메뉴 건너뛰기




Volumn 9785, Issue , 2016, Pages

Increasing CAD system efficacy for lung texture analysis using a convolutional network

Author keywords

3D multi scale morphological analysis; Convolutional networks; Deep learning; Emphysema; Fibrosis; Ground glass; Infiltrative lung diseases; Lung texture classification

Indexed keywords

BIOLOGICAL ORGANS; COMPUTERIZED TOMOGRAPHY; CONVOLUTION; DIAGNOSIS; LINGUISTICS; MEDICAL IMAGING; MORPHOLOGY; PATHOLOGY;

EID: 84988844623     PISSN: 16057422     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.2217752     Document Type: Conference Paper
Times cited : (19)

References (10)
  • 4
    • 84943754825 scopus 로고    scopus 로고
    • Deep learning with non-medical training used for chest pathology identification
    • Bar, Y., et al. "Deep learning with non-medical training used for chest pathology identification" in SPIE Medical Imaging International Society for Optics and Photonics, 94140V-94140V-7, (2015).
    • (2015) SPIE Medical Imaging International Society for Optics and Photonics , pp. 94140V-94140V7
    • Bar, Y.1
  • 5
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCunn, Y., et al. "Gradient-based learning applied to document recognition" in Proceedings of the IEEE, 86(11), 2278-2324, (1998).
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCunn, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.