메뉴 건너뛰기




Volumn 44, Issue 3, 2017, Pages 1017-1027

Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network

Author keywords

breast cancer; computer aided diagnosis; deep learning; solitary cysts; transfer learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER AIDED INSTRUCTION; CONVOLUTION; DECISION SUPPORT SYSTEMS; DEEP NEURAL NETWORKS; DISEASES; LARGE DATASET; MAMMOGRAPHY; MEDICAL PROBLEMS; TISSUE;

EID: 85016248526     PISSN: 00942405     EISSN: 24734209     Source Type: Journal    
DOI: 10.1002/MP.12110     Document Type: Article
Times cited : (97)

References (43)
  • 1
    • 0033594720 scopus 로고    scopus 로고
    • Risk of breast cancer in women with palpable breast cysts: A prospective study
    • Dixon JM, McDonald C, Elton R, Miller W. Risk of breast cancer in women with palpable breast cysts: A prospective study. Lancet. 1999;353:1742–1745.
    • (1999) Lancet , vol.353 , pp. 1742-1745
    • Dixon, J.M.1    McDonald, C.2    Elton, R.3    Miller, W.4
  • 2
    • 84953278636 scopus 로고    scopus 로고
    • Characterization of cystic lesions by spectral mammography: Results of a clinical pilot study
    • Erhard K, Kilburn-Toppin F, Willsher P, et al. Characterization of cystic lesions by spectral mammography: Results of a clinical pilot study. Invest Radiol. 2016;51:340–347.
    • (2016) Invest Radiol , vol.51 , pp. 340-347
    • Erhard, K.1    Kilburn-Toppin, F.2    Willsher, P.3
  • 3
    • 0032885635 scopus 로고    scopus 로고
    • Probably benign breast lesions: When should follow-up be recommended and what is the optimal follow-up protocol?
    • Sickles EA. Probably benign breast lesions: When should follow-up be recommended and what is the optimal follow-up protocol? Radiology. 1999;213:11–14.
    • (1999) Radiology , vol.213 , pp. 11-14
    • Sickles, E.A.1
  • 4
    • 84875315414 scopus 로고    scopus 로고
    • Long-term psychosocial consequences of false-positive screening mammography
    • Brodersen J, Siersma VD. Long-term psychosocial consequences of false-positive screening mammography. Ann Fam Med. 2013;112:106– 115.
    • (2013) Ann Fam Med , vol.112 , pp. 106-115
    • Brodersen, J.1    Siersma, V.D.2
  • 5
    • 34247171748 scopus 로고    scopus 로고
    • Computer-aided diagnosis in medical imaging: Historical review, current status and future potential
    • Kunio D. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput Med Imaging Graph. 2007;31:198–211.
    • (2007) Comput Med Imaging Graph , vol.31 , pp. 198-211
    • Kunio, D.1
  • 6
    • 81555205692 scopus 로고    scopus 로고
    • Computer-aided diag-nosis: How to move from the laboratory to the clinic
    • Van Ginneken B, Schaefer-Prokop C, Prokop M. Computer-aided diag-nosis: How to move from the laboratory to the clinic. Radiology. 2011;261:719–732.
    • (2011) Radiology , vol.261 , pp. 719-732
    • van Ginneken, B.1    Schaefer-Prokop, C.2    Prokop, M.3
  • 8
    • 33745045657 scopus 로고    scopus 로고
    • CAD for mammography: The tech-nique, results, current role and further developments
    • Malich A, Fischer DR, Bottcher J. CAD for mammography: The tech-nique, results, current role and further developments. Eur Radiol. 2006;16:1449–1460.
    • (2006) Eur Radiol , vol.16 , pp. 1449-1460
    • Malich, A.1    Fischer, D.R.2    Bottcher, J.3
  • 9
    • 79961222829 scopus 로고    scopus 로고
    • Effectiveness of computer-aided detection in community mammography practice
    • Fenton JJ, Abraham L, Taplin SH, et al. Effectiveness of computer-aided detection in community mammography practice. J Natl Cancer Inst. 2011;103:1152–1161.
    • (2011) J Natl Cancer Inst , vol.103 , pp. 1152-1161
    • Fenton, J.J.1    Abraham, L.2    Taplin, S.H.3
  • 10
    • 84946119874 scopus 로고    scopus 로고
    • Diagnostic accuracy of digital screening mammography with and without computer-aided detection
    • Lehman CD, Wellman RD, Buist DS, Kerlikowske K, Tosteson AN, Miglioretti DL, and Breast Cancer Surveillance Consortium. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med. 2015;175:1828–1837.
    • (2015) JAMA Intern Med , vol.175 , pp. 1828-1837
  • 12
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber J. Deep learning in neural networks: An overview. Neural Netw. 2015;61:85–117.
    • (2015) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 13
    • 84924051598 scopus 로고    scopus 로고
    • Human-level control through deep reinforcement learning
    • Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature. 2015;518:529–533.
    • (2015) Nature , vol.518 , pp. 529-533
    • Mnih, V.1    Kavukcuoglu, K.2    Silver, D.3
  • 14
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of go with deep neural networks and tree search
    • Silver D, Huang A, Maddison CJ, et al. Mastering the game of go with deep neural networks and tree search. Nature. 2016;529:484– 489.
    • (2016) Nature , vol.529 , pp. 484-489
    • Silver, D.1    Huang, A.2    Maddison, C.J.3
  • 15
    • 84885899176 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer histology images with deep neural networks
    • of Lecture Notes in Computer Science. Berlin, Heidelberg: Springer
    • Ciresßan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in breast cancer histology images with deep neural networks. In: Medical Image Computing and Computer-Assisted Intervention. vol 8150 of Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 2013:411–418.
    • (2013) In: Medical Image Computing and Computer-Assisted Intervention. , vol.8150 , pp. 411-418
  • 17
    • 84951834022 scopus 로고    scopus 로고
    • U-net: Convolutional networks for biomedical image segmentation
    • Munich, Germany: Springer International Pub-lishing
    • Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer Assisted Intervention. Munich, Germany: Springer International Pub-lishing; 2015;234–241.
    • (2015) Medical Image Computing and Computer Assisted Intervention , pp. 234-241
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 19
    • 84943752367 scopus 로고    scopus 로고
    • Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2d views and a convolutional neural network out-of-the-box
    • Ciompi F, De Hoop B, Van Riel SJ, et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2d views and a convolutional neural network out-of-the-box. Med Image Anal. 2015;26:195–202.
    • (2015) Med Image Anal , vol.26 , pp. 195-202
    • Ciompi, F.1    de Hoop, B.2    van Riel, S.J.3
  • 20
    • 84943754825 scopus 로고    scopus 로고
    • Deep learning with non-medi-cal training used for chest pathology identification
    • International Society for Optics and Photonics
    • Bar Y, Diamant I, Wolf L, Greenspan H. Deep learning with non-medi-cal training used for chest pathology identification. In: Medical Imaging. Proceedings of the SPIE, page 94140V. International Society for Optics and Photonics, 2015.
    • (2015) Medical Imaging. Proceedings of the SPIE
    • Bar, Y.1    Diamant, I.2    Wolf, L.3    Greenspan, H.4
  • 23
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
    • Shin HC, Roth HR, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35:1285–1298.
    • (2016) IEEE Trans Med Imaging , vol.35 , pp. 1285-1298
    • Shin, H.C.1    Roth, H.R.2    Gao, M.3
  • 24
    • 84968649810 scopus 로고    scopus 로고
    • Convolutional neural networks for medical image analysis: Fine tuning or full training?
    • Tajbakhsh N, Shin JY, Gurudu SR, et al. Convolutional neural networks for medical image analysis: Fine tuning or full training? IEEE Trans Med Imaging. 2016;35:1299–1312.
    • (2016) IEEE Trans Med Imaging , vol.35 , pp. 1299-1312
    • Tajbakhsh, N.1    Shin, J.Y.2    Gurudu, S.R.3
  • 25
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge. Int J Comput Vision. 2014;115:1–42.
    • (2014) Int J Comput Vision , vol.115 , pp. 1-42
    • Russakovsky, O.1    Deng, J.2    Su, H.3
  • 26
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring midle-vel image representations using convolutional neural networks
    • Columbus, OH: IEEE publishing
    • Oquab M, Bottou L, Laptev I, Sivic J. Learning and transferring midle-vel image representations using convolutional neural networks. In: Computer Vision and Pattern Recognition. Columbus, OH: IEEE publishing; 2014;1717–1724 p.
    • (2014) Computer Vision and Pattern Recognition , pp. 1717-1724
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 28
    • 0030269884 scopus 로고    scopus 로고
    • Detection of stellate distortions in mammo-grams
    • Karssemeijer N, te Brake G. Detection of stellate distortions in mammo-grams. IEEE Trans Med Imaging. 1996;15:611–619.
    • (1996) IEEE Trans Med Imaging , vol.15 , pp. 611-619
    • Karssemeijer, N.1    Te Brake, G.2
  • 29
    • 84903954519 scopus 로고    scopus 로고
    • Invariant features for discriminating cysts from solid lesions in mammography
    • Gifu: Springer
    • Kooi T, Karssemeijer N. Invariant features for discriminating cysts from solid lesions in mammography. In: Breast Imaging. Gifu: Springer, 2014:573–580.
    • (2014) Breast Imaging. , pp. 573-580
    • Kooi, T.1    Karssemeijer, N.2
  • 30
    • 2442666562 scopus 로고    scopus 로고
    • A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammog-raphy
    • Timp S, Karssemeijer N. A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammog-raphy. Med Phys. 2004;31:958–971.
    • (2004) Med Phys , vol.31 , pp. 958-971
    • Timp, S.1    Karssemeijer, N.2
  • 32
    • 84925410541 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv:14091556.
    • (2014) Arxiv , pp. 14091556.
    • Simonyan, K.1    Zisserman, A.2
  • 33
    • 84980350859 scopus 로고    scopus 로고
    • Large scale deep learning for computer aided detection of mammographic lesions
    • Kooi T, Litjens G, Van Ginneken B, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal. 2016;35:303–312.
    • (2016) Med Image Anal , vol.35 , pp. 303-312
    • Kooi, T.1    Litjens, G.2    van Ginneken, B.3
  • 34
    • 84977600905 scopus 로고    scopus 로고
    • A comparison between a deep convolutional neural network and radiologists for classifying regions of interest in mammography
    • Tingberg A, et al., editor, Malmo: Springer International Publishing Switzerland
    • Kooi T, Gubern-Merida A, Mordang JJ, et al. A comparison between a deep convolutional neural network and radiologists for classifying regions of interest in mammography. In: Tingberg A, et al., editor, Breast Imaging. vol 9699 of Lecture Notes in Computer Science, Malmo: Springer International Publishing Switzerland, 2016;51–56.
    • (2016) Breast Imaging. Vol 9699 of Lecture Notes in Computer Science , pp. 51-56
    • Kooi, T.1    Gubern-Merida, A.2    Mordang, J.J.3
  • 37
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Computer Vision and Pattern Recognition. 2015;1026–1034.
    • (2015) Computer Vision and Pattern Recognition , pp. 1026-1034
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 38
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman JH. Greedy function approximation: A gradient boosting machine. Annals of Statistics. 2001:1189–1232.
    • (2001) Annals of Statistics , pp. 1189-1232
    • Friedman, J.H.1
  • 39
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • Efron B. Bootstrap methods: Another look at the jackknife. Ann Stat. 1979;7:1–26.
    • (1979) Ann Stat , vol.7 , pp. 1-26
    • Efron, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.