-
1
-
-
0033594720
-
Risk of breast cancer in women with palpable breast cysts: A prospective study
-
Dixon JM, McDonald C, Elton R, Miller W. Risk of breast cancer in women with palpable breast cysts: A prospective study. Lancet. 1999;353:1742–1745.
-
(1999)
Lancet
, vol.353
, pp. 1742-1745
-
-
Dixon, J.M.1
McDonald, C.2
Elton, R.3
Miller, W.4
-
2
-
-
84953278636
-
Characterization of cystic lesions by spectral mammography: Results of a clinical pilot study
-
Erhard K, Kilburn-Toppin F, Willsher P, et al. Characterization of cystic lesions by spectral mammography: Results of a clinical pilot study. Invest Radiol. 2016;51:340–347.
-
(2016)
Invest Radiol
, vol.51
, pp. 340-347
-
-
Erhard, K.1
Kilburn-Toppin, F.2
Willsher, P.3
-
3
-
-
0032885635
-
Probably benign breast lesions: When should follow-up be recommended and what is the optimal follow-up protocol?
-
Sickles EA. Probably benign breast lesions: When should follow-up be recommended and what is the optimal follow-up protocol? Radiology. 1999;213:11–14.
-
(1999)
Radiology
, vol.213
, pp. 11-14
-
-
Sickles, E.A.1
-
4
-
-
84875315414
-
Long-term psychosocial consequences of false-positive screening mammography
-
Brodersen J, Siersma VD. Long-term psychosocial consequences of false-positive screening mammography. Ann Fam Med. 2013;112:106– 115.
-
(2013)
Ann Fam Med
, vol.112
, pp. 106-115
-
-
Brodersen, J.1
Siersma, V.D.2
-
5
-
-
34247171748
-
Computer-aided diagnosis in medical imaging: Historical review, current status and future potential
-
Kunio D. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput Med Imaging Graph. 2007;31:198–211.
-
(2007)
Comput Med Imaging Graph
, vol.31
, pp. 198-211
-
-
Kunio, D.1
-
6
-
-
81555205692
-
Computer-aided diag-nosis: How to move from the laboratory to the clinic
-
Van Ginneken B, Schaefer-Prokop C, Prokop M. Computer-aided diag-nosis: How to move from the laboratory to the clinic. Radiology. 2011;261:719–732.
-
(2011)
Radiology
, vol.261
, pp. 719-732
-
-
van Ginneken, B.1
Schaefer-Prokop, C.2
Prokop, M.3
-
7
-
-
84928096453
-
How widely is computer-aided detection used in screening and diagnostic mammography?
-
Rao VM, Levin DC, Parker L, Cavanaugh B, Frangos AJ, Sunshine JH. How widely is computer-aided detection used in screening and diagnostic mammography? J Am Coll Radiol. 2010;7:802–805.
-
(2010)
J am Coll Radiol
, vol.7
, pp. 802-805
-
-
Rao, V.M.1
Levin, D.C.2
Parker, L.3
Cavanaugh, B.4
Frangos, A.J.5
Sunshine, J.H.6
-
8
-
-
33745045657
-
CAD for mammography: The tech-nique, results, current role and further developments
-
Malich A, Fischer DR, Bottcher J. CAD for mammography: The tech-nique, results, current role and further developments. Eur Radiol. 2006;16:1449–1460.
-
(2006)
Eur Radiol
, vol.16
, pp. 1449-1460
-
-
Malich, A.1
Fischer, D.R.2
Bottcher, J.3
-
9
-
-
79961222829
-
Effectiveness of computer-aided detection in community mammography practice
-
Fenton JJ, Abraham L, Taplin SH, et al. Effectiveness of computer-aided detection in community mammography practice. J Natl Cancer Inst. 2011;103:1152–1161.
-
(2011)
J Natl Cancer Inst
, vol.103
, pp. 1152-1161
-
-
Fenton, J.J.1
Abraham, L.2
Taplin, S.H.3
-
10
-
-
84946119874
-
Diagnostic accuracy of digital screening mammography with and without computer-aided detection
-
Lehman CD, Wellman RD, Buist DS, Kerlikowske K, Tosteson AN, Miglioretti DL, and Breast Cancer Surveillance Consortium. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med. 2015;175:1828–1837.
-
(2015)
JAMA Intern Med
, vol.175
, pp. 1828-1837
-
-
-
12
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber J. Deep learning in neural networks: An overview. Neural Netw. 2015;61:85–117.
-
(2015)
Neural Netw
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
13
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature. 2015;518:529–533.
-
(2015)
Nature
, vol.518
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
-
14
-
-
84963949906
-
Mastering the game of go with deep neural networks and tree search
-
Silver D, Huang A, Maddison CJ, et al. Mastering the game of go with deep neural networks and tree search. Nature. 2016;529:484– 489.
-
(2016)
Nature
, vol.529
, pp. 484-489
-
-
Silver, D.1
Huang, A.2
Maddison, C.J.3
-
15
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
of Lecture Notes in Computer Science. Berlin, Heidelberg: Springer
-
Ciresßan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in breast cancer histology images with deep neural networks. In: Medical Image Computing and Computer-Assisted Intervention. vol 8150 of Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 2013:411–418.
-
(2013)
In: Medical Image Computing and Computer-Assisted Intervention.
, vol.8150
, pp. 411-418
-
-
-
16
-
-
84885933775
-
Deep fea-ture learning for knee cartilage segmentation using a triplanar convolu-tional neural network
-
Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M. Deep fea-ture learning for knee cartilage segmentation using a triplanar convolu-tional neural network. Med Image Comput Comput Assist Interv. 2013;16:246–253.
-
(2013)
Med Image Comput Comput Assist Interv
, vol.16
, pp. 246-253
-
-
Prasoon, A.1
Petersen, K.2
Igel, C.3
Lauze, F.4
Dam, E.5
Nielsen, M.6
-
19
-
-
84943752367
-
Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2d views and a convolutional neural network out-of-the-box
-
Ciompi F, De Hoop B, Van Riel SJ, et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2d views and a convolutional neural network out-of-the-box. Med Image Anal. 2015;26:195–202.
-
(2015)
Med Image Anal
, vol.26
, pp. 195-202
-
-
Ciompi, F.1
de Hoop, B.2
van Riel, S.J.3
-
20
-
-
84943754825
-
Deep learning with non-medi-cal training used for chest pathology identification
-
International Society for Optics and Photonics
-
Bar Y, Diamant I, Wolf L, Greenspan H. Deep learning with non-medi-cal training used for chest pathology identification. In: Medical Imaging. Proceedings of the SPIE, page 94140V. International Society for Optics and Photonics, 2015.
-
(2015)
Medical Imaging. Proceedings of the SPIE
-
-
Bar, Y.1
Diamant, I.2
Wolf, L.3
Greenspan, H.4
-
22
-
-
84959244105
-
Interleaved text/ image deep mining on a very large-scale radiology database
-
Shin HC, Lu L, Kim L, Seff A, Yao J, Summers RM. Interleaved text/ image deep mining on a very large-scale radiology database. In: Computer Vision and Pattern Recognition. Boston, MA: IEEE Publishing; 2015;1090–1099.
-
(2015)
Computer Vision and Pattern Recognition. Boston, MA: IEEE Publishing
, pp. 1090-1099
-
-
Shin, H.C.1
Lu, L.2
Kim, L.3
Seff, A.4
Yao, J.5
Summers, R.M.6
-
23
-
-
84969962996
-
Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
-
Shin HC, Roth HR, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35:1285–1298.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, pp. 1285-1298
-
-
Shin, H.C.1
Roth, H.R.2
Gao, M.3
-
24
-
-
84968649810
-
Convolutional neural networks for medical image analysis: Fine tuning or full training?
-
Tajbakhsh N, Shin JY, Gurudu SR, et al. Convolutional neural networks for medical image analysis: Fine tuning or full training? IEEE Trans Med Imaging. 2016;35:1299–1312.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, pp. 1299-1312
-
-
Tajbakhsh, N.1
Shin, J.Y.2
Gurudu, S.R.3
-
25
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge. Int J Comput Vision. 2014;115:1–42.
-
(2014)
Int J Comput Vision
, vol.115
, pp. 1-42
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
-
26
-
-
84911449395
-
Learning and transferring midle-vel image representations using convolutional neural networks
-
Columbus, OH: IEEE publishing
-
Oquab M, Bottou L, Laptev I, Sivic J. Learning and transferring midle-vel image representations using convolutional neural networks. In: Computer Vision and Pattern Recognition. Columbus, OH: IEEE publishing; 2014;1717–1724 p.
-
(2014)
Computer Vision and Pattern Recognition
, pp. 1717-1724
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
27
-
-
85006765324
-
-
Yue-Hei Ng J, Hausknecht M, Vijayanarasimhan S, Vinyals O, Monga R, Toderici G. Beyond short snippets: Deep networks for video classifi-cation. 2015. arXiv:150308909.
-
(2015)
Beyond Short Snippets: Deep Networks for Video Classifi-Cation
-
-
Yue-Hei Ng, J.1
Hausknecht, M.2
Vijayanarasimhan, S.3
Vinyals, O.4
Monga, R.5
Toderici, G.6
-
28
-
-
0030269884
-
Detection of stellate distortions in mammo-grams
-
Karssemeijer N, te Brake G. Detection of stellate distortions in mammo-grams. IEEE Trans Med Imaging. 1996;15:611–619.
-
(1996)
IEEE Trans Med Imaging
, vol.15
, pp. 611-619
-
-
Karssemeijer, N.1
Te Brake, G.2
-
29
-
-
84903954519
-
Invariant features for discriminating cysts from solid lesions in mammography
-
Gifu: Springer
-
Kooi T, Karssemeijer N. Invariant features for discriminating cysts from solid lesions in mammography. In: Breast Imaging. Gifu: Springer, 2014:573–580.
-
(2014)
Breast Imaging.
, pp. 573-580
-
-
Kooi, T.1
Karssemeijer, N.2
-
30
-
-
2442666562
-
A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammog-raphy
-
Timp S, Karssemeijer N. A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammog-raphy. Med Phys. 2004;31:958–971.
-
(2004)
Med Phys
, vol.31
, pp. 958-971
-
-
Timp, S.1
Karssemeijer, N.2
-
32
-
-
84925410541
-
Very deep convolutional networks for large-scale image recognition
-
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv:14091556.
-
(2014)
Arxiv
, pp. 14091556.
-
-
Simonyan, K.1
Zisserman, A.2
-
33
-
-
84980350859
-
Large scale deep learning for computer aided detection of mammographic lesions
-
Kooi T, Litjens G, Van Ginneken B, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal. 2016;35:303–312.
-
(2016)
Med Image Anal
, vol.35
, pp. 303-312
-
-
Kooi, T.1
Litjens, G.2
van Ginneken, B.3
-
34
-
-
84977600905
-
A comparison between a deep convolutional neural network and radiologists for classifying regions of interest in mammography
-
Tingberg A, et al., editor, Malmo: Springer International Publishing Switzerland
-
Kooi T, Gubern-Merida A, Mordang JJ, et al. A comparison between a deep convolutional neural network and radiologists for classifying regions of interest in mammography. In: Tingberg A, et al., editor, Breast Imaging. vol 9699 of Lecture Notes in Computer Science, Malmo: Springer International Publishing Switzerland, 2016;51–56.
-
(2016)
Breast Imaging. Vol 9699 of Lecture Notes in Computer Science
, pp. 51-56
-
-
Kooi, T.1
Gubern-Merida, A.2
Mordang, J.J.3
-
36
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–1958.
-
(2014)
J Mach Learn Res
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
37
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Computer Vision and Pattern Recognition. 2015;1026–1034.
-
(2015)
Computer Vision and Pattern Recognition
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
38
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman JH. Greedy function approximation: A gradient boosting machine. Annals of Statistics. 2001:1189–1232.
-
(2001)
Annals of Statistics
, pp. 1189-1232
-
-
Friedman, J.H.1
-
39
-
-
0002344794
-
Bootstrap methods: Another look at the jackknife
-
Efron B. Bootstrap methods: Another look at the jackknife. Ann Stat. 1979;7:1–26.
-
(1979)
Ann Stat
, vol.7
, pp. 1-26
-
-
Efron, B.1
|