메뉴 건너뛰기




Volumn 35, Issue 5, 2016, Pages 1299-1312

Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?

Author keywords

Carotid intima media thickness; computer aided detection; convolutional neural networks; deep learning; fine tuning; medical image analysis; polyp detection; pulmonary embolism detection; video quality assessment

Indexed keywords

COMPUTER AIDED ANALYSIS; COMPUTER AIDED INSTRUCTION; CONVOLUTION; IMAGE ANALYSIS; IMAGE SEGMENTATION; KNOWLEDGE MANAGEMENT; NEURAL NETWORKS; QUALITY CONTROL;

EID: 84968649810     PISSN: 02780062     EISSN: 1558254X     Source Type: Journal    
DOI: 10.1109/TMI.2016.2535302     Document Type: Article
Times cited : (2801)

References (76)
  • 1
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima, "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position," Biol. Cybern., vol. 36, no. 4, pp. 193-202, 1980.
    • (1980) Biol. Cybern. , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 2
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 3
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 4
    • 84968632933 scopus 로고    scopus 로고
    • Online
    • MIT Technol. Rev. "10 breakthrough technologies," [Online]. Available: http://www.technologyreview.com/featuredstory/513696/deep-learning/
    • 10 Breakthrough Technologies
  • 7
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in Comput. Visi. ECCV, 2014, pp. 818-833.
    • (2014) Comput. Visi. ECCV , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 13
    • 0028334995 scopus 로고
    • Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network
    • W. Zhang et al., "Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network," Med. Phys., vol. 21, no. 4, pp. 517-524, 1994.
    • (1994) Med. Phys. , vol.21 , Issue.4 , pp. 517-524
    • Zhang, W.1
  • 14
    • 0028849805 scopus 로고
    • Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network
    • H.-P. Chan, S.-C. B. Lo, B. Sahiner, K. L. Lam, and M. A. Helvie, "Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network," Med. Phys., vol. 22, no. 10, pp. 1555-1567, 1995.
    • (1995) Med. Phys. , vol.22 , Issue.10 , pp. 1555-1567
    • Chan, H.-P.1    Lo, S.-C.B.2    Sahiner, B.3    Lam, K.L.4    Helvie, M.A.5
  • 15
    • 0029546663 scopus 로고
    • Artificial convolution neural network techniques and applications for lung nodule detection
    • Dec.
    • S.-C. B. Lo et al., "Artificial convolution neural network techniques and applications for lung nodule detection," IEEE Trans. Med. Imag., vol. 14, no. 4, pp. 711-718, Dec. 1995.
    • (1995) IEEE Trans. Med. Imag. , vol.14 , Issue.4 , pp. 711-718
    • Lo, S.-C.B.1
  • 16
    • 84983655863 scopus 로고    scopus 로고
    • A comprehensive computer-aided polyp detection system for colonoscopy videos
    • New York: Springer
    • N. Tajbakhsh, S. R. Gurudu, and J. Liang, "A comprehensive computer-aided polyp detection system for colonoscopy videos," in Information Processing in Medical Imaging. New York: Springer, 2015, pp. 327-338.
    • (2015) Information Processing in Medical Imaging , pp. 327-338
    • Tajbakhsh, N.1    Gurudu, S.R.2    Liang, J.3
  • 17
    • 84944325843 scopus 로고    scopus 로고
    • Automatic polyp detection in colonoscopy videos using an ensemble of convolutional neural networks
    • N. Tajbakhsh, S. R. Gurudu, and J. Liang, "Automatic polyp detection in colonoscopy videos using an ensemble of convolutional neural networks," in Proc. IEEE 12th Int. Symp. o Biomed. Imag., 2015, pp. 79-83.
    • (2015) Proc. IEEE 12th Int. Symp. o Biomed. Imag. , pp. 79-83
    • Tajbakhsh, N.1    Gurudu, S.R.2    Liang, J.3
  • 18
    • 84968643983 scopus 로고    scopus 로고
    • Computer-aided pulmonary embolism detection using a novel vessel-aligned multi-planar image representation and convolutional neural networks
    • N. Tajbakhsh and J. Liang, "Computer-aided pulmonary embolism detection using a novel vessel-aligned multi-planar image representation and convolutional neural networks," in Proc. MICCAI, 2015.
    • (2015) Proc. MICCAI
    • Tajbakhsh, N.1    Liang, J.2
  • 19
    • 84885899176 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer histology images with deep neural networks
    • D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, "Mitosis detection in breast cancer histology images with deep neural networks," in Proc. MICCAI, 2013, pp. 411-418.
    • (2013) Proc. MICCAI , pp. 411-418
    • Cireşan, D.C.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 20
    • 84909644435 scopus 로고    scopus 로고
    • A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations
    • Proc. MICCAI, P. Goll, N. Hata, C. Barillot, J. Hornegger, and R. Howe, Eds.
    • H. Roth et al., "A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations," in Proc. MICCAI, P. Goll, N. Hata, C. Barillot, J. Hornegger, and R. Howe, Eds., 2014, vol. 8673, LNCS, pp. 520-527.
    • (2014) LNCS , vol.8673 , pp. 520-527
    • Roth, H.1
  • 21
    • 84947419800 scopus 로고    scopus 로고
    • 3d deep learning for efficient and robust landmark detection in volumetric data
    • Y. Zheng, D. Liu, B. Georgescu, H. Nguyen, and D. Comaniciu, "3d deep learning for efficient and robust landmark detection in volumetric data," in Proc. MICCAI, 2015, pp. 565-572.
    • (2015) Proc. MICCAI , pp. 565-572
    • Zheng, Y.1    Liu, D.2    Georgescu, B.3    Nguyen, H.4    Comaniciu, D.5
  • 25
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
    • W. Zhang et al., "Deep convolutional neural networks for multi-modality isointense infant brain image segmentation," NeuroImage, vol. 108, pp. 214-224, 2015.
    • (2015) NeuroImage , vol.108 , pp. 214-224
    • Zhang, W.1
  • 26
    • 84877789057 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds. Red Hook, NY: Curran
    • D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, "Deep neural networks segment neuronal membranes in electron microscopy images," in Advances in Neural Information Processing Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds. Red Hook, NY: Curran, 2012, vol. 25, pp. 2843-2851.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 2843-2851
    • Ciresan, D.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 27
    • 84885933775 scopus 로고    scopus 로고
    • Deep feature learning for knee cartilage segmentation using a tri-planar convolutional neural network
    • A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, and M. Nielsen, "Deep feature learning for knee cartilage segmentation using a tri-planar convolutional neural network," in Proc. MICCAI, 2013, pp. 246-253.
    • (2013) Proc. MICCAI , pp. 246-253
    • Prasoon, A.1    Petersen, K.2    Igel, C.3    Lauze, F.4    Dam, E.5    Nielsen, M.6
  • 28
    • 84943754825 scopus 로고    scopus 로고
    • Deep learning with non-medical training used for chest pathology identification
    • Y. Bar, I. Diamant, L. Wolf, and H. Greenspan, "Deep learning with non-medical training used for chest pathology identification," in Proc. SPIE Med. Imag., 2015, pp. 94 140V-94 140V.
    • (2015) Proc. SPIE Med. Imag.
    • Bar, Y.1    Diamant, I.2    Wolf, L.3    Greenspan, H.4
  • 29
    • 84943812643 scopus 로고    scopus 로고
    • Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans
    • Apr.
    • B. van Ginneken, A. A. Setio, C. Jacobs, and F. Ciompi, "Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans," in Proc. IEEE 12th Int. Symp. Biomed. Imag., Apr. 2015, pp. 286-289.
    • (2015) Proc. IEEE 12th Int. Symp. Biomed. Imag. , pp. 286-289
    • Van Ginneken, B.1    Setio, A.A.2    Jacobs, C.3    Ciompi, F.4
  • 31
    • 84917673406 scopus 로고    scopus 로고
    • Unsupervised pre-training across image domains improves lung tissue classification
    • New York: Springer
    • T. Schlegl, J. Ofner, and G. Langs, "Unsupervised pre-training across image domains improves lung tissue classification," in Medical Computer Vision: Algorithms for Big Data. New York: Springer, 2014, pp. 82-93.
    • (2014) Medical Computer Vision: Algorithms for Big Data , pp. 82-93
    • Schlegl, T.1    Ofner, J.2    Langs, G.3
  • 32
    • 84940970126 scopus 로고    scopus 로고
    • Standard plane localization in fetal ultrasound via domain transferred deep neural networks
    • Sep.
    • H. Chen et al., "Standard plane localization in fetal ultrasound via domain transferred deep neural networks," IEEE J. Biomed. Health Informat., vol. 19, no. 5, pp. 1627-1636, Sep. 2015.
    • (2015) IEEE J. Biomed. Health Informat. , vol.19 , Issue.5 , pp. 1627-1636
    • Chen, H.1
  • 33
    • 84951761386 scopus 로고    scopus 로고
    • Unregistered multiview mammogram analysis with pre-trained deep learning models
    • Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds.
    • G. Carneiro, J. Nascimento, and A. Bradley, "Unregistered multiview mammogram analysis with pre-trained deep learning models," in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., 2015, vol. 9351, LNCS, pp. 652-660.
    • (2015) LNCS , vol.9351 , pp. 652-660
    • Carneiro, G.1    Nascimento, J.2    Bradley, A.3
  • 34
    • 84959244105 scopus 로고    scopus 로고
    • Interleaved text/image deep mining on a very large-scale radiology database
    • H.-C. Shin et al., "Interleaved text/image deep mining on a very large-scale radiology database," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1090-1099.
    • (2015) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 1090-1099
    • Shin, H.-C.1
  • 35
    • 85044296907 scopus 로고    scopus 로고
    • Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks
    • Munich, Germany, Online
    • M. Gao et al., "Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks," in 1st Workshop Deep Learn. Med. Image Anal., Int. Conf. Med. Image Comput. Comput. Assist. Intervent., Munich, Germany, 2015 [Online]. Available: www.research.rutgers.edu/~minggao/files/MingchenGao-MICCAIworkshop2015.pdf
    • (2015) 1st Workshop Deep Learn. Med. Image Anal., Int. Conf. Med. Image Comput. Comput. Assist. Intervent.
    • Gao, M.1
  • 37
    • 70449311374 scopus 로고
    • Receptive fields of single neurones in the cat's striate cortex
    • D. H. Hubel and T. N. Wiesel, "Receptive fields of single neurones in the cat's striate cortex," J. Physiol., vol. 148, no. 3, pp. 574-591, 1959.
    • (1959) J. Physiol. , vol.148 , Issue.3 , pp. 574-591
    • Hubel, D.H.1    Wiesel, T.N.2
  • 38
    • 12244309097 scopus 로고    scopus 로고
    • Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model
    • D. C. Edwards, M. A. Kupinski, C. E. Metz, and R. M. Nishikawa, "Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model," Med. Phys., vol. 29, no. 12, pp. 2861-2870, 2002.
    • (2002) Med. Phys. , vol.29 , Issue.12 , pp. 2861-2870
    • Edwards, D.C.1    Kupinski, M.A.2    Metz, C.E.3    Nishikawa, R.M.4
  • 40
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," in Proc. Int. Conf. Artif. Intell. Stat., 2010, pp. 249-256.
    • (2010) Proc. Int. Conf. Artif. Intell. Stat. , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 42
    • 84959449815 scopus 로고    scopus 로고
    • Automated polyp detection in colonoscopy videos using shape and context information
    • Feb.
    • N. Tajbakhsh, S. Gurudu, and J. Liang, "Automated polyp detection in colonoscopy videos using shape and context information," IEEE Trans. Med. Imag., vol. 35, no. 2, pp. 630-644, Feb. 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.2 , pp. 630-644
    • Tajbakhsh, N.1    Gurudu, S.2    Liang, J.3
  • 43
    • 14844293861 scopus 로고    scopus 로고
    • Analysis of colorectal cancer occurrence during surveillance colonoscopy in the dietary polyp prevention trial
    • A. Pabby et al., "Analysis of colorectal cancer occurrence during surveillance colonoscopy in the dietary polyp prevention trial," Gastrointest Endosc., vol. 61, no. 3, pp. 385-91, 2005.
    • (2005) Gastrointest Endosc. , vol.61 , Issue.3 , pp. 385-391
    • Pabby, A.1
  • 44
    • 33644879743 scopus 로고    scopus 로고
    • Polyp miss rate determined by tandem colonoscopy: A systematic review
    • J. van Rijn et al., "Polyp miss rate determined by tandem colonoscopy: A systematic review," Am. Jo. Gastroenterol., vol. 101, no. 2, pp. 343-350, 2006.
    • (2006) Am. Jo. Gastroenterol. , vol.101 , Issue.2 , pp. 343-350
    • Van Rijn, J.1
  • 45
    • 34948891641 scopus 로고    scopus 로고
    • CT colonography versus colonoscopy for the detection of advanced neoplasia
    • D. H. Kim et al., "CT colonography versus colonoscopy for the detection of advanced neoplasia," N. Eng. J. Med., vol. 357, no. 14, pp. 1403-12, 2007.
    • (2007) N. Eng. J. Med. , vol.357 , Issue.14 , pp. 1403-1412
    • Kim, D.H.1
  • 46
    • 42149191176 scopus 로고    scopus 로고
    • Miss rate for colorectal neoplastic polyps: A prospective multicenter study of back-to-back video colonoscopies
    • D. Heresbach et al., "Miss rate for colorectal neoplastic polyps: A prospective multicenter study of back-to-back video colonoscopies," Endoscopy, vol. 40, no. 4, pp. 284-290, 2008.
    • (2008) Endoscopy , vol.40 , Issue.4 , pp. 284-290
    • Heresbach, D.1
  • 47
    • 84860237132 scopus 로고    scopus 로고
    • Factors influencing the miss rate of polyps in a back-to-back colonoscopy study
    • A. Leufkens, M. van Oijen, F. Vleggaar, and P. Siersema, "Factors influencing the miss rate of polyps in a back-to-back colonoscopy study," Endoscopy, vol. 44, no. 05, pp. 470-475, 2012.
    • (2012) Endoscopy , vol.44 , Issue.5 , pp. 470-475
    • Leufkens, A.1    Van Oijen, M.2    Vleggaar, F.3    Siersema, P.4
  • 48
    • 0037285705 scopus 로고    scopus 로고
    • Outcomes of colorectal cancer in the united states: No change in survival (1986-1997)
    • L. Rabeneck, H. El-Serag, J. Davila, and R. Sandler, "Outcomes of colorectal cancer in the united states: No change in survival (1986-1997)," Am. J. Gastroenterol., vol. 98, no. 2, p. 471, 2003.
    • (2003) Am. J. Gastroenterol. , vol.98 , Issue.2 , pp. 471
    • Rabeneck, L.1    El-Serag, H.2    Davila, J.3    Sandler, R.4
  • 52
  • 53
    • 84861592104 scopus 로고    scopus 로고
    • Towards automatic polyp detection with a polyp appearance model
    • J. Bernal, J. Sánchez, and F. Vilariño, "Towards automatic polyp detection with a polyp appearance model," Pattern Recognit., vol. 45, no. 9, pp. 3166-3182, 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.9 , pp. 3166-3182
    • Bernal, J.1    Sánchez, J.2    Vilariño, F.3
  • 54
    • 84886513231 scopus 로고    scopus 로고
    • Impact of image preprocessing methods on polyp localization in colonoscopy frames
    • J. Bernal, J. Sánchez, and F. Vilarino, "Impact of image preprocessing methods on polyp localization in colonoscopy frames," in Proc. 35th Annu. Int. Conf. IEEE EMBC, 2013, pp. 7350-7354.
    • (2013) Proc. 35th Annu. Int. Conf. IEEE EMBC , pp. 7350-7354
    • Bernal, J.1    Sánchez, J.2    Vilarino, F.3
  • 55
    • 84904342890 scopus 로고    scopus 로고
    • Part-based multi-derivative edge cross-section profiles for polyp detection in colonoscopy
    • Jul.
    • Y. Wang, W. Tavanapong, J. Wong, J. Oh, and P. de Groen, "Part-based multi-derivative edge cross-section profiles for polyp detection in colonoscopy," IEEE J. Biomed. Health Informat., vol. 18, no. 4, pp. 1379-1389, Jul. 2014.
    • (2014) IEEE J. Biomed. Health Informat. , vol.18 , Issue.4 , pp. 1379-1389
    • Wang, Y.1    Tavanapong, W.2    Wong, J.3    Oh, J.4    De Groen, P.5
  • 57
    • 84886578037 scopus 로고    scopus 로고
    • A classification-enhanced vote accumulation scheme for detecting colonic polyps
    • Abdominal Imaging. Computation and Clinical Applications. New York: Springer
    • N. Tajbakhsh, S. Gurudu, and J. Liang, "A classification-enhanced vote accumulation scheme for detecting colonic polyps," in Abdominal Imaging. Computation and Clinical Applications. New York: Springer, 2013, vol. 8198, LNCS, pp. 53-62.
    • (2013) LNCS , vol.8198 , pp. 53-62
    • Tajbakhsh, N.1    Gurudu, S.2    Liang, J.3
  • 59
    • 84922334802 scopus 로고    scopus 로고
    • Automatic polyp detection using global geometric constraints and local intensity variation patterns
    • N. Tajbakhsh, S. R. Gurudu, and J. Liang, "Automatic polyp detection using global geometric constraints and local intensity variation patterns," in Proc. MICCAI, 2014, pp. 179-187.
    • (2014) Proc. MICCAI , pp. 179-187
    • Tajbakhsh, N.1    Gurudu, S.R.2    Liang, J.3
  • 60
    • 34548403882 scopus 로고    scopus 로고
    • Computer aided detection of pulmonary embolism with tobogganing and multiple instance classification in CT pulmonary angiography
    • New York: Springer
    • J. Liang and J. Bi, "Computer aided detection of pulmonary embolism with tobogganing and multiple instance classification in CT pulmonary angiography," in Information Processing in Medical Imaging. New York: Springer, 2007, pp. 630-641.
    • (2007) Information Processing in Medical Imaging , pp. 630-641
    • Liang, J.1    Bi, J.2
  • 61
    • 13844320299 scopus 로고    scopus 로고
    • The mortality of untreated pulmonary embolism in emergency department patients
    • K. K. Calder, M. Herbert, and S. O. Henderson, "The mortality of untreated pulmonary embolism in emergency department patients," Ann. Emerg. Med., vol. 45, no. 3, pp. 302-310, 2005.
    • (2005) Ann. Emerg. Med. , vol.45 , Issue.3 , pp. 302-310
    • Calder, K.K.1    Herbert, M.2    Henderson, S.O.3
  • 62
    • 79952275996 scopus 로고    scopus 로고
    • Challenges, controversies, and hot topics in pulmonary embolism imaging
    • G. Sadigh, A. M. Kelly, and P. Cronin, "Challenges, controversies, and hot topics in pulmonary embolism imaging," Am. J. Roentgenol., vol. 196, no. 3, 2011.
    • (2011) Am. J. Roentgenol. , vol.196 , Issue.3
    • Sadigh, G.1    Kelly, A.M.2    Cronin, P.3
  • 63
    • 0025554257 scopus 로고
    • Toboggan contrast enhancement for contrast segmentation
    • J. Fairfield, "Toboggan contrast enhancement for contrast segmentation," in Proc. 10th Int. Conf. Pattern Recognit., 1990, vol. 1, pp. 712-716.
    • (1990) Proc. 10th Int. Conf. Pattern Recognit. , vol.1 , pp. 712-716
    • Fairfield, J.1
  • 65
    • 84927608250 scopus 로고    scopus 로고
    • Automatic assessment of image informativeness in colonoscopy
    • New York: Springer
    • N. Tajbakhsh, "Automatic assessment of image informativeness in colonoscopy," in Abdominal Imaging. Computational and Clinical Applications. New York: Springer, 2014, pp. 151-158.
    • (2014) Abdominal Imaging. Computational and Clinical Applications , pp. 151-158
    • Tajbakhsh, N.1
  • 68
    • 84922693250 scopus 로고    scopus 로고
    • Fully automatic segmentation of ultrasound common carotid artery images based on machine learning
    • R.-M. Menchón-Lara and J.-L. Sancho-Gómez, "Fully automatic segmentation of ultrasound common carotid artery images based on machine learning," Neurocomputing, vol. 151, pp. 161-167, 2015.
    • (2015) Neurocomputing , vol.151 , pp. 161-167
    • Menchón-Lara, R.-M.1    Sancho-Gómez, J.-L.2
  • 70
    • 84868157978 scopus 로고    scopus 로고
    • Segmentation of the common carotid intima-media complex in ultrasound images using active contours
    • Nov.
    • S. Petroudi, C. Loizou, M. Pantziaris, and C. Pattichis, "Segmentation of the common carotid intima-media complex in ultrasound images using active contours," IEEE Trans. Biomed. Eng., vol. 59, no. 11, pp. 3060-3069, Nov. 2012.
    • (2012) IEEE Trans. Biomed. Eng. , vol.59 , Issue.11 , pp. 3060-3069
    • Petroudi, S.1    Loizou, C.2    Pantziaris, M.3    Pattichis, C.4
  • 71
    • 84858072893 scopus 로고    scopus 로고
    • Ultrasound intimamedia segmentation using Hough transform and dual snake model
    • X. Xu, Y. Zhou, X. Cheng, E. Song, and G. Li, "Ultrasound intimamedia segmentation using Hough transform and dual snake model," Comput. Med. Imag. Graphics, vol. 36, no. 3, pp. 248-258, 2012.
    • (2012) Comput. Med. Imag. Graphics , vol.36 , Issue.3 , pp. 248-258
    • Xu, X.1    Zhou, Y.2    Cheng, X.3    Song, E.4    Li, G.5
  • 73
    • 84901792305 scopus 로고    scopus 로고
    • ECG-based frame selection and curvature-based ROI detection for measuring carotid intima-media thickness
    • H. Sharma et al., "ECG-based frame selection and curvature-based ROI detection for measuring carotid intima-media thickness," in Proc. SPIE Med. Imag., 2014, pp. 904 016-904 016.
    • (2014) Proc. SPIE Med. Imag.
    • Sharma, H.1
  • 74
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 609-616.
    • (2009) Proc. 26th Annu. Int. Conf. Mach. Learn. , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 75
    • 84911473441 scopus 로고    scopus 로고
    • Convolutional neural networks for speech recognition
    • Oct.
    • O. Abdel-Hamid et al., "Convolutional neural networks for speech recognition," IEEE/ACM Trans. Audio, Speech, Language Process., vol. 22, no. 10, pp. 1533-1545, Oct. 2014.
    • (2014) IEEE/ACM Trans. Audio, Speech, Language Process. , vol.22 , Issue.10 , pp. 1533-1545
    • Abdel-Hamid, O.1
  • 76
    • 79957967845 scopus 로고    scopus 로고
    • Modeling electroencephalography waveforms with semi-supervised deep belief nets: Fast classification and anomaly measurement
    • D. Wulsin, J. Gupta, R. Mani, J. Blanco, and B. Litt, "Modeling electroencephalography waveforms with semi-supervised deep belief nets: Fast classification and anomaly measurement," J. Neural Eng., vol.8, no. 3, p. 036015, 2011.
    • (2011) J. Neural Eng. , vol.8 , Issue.3
    • Wulsin, D.1    Gupta, J.2    Mani, R.3    Blanco, J.4    Litt, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.