    • (2016) J. Pathol. Inf. , vol.7 , pp. 17
    • Sethi, A.1    Sha, L.2    Vahadane, A.R.3    Deaton, R.J.4    Kumar, N.5    Macias, V.6    Gann, P.H.7
  • 251
  • 253
    • 85021145223 scopus 로고    scopus 로고
    • Deep learning in medical image analysis.
    • Shen, D., Wu, G., Suk, H.-I., Deep learning in medical image analysis. Annu. Rev. Biomed. Eng., 2017, 10.1146/annurev-bioeng-071516-044442.
    • (2017) Annu. Rev. Biomed. Eng.
    • Shen, D.1    Wu, G.2    Suk, H.-I.3
  • 257
    • 85040340661 scopus 로고    scopus 로고
    • Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of aLzheimer's disease
    • in press
    • Shi, J., Zheng, X., Li, Y., Zhang, Q., Ying, S., Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of aLzheimer's disease. IEEE J. Biomed. Health Inf., 2017, 10.1109/JBHI.2017.2655720 in press.
    • (2017) IEEE J. Biomed. Health Inf.
    • Shi, J.1    Zheng, X.2    Li, Y.3    Zhang, Q.4    Ying, S.5
  • 259
    • 84879853539 scopus 로고    scopus 로고
    • Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
    • Shin, H.-C., Orton, M.R., Collins, D.J., Doran, S.J., Leach, M.O., Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013), 1930–1943, 10.1109/TPAMI.2012.277.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , pp. 1930-1943
    • Shin, H.-C.1    Orton, M.R.2    Collins, D.J.3    Doran, S.J.4    Leach, M.O.5
  • 260
    • 84986277510 scopus 로고    scopus 로고
    • Learning to read chest x-rays: recurrent neural cascade model for automated image annotation. arxiv: 1603.08486
    • Shin, H.-C., Roberts, K., Lu, L., Demner-Fushman, D., Yao, J., Summers, R. M., 2016a. Learning to read chest x-rays: recurrent neural cascade model for automated image annotation. arxiv: 1603.08486.
    • (2016)
    • Shin, H.-C.1    Roberts, K.2    Lu, L.3    Demner-Fushman, D.4    Yao, J.5    Summers, R.M.6
  • 261
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
    • Shin, H.-C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35:5 (2016), 1285–1298, 10.1109/TMI.2016.2528162.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1285-1298
    • Shin, H.-C.1    Roth, H.R.2    Gao, M.3    Lu, L.4    Xu, Z.5    Nogues, I.6    Yao, J.7    Mollura, D.8    Summers, R.M.9
  • 264
    • 84925410541 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • arxiv: 1409.1556.
    • Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arxiv: 1409.1556.
    • (2014)
    • Simonyan, K.1    Zisserman, A.2
  • 265
    • 84968542311 scopus 로고    scopus 로고
    • Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
    • Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.-W., Snead, D.R., Cree, I.A., Rajpoot, N.M., Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35:5 (2016), 1196–1206.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1196-1206
    • Sirinukunwattana, K.1    Raza, S.E.A.2    Tsang, Y.-W.3    Snead, D.R.4    Cree, I.A.5    Rajpoot, N.M.6
  • 268
    • 85017836610 scopus 로고    scopus 로고
    • Accurate cervical cell segmentation from overlapping clumps in pap smear images
    • Song, Y., Tan, E.-L., Jiang, X., Cheng, J.-Z., Ni, D., Chen, S., Lei, B., Wang, T., Accurate cervical cell segmentation from overlapping clumps in pap smear images. IEEE Trans. Med. Imaging 36 (2017), 288–300, 10.1109/TMI.2016.2606380.
    • (2017) IEEE Trans. Med. Imaging , vol.36 , pp. 288-300
    • Song, Y.1    Tan, E.-L.2    Jiang, X.3    Cheng, J.-Z.4    Ni, D.5    Chen, S.6    Lei, B.7    Wang, T.8
  • 269
    • 84950238277 scopus 로고    scopus 로고
    • Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning
    • Song, Y., Zhang, L., Chen, S., Ni, D., Lei, B., Wang, T., Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning. IEEE Trans. Biomed. Eng. 62:10 (2015), 2421–2433, 10.1109/TBME.2015.2430895.
    • (2015) IEEE Trans. Biomed. Eng. , vol.62 , Issue.10 , pp. 2421-2433
    • Song, Y.1    Zhang, L.2    Chen, S.3    Ni, D.4    Lei, B.5    Wang, T.6
  • 270
    • 84993995751 scopus 로고    scopus 로고
    • Deep learning for automated skeletal bone age assessment in X-ray images
    • Spampinato, C., Palazzo, S., Giordano, D., Aldinucci, M., Leonardi, R., Deep learning for automated skeletal bone age assessment in X-ray images. Med. Image Anal. 36 (2017), 41–51, 10.1016/j.media.2016.10.010.
    • (2017) Med. Image Anal. , vol.36 , pp. 41-51
    • Spampinato, C.1    Palazzo, S.2    Giordano, D.3    Aldinucci, M.4    Leonardi, R.5
  • 271
    • 84962006941 scopus 로고    scopus 로고
    • Striving for simplicity: the all convolutional net
    • arxiv: 1412.6806.
    • Springenberg, J. T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for simplicity: the all convolutional net. arxiv: 1412.6806.
    • (2014)
    • Springenberg, J.T.1    Dosovitskiy, A.2    Brox, T.3    Riedmiller, M.4
  • 274
    • 84907019192 scopus 로고    scopus 로고
    • Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
    • Suk, H.-I., Lee, S.-W., Shen, D., Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101 (2014), 569–582, 10.1016/j.neuroimage.2014.06.077.
    • (2014) Neuroimage , vol.101 , pp. 569-582
    • Suk, H.-I.1    Lee, S.-W.2    Shen, D.3
  • 275
    • 84923814844 scopus 로고    scopus 로고
    • Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
    • Suk, H.-I., Lee, S.-W., Shen, D., Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220 (2015), 841–859, 10.1007/s00429-013-0687-3.
    • (2015) Brain Struct. Funct. , vol.220 , pp. 841-859
    • Suk, H.-I.1    Lee, S.-W.2    Shen, D.3
  • 278
    • 84957052106 scopus 로고    scopus 로고
    • State-space model with deep learning for functional dynamics estimation in resting-state FMRI
    • Suk, H.-I., Wee, C.-Y., Lee, S.-W., Shen, D., State-space model with deep learning for functional dynamics estimation in resting-state FMRI. Neuroimage 129 (2016), 292–307, 10.1016/j.neuroimage.2016.01.005.
    • (2016) Neuroimage , vol.129 , pp. 292-307
    • Suk, H.-I.1    Wee, C.-Y.2    Lee, S.-W.3    Shen, D.4
  • 279
    • 84997173216 scopus 로고    scopus 로고
    • Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data.
    • Sun, W., Tseng, T.-L. B., Zhang, J., Qian, W., Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput. Med. Imaging Graph, 2016, 10.1016/j.compmedimag.2016.07.004.
    • (2016) Comput. Med. Imaging Graph
    • Sun, W.1    Tseng, T.-L.B.2    Zhang, J.3    Qian, W.4
  • 280
    • 84988820235 scopus 로고    scopus 로고
    • Computer aided lung cancer diagnosis with deep learning algorithms
    • Sun, W., Zheng, B., Qian, W., Computer aided lung cancer diagnosis with deep learning algorithms. Proceedings of the SPIE Medical Imaging, 9785, 2016, 97850Z.
    • (2016) Proceedings of the SPIE Medical Imaging , vol.9785 , pp. 97850Z
    • Sun, W.1    Zheng, B.2    Qian, W.3
  • 281
    • 84943578706 scopus 로고    scopus 로고
    • Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images
    • Suzani, A., Rasoulian, A., Seitel, A., Fels, S., Rohling, R., Abolmaesumi, P., Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images. Proceedings of the SPIE Medical Imaging, 9415, 2015, 941514.
    • (2015) Proceedings of the SPIE Medical Imaging , vol.9415 , pp. 941514
    • Suzani, A.1    Rasoulian, A.2    Seitel, A.3    Fels, S.4    Rohling, R.5    Abolmaesumi, P.6
  • 287
  • 288
    • 85010865010 scopus 로고    scopus 로고
    • Deep learning convolutional networks for multiphoton microscopy vasculature segmentation
    • arxiv: 1606.02382.
    • Teikari, P., Santos, M., Poon, C., Hynynen, K., 2016. Deep learning convolutional networks for multiphoton microscopy vasculature segmentation. arxiv: 1606.02382.
    • (2016)
    • Teikari, P.1    Santos, M.2    Poon, C.3    Hynynen, K.4
  • 289
    • 84969776874 scopus 로고    scopus 로고
    • Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique
    • Teramoto, A., Fujita, H., Yamamuro, O., Tamaki, T., Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med. Phys. 43 (2016), 2821–2827, 10.1118/1.4948498.
    • (2016) Med. Phys. , vol.43 , pp. 2821-2827
    • Teramoto, A.1    Fujita, H.2    Yamamuro, O.3    Tamaki, T.4
  • 291
    • 85011314659 scopus 로고    scopus 로고
    • A fully convolutional neural network for cardiac segmentation in short-axis MRI
    • arxiv: 1604.00494.
    • Tran, P.V., 2016. A fully convolutional neural network for cardiac segmentation in short-axis MRI. arxiv: 1604.00494.
    • (2016)
    • Tran, P.V.1
  • 292
    • 85009285527 scopus 로고    scopus 로고
    • Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples.
    • Turkki, R., Linder, N., Kovanen, P.E., Pellinen, T., Lundin, J., Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples. J. Pathol. Inf., 7, 2016, 38, 10.4103/2153-3539.189703.
    • (2016) J. Pathol. Inf. , vol.7 , pp. 38
    • Turkki, R.1    Linder, N.2    Kovanen, P.E.3    Pellinen, T.4    Lundin, J.5
  • 296
    • 84968665432 scopus 로고    scopus 로고
    • Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images
    • van Grinsven, M.J.J.P., van Ginneken, B., Hoyng, C.B., Theelen, T., Sánchez, C.I., Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans. Med. Imaging 35:5 (2016), 1273–1284, 10.1109/TMI.2016.2526689.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1273-1284
    • van Grinsven, M.J.J.P.1    van Ginneken, B.2    Hoyng, C.B.3    Theelen, T.4    Sánchez, C.I.5
  • 297
    • 84968572560 scopus 로고    scopus 로고
    • Combining generative and discriminative representation learning for lung CT analysis with convolutional Restricted Boltzmann machines
    • van Tulder, G., de Bruijne, M., Combining generative and discriminative representation learning for lung CT analysis with convolutional Restricted Boltzmann machines. IEEE Trans. Med. Imaging 35:5 (2016), 1262–1272.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1262-1272
    • van Tulder, G.1    de Bruijne, M.2
  • 299
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371–3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 301
    • 85008152020 scopus 로고    scopus 로고
    • Lung nodule classification using deep feature fusion in chest radiography
    • Wang, C., Elazab, A., Wu, J., Hu, Q., Lung nodule classification using deep feature fusion in chest radiography. Comput. Med. Imaging Graph, 2016, 10.1016/j.compmedimag.2016.11.004.
    • (2016) Comput. Med. Imaging Graph
    • Wang, C.1    Elazab, A.2    Wu, J.3    Hu, Q.4
  • 303
    • 85026522933 scopus 로고    scopus 로고
    • Deep learning for identifying metastatic breast cancer. arxiv: 1606.05718
    • Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A. H., 2016b. Deep learning for identifying metastatic breast cancer. arxiv: 1606.05718.
    • (2016)
    • Wang, D.1    Khosla, A.2    Gargeya, R.3    Irshad, H.4    Beck, A.H.5
  • 304
    • 85009115445 scopus 로고    scopus 로고
    • A perspective on deep imaging
    • Wang, G., A perspective on deep imaging. IEEE Access 4 (2016), 8914–8924.
    • (2016) IEEE Access , vol.4 , pp. 8914-8924
    • Wang, G.1
  • 309
    • 85026514524 scopus 로고    scopus 로고
    • Unsupervised category discovery via looped deep pseudo-task optimization using a large scale radiology image database. arxiv: 1603.07965
    • Wang, X., Lu, L., Shin, H.-c., Kim, L., Nogues, I., Yao, J., Summers, R., 2016e. Unsupervised category discovery via looped deep pseudo-task optimization using a large scale radiology image database. arxiv: 1603.07965.
    • (2016)
    • Wang, X.1    Lu, L.2    Shin, H.-C.3    Kim, L.4    Nogues, I.5    Yao, J.6    Summers, R.7
  • 310
    • 84975747881 scopus 로고    scopus 로고
    • Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks
    • Wolterink, J.M., Leiner, T., de Vos, B.D., van Hamersvelt, R.W., Viergever, M.A., Isgum, I., Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med. Image Anal. 34 (2016), 123–136, 10.1016/j.media.2016.04.004.
    • (2016) Med. Image Anal. , vol.34 , pp. 123-136
    • Wolterink, J.M.1    Leiner, T.2    de Vos, B.D.3    van Hamersvelt, R.W.4    Viergever, M.A.5    Isgum, I.6
  • 318
    • 84959431409 scopus 로고    scopus 로고
    • An automatic learning-based framework for robust nucleus segmentation
    • Xing, F., Xie, Y., Yang, L., An automatic learning-based framework for robust nucleus segmentation. IEEE Trans. Med. Imaging 35:2 (2016), 550–566, 10.1109/TMI.2015.2481436.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.2 , pp. 550-566
    • Xing, F.1    Xie, Y.2    Yang, L.3
  • 319
    • 84977845763 scopus 로고    scopus 로고
    • A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images
    • Xu, J., Luo, X., Wang, G., Gilmore, H., Madabhushi, A., A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191 (2016), 214–223, 10.1016/j.neucom.2016.01.034.
    • (2016) Neurocomputing , vol.191 , pp. 214-223
    • Xu, J.1    Luo, X.2    Wang, G.3    Gilmore, H.4    Madabhushi, A.5
  • 320
    • 84959375736 scopus 로고    scopus 로고
    • Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
    • Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A., Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35 (2016), 119–130, 10.1109/TMI.2015.2458702.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 119-130
    • Xu, J.1    Xiang, L.2    Liu, Q.3    Gilmore, H.4    Wu, J.5    Tang, J.6    Madabhushi, A.7
  • 322
    • 85026517159 scopus 로고    scopus 로고
    • Gland instance segmentation by deep multichannel side supervision. arxiv: 1607.03222
    • Xu, Y., Li, Y., Liu, M., Wang, Y., Lai, M., Chang, E. I.-C., 2016d. Gland instance segmentation by deep multichannel side supervision. arxiv: 1607.03222.
    • (2016)
    • Xu, Y.1    Li, Y.2    Liu, M.3    Wang, Y.4    Lai, M.5    Chang, E.I.-C.6
  • 325
    • 85008433248 scopus 로고    scopus 로고
    • CNN-SVM For microvascular morphological type recognition with data augmentation
    • Xue, D.-X., Zhang, R., Feng, H., Wang, Y.-L., CNN-SVM For microvascular morphological type recognition with data augmentation. J. Med. Biol. Eng. 36 (2016), 755–764, 10.1007/s40846-016-0182-4.
    • (2016) J. Med. Biol. Eng. , vol.36 , pp. 755-764
    • Xue, D.-X.1    Zhang, R.2    Feng, H.3    Wang, Y.-L.4
  • 326
  • 330
    • 84984611707 scopus 로고    scopus 로고
    • Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain.
    • Yang, W., Chen, Y., Liu, Y., Zhong, L., Qin, G., Lu, Z., Feng, Q., Chen, W., Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain. Med. Image Anal. 35 (2016), 421–433, 10.1016/j.media.2016.08.004.
    • (2016) Med. Image Anal. , vol.35 , pp. 421-433
    • Yang, W.1    Chen, Y.2    Liu, Y.3    Zhong, L.4    Qin, G.5    Lu, Z.6    Feng, Q.7    Chen, W.8
  • 334
    • 84944810500 scopus 로고    scopus 로고
    • Predicting response to neoadjuvant chemotherapy with pet imaging using convolutional neural networks
    • Ypsilantis, P.-P., Siddique, M., Sohn, H.-M., Davies, A., Cook, G., Goh, V., Montana, G., Predicting response to neoadjuvant chemotherapy with pet imaging using convolutional neural networks. PLoS One 10:9 (2015), 1–18, 10.1371/journal.pone.0137036.
    • (2015) PLoS One , vol.10 , Issue.9 , pp. 1-18
    • Ypsilantis, P.-P.1    Siddique, M.2    Sohn, H.-M.3    Davies, A.4    Cook, G.5    Goh, V.6    Montana, G.7
  • 335
    • 85018500457 scopus 로고    scopus 로고
    • Automated melanoma recognition in dermoscopy images via very deep residual networks
    • Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A., Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36:4 (2017), 994–1004, 10.1109/TMI.2016.2642839.
    • (2017) IEEE Trans. Med. Imaging , vol.36 , Issue.4 , pp. 994-1004
    • Yu, L.1    Chen, H.2    Dou, Q.3    Qin, J.4    Heng, P.A.5
  • 336
    • 85026524286 scopus 로고    scopus 로고
    • Segmentation of fetal left ventricle in echocardiographic sequences based on dynamic convolutional neural networks
    • Yu, L., Guo, Y., Wang, Y., Yu, J., Chen, P., Segmentation of fetal left ventricle in echocardiographic sequences based on dynamic convolutional neural networks. IEEE Trans. Biomed. Eng. 64:8 (2017), 1886–1895, 10.1109/TBME.2016.2628401.
    • (2017) IEEE Trans. Biomed. Eng. , vol.64 , Issue.8 , pp. 1886-1895
    • Yu, L.1    Guo, Y.2    Wang, Y.3    Yu, J.4    Chen, P.5
  • 339
    • 85026550242 scopus 로고    scopus 로고
    • Image prediction for limited-angle tomography via deep learning with convolutional neural network. arxiv: 1607.08707
    • Zhang, H., Li, L., Qiao, K., Wang, L., Yan, B., Li, L., Hu, G., 2016a. Image prediction for limited-angle tomography via deep learning with convolutional neural network. arxiv: 1607.08707.
    • (2016)
    • Zhang, H.1    Li, L.2    Qiao, K.3    Wang, L.4    Yan, B.5    Li, L.6    Hu, G.7
  • 341
    • 84982182244 scopus 로고    scopus 로고
    • Deep learning based classification of breast tumors with shear-wave elastography
    • Zhang, Q., Xiao, Y., Dai, W., Suo, J., Wang, C., Shi, J., Zheng, H., Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics 72 (2016), 150–157, 10.1016/j.ultras.2016.08.004.
    • (2016) Ultrasonics , vol.72 , pp. 150-157
    • Zhang, Q.1    Xiao, Y.2    Dai, W.3    Suo, J.4    Wang, C.5    Shi, J.6    Zheng, H.7
  • 342
    • 85014897203 scopus 로고    scopus 로고
    • Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain
    • Zhang, R., Zheng, Y., Mak, T.W.C., Yu, R., Wong, S.H., Lau, J.Y.W., Poon, C.C.Y., Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE J. Biomed. Health Inf. 21 (2017), 41–47, 10.1109/JBHI.2016.2635662.
    • (2017) IEEE J. Biomed. Health Inf. , vol.21 , pp. 41-47
    • Zhang, R.1    Zheng, Y.2    Mak, T.W.C.3    Yu, R.4    Wong, S.H.5    Lau, J.Y.W.6    Poon, C.C.Y.7
  • 343
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
    • Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., Shen, D., Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 108 (2015), 214–224, 10.1016/j.neuroimage.2014.12.061.
    • (2015) Neuroimage , vol.108 , pp. 214-224
    • Zhang, W.1    Li, R.2    Deng, H.3    Wang, L.4    Lin, W.5    Ji, S.6    Shen, D.7
  • 344
    • 84994393351 scopus 로고    scopus 로고
    • Automatic detection and classification of leukocytes using convolutional neural networks
    • Zhao, J., Zhang, M., Zhou, Z., Chu, J., Cao, F., Automatic detection and classification of leukocytes using convolutional neural networks. Med. Biol. Eng. Comput., 2016, 10.1007/s11517-016-1590-x.
    • (2016) Med. Biol. Eng. Comput.
    • Zhao, J.1    Zhang, M.2    Zhou, Z.3    Chu, J.4    Cao, F.5
  • 345
    • 84962808545 scopus 로고    scopus 로고
    • Multiscale CNNs for brain tumor segmentation and diagnosis
    • Zhao, L., Jia, K., Multiscale CNNs for brain tumor segmentation and diagnosis. Comput. Math. Methods Med., 2016, 2016, 8356294, 10.1155/2016/8356294.
    • (2016) Comput. Math. Methods Med. , vol.2016 , pp. 8356294
    • Zhao, L.1    Jia, K.2
  • 348
    • 85016235192 scopus 로고    scopus 로고
    • MRI Based prostate cancer detection with high-level representation and hierarchical classification
    • in press
    • Zhu, Y., Wang, L., Liu, M., Qian, C., Yousuf, A., Oto, A., Shen, D., MRI Based prostate cancer detection with high-level representation and hierarchical classification. Med. Phys. 44:3 (2017), 1028–1039, 10.1002/mp.12116 in press.
    • (2017) Med. Phys. , vol.44 , Issue.3 , pp. 1028-1039
    • Zhu, Y.1    Wang, L.2    Liu, M.3    Qian, C.4    Yousuf, A.5    Oto, A.6    Shen, D.7
  • 349
    • 85008230293 scopus 로고    scopus 로고
    • Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation
    • Zilly, J., Buhmann, J.M., Mahapatra, D., Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput. Med. Imaging Graph 55 (2017), 28–41, 10.1016/j.compmedimag.2016.07.012.
    • (2017) Comput. Med. Imaging Graph , vol.55 , pp. 28-41
    • Zilly, J.1    Buhmann, J.M.2    Mahapatra, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.