메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 2998-3006

Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN MAPPING; INFORMATION SCIENCE; NEURAL NETWORKS; PIXELS; PROGRAM PROCESSORS;

EID: 84965136278     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (256)

References (25)
  • 1
    • 0031573117 scopus 로고
    • Long short-term memory
    • Based on TR FKI-207-95, TUM
    • S. Hochreiter and J. Schmidhuber. "Long Short-Term Memory". In: Neural Computation 9. 8 (1997). Based on TR FKI-207-95, TUM (1995), pp. 1735-1780.
    • (1995) Neural Computation , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 2
    • 0033344091 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • F. A. Gers, J. Schmidhuber, and F. Cummins. "Learning to Forget: Continual Prediction with LSTM". In: ICANN. 1999.
    • (1999) ICANN
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 3
    • 79958740925 scopus 로고    scopus 로고
    • A novel connectionist system for improved unconstrained handwriting recognition
    • A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber. "A Novel Connectionist System for Improved Unconstrained Handwriting Recognition". In: PAMI 31. 5 (2009).
    • (2009) PAMI , vol.31 , pp. 5
    • Graves, A.1    Liwicki, M.2    Fernandez, S.3    Bertolami, R.4    Bunke, H.5    Schmidhuber, J.6
  • 4
    • 84910046405 scopus 로고    scopus 로고
    • Long short-term memory recurrent neural network architectures for large scale acoustic modeling
    • H. Sak, A. Senior, and F. Beaufays. "Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling". In: Proc. Interspeech. 2014.
    • (2014) Proc. Interspeech
    • Sak, H.1    Senior, A.2    Beaufays, F.3
  • 7
    • 71249112130 scopus 로고    scopus 로고
    • Offline handwriting recognition with multidimensional recurrent neural networks
    • A. Graves and J. Schmidhuber. "Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks". In: NIPS. 2009.
    • (2009) NIPS
    • Graves, A.1    Schmidhuber, J.2
  • 8
    • 84959245343 scopus 로고    scopus 로고
    • Scene labeling with LSTM recurrent neural networks
    • W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki. "Scene Labeling With LSTM Recurrent Neural Networks". In: CVPR. 2015.
    • (2015) CVPR
    • Byeon, W.1    Breuel, T.M.2    Raue, F.3    Liwicki, M.4
  • 10
    • 84920882082 scopus 로고    scopus 로고
    • LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images
    • L. Wang, Y. Gao, F. Shi, G. Li, J. H. Gilmore, W. Lin, and D. Shen. "LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images". In: NeuroImage (2015).
    • (2015) NeuroImage
    • Wang, L.1    Gao, Y.2    Shi, F.3    Li, G.4    Gilmore, J.H.5    Lin, W.6    Shen, D.7
  • 11
    • 84877789057 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. "Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images". In: NIPS. 2012.
    • (2012) NIPS
    • Ciresan, D.C.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 12
    • 78149370793 scopus 로고    scopus 로고
    • An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy
    • A. Cardona, S. Saalfeld, S. Preibisch, B. Schmid, A. Cheng, J. Pulokas, P. Tomancak, and V. Hartenstein. "An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy". In: PLoS biology 8. 10(2010), e1000502.
    • (2010) PLoS Biology , vol.8 , Issue.10 , pp. e1000502
    • Cardona, A.1    Saalfeld, S.2    Preibisch, S.3    Schmid, B.4    Cheng, A.5    Pulokas, J.6    Tomancak, P.7    Hartenstein, V.8
  • 17
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
    • T. Tieleman and G. Hinton. "Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude". In: COURSERA: Neural Networks for Machine Learning 4 (2012).
    • (2012) COURSERA: Neural Networks for Machine Learning , vol.4
    • Tieleman, T.1    Hinton, G.2
  • 18
    • 0003575034 scopus 로고
    • Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München. Advisor: J. Schmidhuber
    • S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München. Advisor: J. Schmidhuber. 1991.
    • (1991) Untersuchungen Zu Dynamischen Neuronalen Netzen
    • Hochreiter, S.1
  • 22
    • 84942258824 scopus 로고    scopus 로고
    • Dropout improves recurrent neural networks for handwriting recognition
    • V. Pham, T. Bluche, C. Kermorvant, and J. Louradour. "Dropout improves recurrent neural networks for handwriting recognition". In: ICFHR. 2014.
    • (2014) ICFHR
    • Pham, V.1    Bluche, T.2    Kermorvant, C.3    Louradour, J.4
  • 23
    • 80054740693 scopus 로고    scopus 로고
    • A committee of neural networks for traffic sign classification
    • D. C. Ciresan, U. Meier, J. Masci, and J. Schmidhuber. "A Committee of Neural Networks for Traffic Sign Classification". In: IJCNN. 2011.
    • (2011) IJCNN
    • Ciresan, D.C.1    Meier, U.2    Masci, J.3    Schmidhuber, J.4
  • 24
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I Sutskever, and G. E Hinton. "ImageNet Classification with Deep Convolutional Neural Networks". In: NIPS. 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.