메뉴 건너뛰기




Volumn 35, Issue 5, 2016, Pages 1160-1169

Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks

Author keywords

Computed tomography; computer aided detection; convolutional networks; deep learning; lung cancer; pulmonary nodule

Indexed keywords

COMPUTER AIDED INSTRUCTION; COMPUTER NETWORKS; CONVOLUTION; POSITRON EMISSION TOMOGRAPHY;

EID: 84968638584     PISSN: 02780062     EISSN: 1558254X     Source Type: Journal    
DOI: 10.1109/TMI.2016.2536809     Document Type: Article
Times cited : (1134)

References (47)
  • 2
    • 79961108629 scopus 로고    scopus 로고
    • Reduced lung-cancer mortality with low-dose computed tomographic screening
    • D. R. Aberle et al., "Reduced lung-cancer mortality with low-dose computed tomographic screening," N. Eng. J. Med., vol. 365, pp. 395-409, 2011.
    • (2011) N. Eng. J. Med. , vol.365 , pp. 395-409
    • Aberle, D.R.1
  • 3
    • 68849111865 scopus 로고    scopus 로고
    • A large scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification
    • K. Murphy, B. van Ginneken, A. M. R. Schilham, B. J. de Hoop, H. A. Gietema, and M. Prokop, "A large scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification," Med. Image Anal., vol. 13, pp. 757-770, 2009.
    • (2009) Med. Image Anal. , vol.13 , pp. 757-770
    • Murphy, K.1    Van Ginneken, B.2    Schilham, A.M.R.3    De Hoop, B.J.4    Gietema, H.A.5    Prokop, M.6
  • 4
    • 77951647196 scopus 로고    scopus 로고
    • A new computationally efficient CAD system for pulmonary nodule detection in CT imagery
    • T. Messay, R. C. Hardie, and S. K. Rogers, "A new computationally efficient CAD system for pulmonary nodule detection in CT imagery," Med. Image Anal., vol. 14, pp. 390-406, 2010.
    • (2010) Med. Image Anal. , vol.14 , pp. 390-406
    • Messay, T.1    Hardie, R.C.2    Rogers, S.K.3
  • 5
    • 84892452298 scopus 로고    scopus 로고
    • Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images
    • C. Jacobs et al., "Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images," Med. Image Anal., vol. 18, pp. 374-384, 2014.
    • (2014) Med. Image Anal. , vol.18 , pp. 374-384
    • Jacobs, C.1
  • 6
    • 77954657504 scopus 로고    scopus 로고
    • Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: The ANODE09 study
    • B. van Ginneken et al., "Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: The ANODE09 study," Med. Image Anal., vol. 14, pp. 707-722, 2010.
    • (2010) Med. Image Anal. , vol.14 , pp. 707-722
    • Van Ginneken, B.1
  • 7
    • 84899652536 scopus 로고    scopus 로고
    • Computer-aided detection system for lung cancer in computed tomography scans: Review and future prospects
    • M. Firmino et al., "Computer-aided detection system for lung cancer in computed tomography scans: Review and future prospects," Biomed. Eng. Online, vol. 13, p. 41, 2014.
    • (2014) Biomed. Eng. Online , vol.13 , pp. 41
    • Firmino, M.1
  • 8
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 9
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, 2015.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 10
    • 84861776914 scopus 로고    scopus 로고
    • Multi-column deep neural network for traffic sign classification
    • D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber, "Multi-column deep neural network for traffic sign classification," Neural Netw., vol. 32, pp. 333-338, 2012.
    • (2012) Neural Netw. , vol.32 , pp. 333-338
    • Cireşan, D.1    Meier, U.2    Masci, J.3    Schmidhuber, J.4
  • 14
    • 84885933775 scopus 로고    scopus 로고
    • Deep feature learning for knee cartilage segmentation using a tri-planar convolutional neural network
    • Medical Image Computing and Computer-Assisted Intervention. New York: Springer
    • A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, and M. Nielsen, "Deep feature learning for knee cartilage segmentation using a tri-planar convolutional neural network," in Medical Image Computing and Computer-Assisted Intervention. New York: Springer, 2013, vol. 8150, LNCS, pp. 246-253.
    • (2013) LNCS , vol.8150 , pp. 246-253
    • Prasoon, A.1    Petersen, K.2    Igel, C.3    Lauze, F.4    Dam, E.5    Nielsen, M.6
  • 15
    • 84885929616 scopus 로고    scopus 로고
    • A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
    • Medical Image Computing and Computer-Assisted Intervention. New York: Springer
    • A. A. Cruz-Roa, J. E. A. Ovalle, A. Madabhushi, and F. A. G. Osorio, "A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection," in Medical Image Computing and Computer-Assisted Intervention. New York: Springer, 2013, vol. 8150, LNCS, pp. 403-410.
    • (2013) LNCS , vol.8150 , pp. 403-410
    • Cruz-Roa, A.A.1    Ovalle, J.E.A.2    Madabhushi, A.3    Osorio, F.A.G.4
  • 16
    • 84906979740 scopus 로고    scopus 로고
    • Deep learning based imaging data completion for improved brain disease diagnosis
    • Medical Image Computing and Computer-Assisted Intervention. New York: Springer
    • R. Li, W. Zhang, H.-I. Suk, L. Wang, J. Li, D. Shen, and S. Ji, "Deep learning based imaging data completion for improved brain disease diagnosis," in Medical Image Computing and Computer-Assisted Intervention. New York: Springer, 2014, vol. 8675, LNCS, pp. 305-312.
    • (2014) LNCS , vol.8675 , pp. 305-312
    • Li, R.1    Zhang, W.2    Suk, H.-I.3    Wang, L.4    Li, J.5    Shen, D.6    Ji, S.7
  • 17
    • 84909644435 scopus 로고    scopus 로고
    • A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations
    • Medical Image Computing and Computer-Assisted Intervention. New York: Springer
    • H. R. Roth, L. Lu, A. Seff, K. M. Cherry, J. Hoffman, S. Wang, J. Liu, E. Turkbey, and R. M. Summers, "A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations," in Medical Image Computing and Computer-Assisted Intervention. New York: Springer, 2014, vol. 8673, LNCS, pp. 520-527.
    • (2014) LNCS , vol.8673 , pp. 520-527
    • Roth, H.R.1    Lu, L.2    Seff, A.3    Cherry, K.M.4    Hoffman, J.5    Wang, S.6    Liu, J.7    Turkbey, E.8    Summers, R.M.9
  • 18
    • 84906987758 scopus 로고    scopus 로고
    • Modeling the variability in brain morphology and lesion distribution in multiple sclerosis by deep learning
    • Medical Image Computing and Computer-Assisted Intervention. New York: Springer
    • T. Brosch, Y. Yoo, D. K. B. Li, A. Traboulsee, and R. Tam, "Modeling the variability in brain morphology and lesion distribution in multiple sclerosis by deep learning," in Medical Image Computing and Computer-Assisted Intervention. New York: Springer, 2014, vol. 8674, LNCS, pp. 462-469.
    • (2014) LNCS , vol.8674 , pp. 462-469
    • Brosch, T.1    Yoo, Y.2    Li, D.K.B.3    Traboulsee, A.4    Tam, R.5
  • 19
    • 0029569057 scopus 로고
    • Artificial convolution neural network for medical image pattern recognition
    • S.-C. Lo et al., "Artificial convolution neural network for medical image pattern recognition," Neural Netw., vol. 8, pp. 1201-1214, 1995.
    • (1995) Neural Netw. , vol.8 , pp. 1201-1214
    • Lo, S.-C.1
  • 20
    • 84943812643 scopus 로고    scopus 로고
    • Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans
    • B. van Ginneken, A. A. A. Setio, C. Jacobs, and F. Ciompi, "Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans," in Proc. IEEE Int. Symp. Biomed. Imag., 2015, pp. 286-289.
    • (2015) Proc. IEEE Int. Symp. Biomed. Imag. , pp. 286-289
    • Van Ginneken, B.1    Setio, A.A.A.2    Jacobs, C.3    Ciompi, F.4
  • 21
    • 79551672468 scopus 로고    scopus 로고
    • The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans
    • S. G. Armato et al., "The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans," Med. Phys., vol. 38, pp. 915-931, 2011.
    • (2011) Med. Phys. , vol.38 , pp. 915-931
    • Armato, S.G.1
  • 22
    • 84871689360 scopus 로고    scopus 로고
    • Recommendations for the management of subsolid pulmonary nodules detected at CT: A statement from the Fleischner society
    • D. P. Naidich et al., "Recommendations for the management of subsolid pulmonary nodules detected at CT: A statement from the Fleischner society," Radiology, vol. 266, pp. 304-317, 2013.
    • (2013) Radiology , vol.266 , pp. 304-317
    • Naidich, D.P.1
  • 23
    • 84899031532 scopus 로고    scopus 로고
    • The lung reporting and data system (LU-RADS): A proposal for computed tomography screening
    • D. Manos et al., "The lung reporting and data system (LU-RADS): A proposal for computed tomography screening," Can. Assoc. Radiol. Journ., vol. 65, pp. 121-134, 2014.
    • (2014) Can. Assoc. Radiol. Journ. , vol.65 , pp. 121-134
    • Manos, D.1
  • 24
    • 33751348788 scopus 로고    scopus 로고
    • Nodule management protocol of the NELSON randomised lung cancer screening trial
    • D. M. Xu et al., "Nodule management protocol of the NELSON randomised lung cancer screening trial," Lung Cancer, vol. 54, pp. 177-184, 2006.
    • (2006) Lung Cancer , vol.54 , pp. 177-184
    • Xu, D.M.1
  • 25
    • 67651159241 scopus 로고    scopus 로고
    • The Danish randomized lung cancer CT screening trial-overall design and results of the prevalence round
    • J. H. Pedersen et al., "The Danish randomized lung cancer CT screening trial-overall design and results of the prevalence round," J. Thoracic Oncol., vol. 4, pp. 608-614, 2009.
    • (2009) J. Thoracic Oncol. , vol.4 , pp. 608-614
    • Pedersen, J.H.1
  • 26
    • 84941425888 scopus 로고    scopus 로고
    • Predictive accuracy of the pancan lung cancer risk prediction model -external validation based on CT from the Danish lung cancer screening trial
    • M. M. W. Wille et al., "Predictive accuracy of the pancan lung cancer risk prediction model -external validation based on CT from the Danish lung cancer screening trial," Eur. Radiol., 2015.
    • (2015) Eur. Radiol.
    • Wille, M.M.W.1
  • 27
    • 84941072949 scopus 로고    scopus 로고
    • Automatic detection of large pulmonary solid nodules in thoracic CT images
    • A. A. A. Setio, C. Jacobs, J. Gelderblom, and B. van Ginneken, "Automatic detection of large pulmonary solid nodules in thoracic CT images," Med. Phys., vol. 42, no. 10, pp. 5642-5653, 2015.
    • (2015) Med. Phys. , vol.42 , Issue.10 , pp. 5642-5653
    • Setio, A.A.A.1    Jacobs, C.2    Gelderblom, J.3    Van Ginneken, B.4
  • 28
    • 79551579051 scopus 로고    scopus 로고
    • On combining computer-aided detection systems
    • Feb.
    • M. Niemeijer et al., "On combining computer-aided detection systems," IEEE Trans. Med. Imag., vol. 30, no. 2, pp. 215-223, Feb. 2011.
    • (2011) IEEE Trans. Med. Imag. , vol.30 , Issue.2 , pp. 215-223
    • Niemeijer, M.1
  • 29
    • 33645697952 scopus 로고    scopus 로고
    • Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans
    • Apr.
    • J. M. Kuhnigk et al., "Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans," IEEE Trans. Med. Imag., vol. 25, no. 4, pp. 417-434, Apr. 2006.
    • (2006) IEEE Trans. Med. Imag. , vol.25 , Issue.4 , pp. 417-434
    • Kuhnigk, J.M.1
  • 31
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5 - RmsProp: Divide the gradient by a running average of its recent magnitude
    • T. Tieleman and G. Hinton, "Lecture 6.5 - RmsProp: Divide the gradient by a running average of its recent magnitude," COURSERA: Neural Networks for Machine Learning, 2012.
    • (2012) COURSERA: Neural Networks for Machine Learning
    • Tieleman, T.1    Hinton, G.2
  • 33
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," in Proc. Int. Conf. Artif. Intell. Stat., 2010, pp. 249-256.
    • (2010) Proc. Int. Conf. Artif. Intell. Stat. , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 35
    • 84924559964 scopus 로고    scopus 로고
    • Large scale validation of the M5L lung CAD on heterogeneous CT datasets
    • E. L. Torres et al., "Large scale validation of the M5L lung CAD on heterogeneous CT datasets," Med. Phys., vol. 42, pp. 1477-1489, 2015.
    • (2015) Med. Phys. , vol.42 , pp. 1477-1489
    • Torres, E.L.1
  • 36
    • 66749175280 scopus 로고    scopus 로고
    • A voxel-based neural approach (VBNA) to identify lung nodules in the ANODE09 study
    • A. Retico et al., "A voxel-based neural approach (VBNA) to identify lung nodules in the ANODE09 study," Proc. SPIE, vol. 7260, pp. 72601S-1-72601S-8, 2009.
    • (2009) Proc. SPIE , vol.7260 , pp. 72601S1-72601S8
    • Retico, A.1
  • 37
    • 84930978244 scopus 로고    scopus 로고
    • Toward clinically usable CAD for lung cancer screening with computed tomography
    • M. S. Brown et al., "Toward clinically usable CAD for lung cancer screening with computed tomography," Eur. Radiol., pp. 2719-2728, 2014.
    • (2014) Eur. Radiol. , pp. 2719-2728
    • Brown, M.S.1
  • 38
    • 84874760366 scopus 로고    scopus 로고
    • Automated pulmonary nodule detection system in computed tomography images: A hierarchical block classification approach
    • W.-J. Choi and T.-S. Choi, "Automated pulmonary nodule detection system in computed tomography images: A hierarchical block classification approach," Entropy, vol. 15, pp. 507-523, 2013.
    • (2013) Entropy , vol.15 , pp. 507-523
    • Choi, W.-J.1    Choi, T.-S.2
  • 39
    • 84887606769 scopus 로고    scopus 로고
    • Phased searching with neat in a time-scaled framework: Experiments on a computer-aided detection system for lung nodules
    • M. Tan, R. Deklerck, J. Cornelis, and B. Jansen, "Phased searching with neat in a time-scaled framework: Experiments on a computer-aided detection system for lung nodules," Artif. Intell. Med., 2013.
    • (2013) Artif. Intell. Med.
    • Tan, M.1    Deklerck, R.2    Cornelis, J.3    Jansen, B.4
  • 40
    • 84878889029 scopus 로고    scopus 로고
    • Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter
    • A. Teramoto and H. Fujita, "Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter," Int. J. Comput. Assist. Radiol. Surg., pp. 1-13, 2013.
    • (2013) Int. J. Comput. Assist. Radiol. Surg. , pp. 1-13
    • Teramoto, A.1    Fujita, H.2
  • 41
    • 84867731465 scopus 로고    scopus 로고
    • Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models
    • D. Cascio, R. Magro, F. Fauci, M. Iacomi, and G. Raso, "Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models," Comput. Biol. Med., pp. 1098-1109, 2012.
    • (2012) Comput. Biol. Med. , pp. 1098-1109
    • Cascio, D.1    Magro, R.2    Fauci, F.3    Iacomi, M.4    Raso, G.5
  • 42
    • 84864651590 scopus 로고    scopus 로고
    • High performance lung nodule detection schemes in CT using local and global information
    • W. Guo and Q. Li, "High performance lung nodule detection schemes in CT using local and global information," Med. Phys., vol. 39, pp. 5157-5168, 2012.
    • (2012) Med. Phys. , vol.39 , pp. 5157-5168
    • Guo, W.1    Li, Q.2
  • 43
    • 84867250603 scopus 로고    scopus 로고
    • Performance of computer-aided detection of pulmonary nodules in low-dose CT: Comparison with double reading by nodule volume
    • Y. Zhao et al., "Performance of computer-aided detection of pulmonary nodules in low-dose CT: Comparison with double reading by nodule volume," Eur. Radiol., pp. 2076-2084, 2012.
    • (2012) Eur. Radiol. , pp. 2076-2084
    • Zhao, Y.1
  • 44
    • 68149163602 scopus 로고    scopus 로고
    • A novel multithreshold method for nodule detection in lung CT
    • B. Golosio et al., "A novel multithreshold method for nodule detection in lung CT," Med. Phys., vol. 36, pp. 3607-3618, 2009.
    • (2009) Med. Phys. , vol.36 , pp. 3607-3618
    • Golosio, B.1
  • 45
    • 34047273744 scopus 로고    scopus 로고
    • Automated detection of small pulmonary nodules in whole lung CT scans
    • A. A. Enquobahrie, A. P. Reeves, D. F. Yankelevitz, and C. I. Henschke, "Automated detection of small pulmonary nodules in whole lung CT scans," Acad. Radiol., vol. 14, pp. 579-593, 2007.
    • (2007) Acad. Radiol. , vol.14 , pp. 579-593
    • Enquobahrie, A.A.1    Reeves, A.P.2    Yankelevitz, D.F.3    Henschke, C.I.4
  • 47
    • 84857819132 scopus 로고    scopus 로고
    • Theano: A CPU and GPU math expression compiler
    • Jun.
    • J. Bergstra et al., "Theano: A CPU and GPU math expression compiler," in Proc. Python Sci. Comput. Conf., Jun. 2010, pp. 1-7.
    • (2010) Proc. Python Sci. Comput. Conf. , pp. 1-7
    • Bergstra, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.