메뉴 건너뛰기




Volumn 26, Issue 1, 2015, Pages 195-202

Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box

Author keywords

Chest CT; Convolutional neural networks; Deep learning; Lung cancer screening; OverFeat; Peri fissural nodules

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONVOLUTION; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 84943752367     PISSN: 13618415     EISSN: 13618423     Source Type: Journal    
DOI: 10.1016/j.media.2015.08.001     Document Type: Article
Times cited : (288)

References (30)
  • 4
    • 0041435762 scopus 로고    scopus 로고
    • Cancer Facts and Figures 2014
    • American Cancer Society, 2014. Cancer Facts and Figures 2014.
    • (2014)
  • 5
    • 84908592406 scopus 로고    scopus 로고
    • Lung CT screening reporting and data system (Lung-RADS)
    • American College of Radiology, 2014. Lung CT screening reporting and data system (Lung-RADS).
    • (2014)
  • 8
    • 84943754825 scopus 로고    scopus 로고
    • Deep learning with non-medical training used for chest pathology identification
    • International Society for Optics and Photonics
    • Bar Y., Diamant I., Wolf L., Greenspan H. Deep learning with non-medical training used for chest pathology identification. SPIE Medical Imaging 2015, 94140V. International Society for Optics and Photonics.
    • (2015) SPIE Medical Imaging , pp. 94140V
    • Bar, Y.1    Diamant, I.2    Wolf, L.3    Greenspan, H.4
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 14
    • 84867911435 scopus 로고    scopus 로고
    • Pulmonary perifissural nodules on CT scans: rapid growth is not a predictor of malignancy
    • de Hoop B., van Ginneken B., Gietema H., Prokop M. Pulmonary perifissural nodules on CT scans: rapid growth is not a predictor of malignancy. Radiology 2012, 265:611-616. 10.1148/radiol.12112351.
    • (2012) Radiology , vol.265 , pp. 611-616
    • de Hoop, B.1    van Ginneken, B.2    Gietema, H.3    Prokop, M.4
  • 18
    • 33645697952 scopus 로고    scopus 로고
    • Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans
    • Kuhnigk J.M., Dicken V., Bornemann L., Bakai A., Wormanns D., Krass S., Peitgen H.O. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans. Med. Imaging 2006, 25:417-434.
    • (2006) IEEE Trans. Med. Imaging , vol.25 , pp. 417-434
    • Kuhnigk, J.M.1    Dicken, V.2    Bornemann, L.3    Bakai, A.4    Wormanns, D.5    Krass, S.6    Peitgen, H.O.7
  • 20
    • 77951647196 scopus 로고    scopus 로고
    • A new computationally efficient CAD system for pulmonary nodule detection in CT imagery
    • Messay T., Hardie R.C., Rogers S.K. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med. Image Anal. 2010, 14:390-406. 10.1016/j.media.2010.02.004.
    • (2010) Med. Image Anal. , vol.14 , pp. 390-406
    • Messay, T.1    Hardie, R.C.2    Rogers, S.K.3
  • 26
    • 0034090049 scopus 로고    scopus 로고
    • Bootstrap estimation of diagnostic accuracy with patient-clustered data
    • Rutter C.M. Bootstrap estimation of diagnostic accuracy with patient-clustered data. Acad. Radiol. 2000, 7:413-419.
    • (2000) Acad. Radiol. , vol.7 , pp. 413-419
    • Rutter, C.M.1
  • 28
    • 84878889029 scopus 로고    scopus 로고
    • Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter
    • Teramoto A., Fujita H. Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter. Int. J. Comput. Assist. Radiol. Surg. 2013, 8(2):193-205.
    • (2013) Int. J. Comput. Assist. Radiol. Surg. , vol.8 , Issue.2 , pp. 193-205
    • Teramoto, A.1    Fujita, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.