메뉴 건너뛰기




Volumn 7, Issue 1, 2016, Pages

Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases

Author keywords

Classification; deep learning; detection; digital histology; machine learning; segmentation

Indexed keywords


EID: 85009238256     PISSN: 22295089     EISSN: 21533539     Source Type: Journal    
DOI: 10.4103/2153-3539.186902     Document Type: Article
Times cited : (1110)

References (54)
  • 3
    • 84978977016 scopus 로고    scopus 로고
    • A review of emerging themes in image informatics and molecular analysis for digital pathology
    • Last accessed on Apr 19
    • Bhargava R, Madabhushi A. A review of emerging themes in image informatics and molecular analysis for digital pathology. Annu Rev Biomed Eng 2016;18. [Last accessed on 2016 Apr 19].
    • (2016) Annu Rev Biomed Eng , vol.18
    • Bhargava, R.1    Madabhushi, A.2
  • 4
    • 84891634649 scopus 로고    scopus 로고
    • A quantitative histomorphometric classifier (QuHbIC) identifies aggressive versus indolent p16-positive oropharyngeal squamous cell carcinoma
    • Lewis JS Jr., Ali S, Luo J, Thorstad WL, Madabhushi A. A quantitative histomorphometric classifier (QuHbIC) identifies aggressive versus indolent p16-positive oropharyngeal squamous cell carcinoma. Am J Surg Pathol 2014;38:128-37.
    • (2014) Am J Surg Pathol , vol.38 , pp. 128-137
    • Lewis, J.S.1    Ali, S.2    Luo, J.3    Thorstad, W.L.4    Madabhushi, A.5
  • 5
    • 84878560048 scopus 로고    scopus 로고
    • Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: Comparison to oncotype DX
    • Basavanhally A, Feldman M, Shih N, Mies C, Tomaszewski J, Ganesan S, et al. Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: Comparison to oncotype DX. J Pathol Inform 2011;2:S1.
    • (2011) J Pathol Inform , vol.2 , pp. S1
    • Basavanhally, A.1    Feldman, M.2    Shih, N.3    Mies, C.4    Tomaszewski, J.5    Ganesan, S.6
  • 9
    • 84901774997 scopus 로고    scopus 로고
    • Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks
    • Cruz-Roa A, Basavanhally A, González F, Gilmore H, Feldman M, Ganesan S, et al. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In: SPIE Medical Imaging. Vol. 9041. ;2014. p. 904103-904103-15.
    • (2014) SPIE Medical Imaging , vol.9041 , pp. 904103-90410315
    • Cruz-Roa, A.1    Basavanhally, A.2    González, F.3    Gilmore, H.4    Feldman, M.5    Ganesan, S.6
  • 10
    • 84921737539 scopus 로고    scopus 로고
    • Deep learning based automatic immune cell detection for immunohistochemistry images
    • In: Wu G, Zhang D, Zhou L, editors..: Springer International Publishing
    • Chen T, Chefd'hotel C. Deep learning based automatic immune cell detection for immunohistochemistry images. In: Wu G, Zhang D, Zhou L, editors. Machine Learning in Medical Imaging. (Lecture Notes in Computer Science).Vol. 8679.: Springer International Publishing; 2014. p. 17-24.
    • (2014) Machine Learning in Medical Imaging. (Lecture Notes in Computer Science) , vol.8679 , pp. 17-24
    • Chen, T.1    Chefd'Hotel, C.2
  • 15
    • 84877789057 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • In: Pereira F, Burges C, Bottou L, Weinberger K, editors.. Curran Associates, Inc
    • Ciresan D, Giusti A, Gambardella LM, Schmidhuber J. Deep neural networks segment neuronal membranes in electron microscopy images. In: Pereira F, Burges C, Bottou L, Weinberger K, editors. Advances in Neural Information Processing Systems 25. Curran Associates, Inc.; 2012. p. 2843-51.
    • (2012) Advances in Neural Information Processing Systems 25 , pp. 2843-2851
    • Ciresan, D.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 17
    • 84955260373 scopus 로고    scopus 로고
    • Automated nuclear pleomorphism scoring in breast cancer histopathology images using deep neural networks
    • In: Prasath R, Vuppala AK, Kathirvalavakumar T, editors.. Springer International Publishing
    • Maqlin P, Thamburaj R, Mammen J, Manipadam M. Automated nuclear pleomorphism scoring in breast cancer histopathology images using deep neural networks. In: Prasath R, Vuppala AK, Kathirvalavakumar T, editors. Mining Intelligence and Knowledge Exploration. (Lecture Notes in Computer Science). Vol. 9468. Springer International Publishing; 2015. p. 269-76.
    • (2015) Mining Intelligence and Knowledge Exploration. (Lecture Notes in Computer Science) , vol.9468 , pp. 269-276
    • Maqlin, P.1    Thamburaj, R.2    Mammen, J.3    Manipadam, M.4
  • 20
    • 84959375736 scopus 로고    scopus 로고
    • Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
    • Xu J, Xiang L, Liu Q, Gilmore H, Wu J, Tang J, et al. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans Med Imaging 2016;35:119-30.
    • (2016) IEEE Trans Med Imaging , vol.35 , pp. 119-130
    • Xu, J.1    Xiang, L.2    Liu, Q.3    Gilmore, H.4    Wu, J.5    Tang, J.6
  • 22
    • 84955255437 scopus 로고    scopus 로고
    • A spatially constrained deep learning framework for detection of epithelial tumor nuclei in cancer histology images
    • In: Wu G, Coupé P, Zhan Y, Munsell B, Rueckert D, editors.. (Lecture Notes in Computer Science). Springer International Publishing
    • Sirinukunwattana K, Ahmed Raza S, Tsang Y, Snead D, Cree I, Rajpoot N. A spatially constrained deep learning framework for detection of epithelial tumor nuclei in cancer histology images. In: Wu G, Coupé P, Zhan Y, Munsell B, Rueckert D, editors. Patch-Based Techniques in Medical Imaging. Vol. 9467. (Lecture Notes in Computer Science). Springer International Publishing; 2015. p. 154-62.
    • (2015) Patch-Based Techniques in Medical Imaging , vol.9467 , pp. 154-162
    • Sirinukunwattana, K.1    Ahmed Raza, S.2    Tsang, Y.3    Snead, D.4    Cree, I.5    Rajpoot, N.6
  • 23
    • 84977845763 scopus 로고    scopus 로고
    • A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images
    • Xu J, Luo X, Wang G, Gilmore H, Madabhushi A. A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 2016;191:214-23.
    • (2016) Neurocomputing , vol.191 , pp. 214-223
    • Xu, J.1    Luo, X.2    Wang, G.3    Gilmore, H.4    Madabhushi, A.5
  • 24
    • 85042106575 scopus 로고    scopus 로고
    • Automated grading of gliomas using deep learning in digital pathology images: A modular approach with ensemble of convolutional neural networks
    • Ertosun MG, Rubin DL. Automated grading of gliomas using deep learning in digital pathology images: A modular approach with ensemble of convolutional neural networks. AMIA Annu Symp Proc 2015;2015:1899-908.
    • (2015) AMIA Annu Symp Proc , vol.2015 , pp. 1899-1908
    • Ertosun, M.G.1    Rubin, D.L.2
  • 27
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • In: Pereira F, Burges C, Bottou L, Weinberger K, editors.. Curran Associates, Inc
    • Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges C, Bottou L, Weinberger K, editors. Advances in Neural Information Processing Systems 25. Curran Associates, Inc.; 2012. p. 1097-105.
    • (2012) Advances in Neural Information Processing Systems 25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 30
    • 84555179528 scopus 로고    scopus 로고
    • A boosted Bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies
    • Doyle S, Feldman M, Tomaszewski J, Madabhushi A. A boosted Bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies. IEEE Trans Biomed Eng 2012;59:1205-18.
    • (2012) IEEE Trans Biomed Eng , vol.59 , pp. 1205-1218
    • Doyle, S.1    Feldman, M.2    Tomaszewski, J.3    Madabhushi, A.4
  • 39
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Duchi JC, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 2011;12:2121-59.
    • (2011) J Mach Learn Res , vol.12 , pp. 2121-2159
    • Duchi, J.C.1    Hazan, E.2    Singer, Y.3
  • 40
    • 0031948563 scopus 로고    scopus 로고
    • Comparison of the prognostic value of scarff-bloom-richardson and nottingham histological grades in a series of 825 cases of breast cancer: Major importance of the mitotic count as a component of both grading systems
    • Genestie C1, Zafrani B, Asselain B, Fourquet A, Rozan S, Validire P, et al. Comparison of the prognostic value of scarff-bloom-richardson and nottingham histological grades in a series of 825 cases of breast cancer: Major importance of the mitotic count as a component of both grading systems. Anticancer Res 1998;18:571-6.
    • (1998) Anticancer Res , vol.18 , pp. 571-576
    • Genestie, C.1    Zafrani, B.2    Asselain, B.3    Fourquet, A.4    Rozan, S.5    Validire, P.6
  • 41
    • 7444271447 scopus 로고    scopus 로고
    • Gleason grading and prognostic factors in carcinoma of the prostate
    • Humphrey PA. Gleason grading and prognostic factors in carcinoma of the prostate. Mod Pathol 2004;17:292-306.
    • (2004) Mod Pathol , vol.17 , pp. 292-306
    • Humphrey, P.A.1
  • 42
    • 84900449424 scopus 로고    scopus 로고
    • Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential
    • Irshad H, Veillard A, Roux L, Racoceanu D. Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and future potential. IEEE Rev Biomed Eng 2014;7:97-114.
    • (2014) IEEE Rev Biomed Eng , vol.7 , pp. 97-114
    • Irshad, H.1    Veillard, A.2    Roux, L.3    Racoceanu, D.4
  • 43
    • 0034890852 scopus 로고    scopus 로고
    • Quantification of histochemical staining by color deconvolution
    • Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 2001;23:291-9.
    • (2001) Anal Quant Cytol Histol , vol.23 , pp. 291-299
    • Ruifrok, A.C.1    Johnston, D.A.2
  • 47
    • 77953803946 scopus 로고    scopus 로고
    • Expectation-maximization-driven geodesic active contour with overlap resolution (EMaGACOR): Application to lymphocyte segmentation on breast cancer histopathology
    • Fatakdawala H, Xu J, Basavanhally A, Bhanot G, Ganesan S, Feldman M, et al. Expectation-maximization-driven geodesic active contour with overlap resolution (EMaGACOR): Application to lymphocyte segmentation on breast cancer histopathology. IEEE Trans Biomed Eng 2010;57:1676-89.
    • (2010) IEEE Trans Biomed Eng , vol.57 , pp. 1676-1689
    • Fatakdawala, H.1    Xu, J.2    Basavanhally, A.3    Bhanot, G.4    Ganesan, S.5    Feldman, M.6
  • 50
    • 84923019397 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features
    • Wang H, Cruz-Roa A, Basavanhally A, Gilmore H, Shih N, Feldman M, et al. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J Med Imaging (Bellingham) 2014;1:034003.
    • (2014) J Med Imaging (Bellingham) , vol.1 , pp. 034003
    • Wang, H.1    Cruz-Roa, A.2    Basavanhally, A.3    Gilmore, H.4    Shih, N.5    Feldman, M.6
  • 52
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I
    • Zeiler MD, Fergus R. Visualizing and Understanding Convolutional Networks. In: Computer Vision-ECCV 2014-13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I; 2014. p. 818-33.
    • (2014) Computer Vision-ECCV 2014-13th European Conference , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.