메뉴 건너뛰기




Volumn 19, Issue , 2017, Pages 221-248

Deep Learning in Medical Image Analysis

Author keywords

Deep learning; Medical image analysis; Unsupervised feature learning

Indexed keywords

COMPUTER AIDED ANALYSIS; COMPUTER AIDED DIAGNOSIS; COMPUTER AIDED INSTRUCTION; DIAGNOSIS; EDUCATION; IMAGE ANALYSIS; IMAGE SEGMENTATION; LEARNING SYSTEMS; MEDICAL APPLICATIONS; MEDICAL IMAGING;

EID: 85021145223     PISSN: 15239829     EISSN: 15454274     Source Type: Book Series    
DOI: 10.1146/annurev-bioeng-071516-044442     Document Type: Article
Times cited : (3687)

References (121)
  • 1
    • 84891606377 scopus 로고    scopus 로고
    • Medical imaging
    • Brody H. 2013. Medical imaging. Nature 502: S81
    • (2013) Nature , vol.502 , pp. S81
    • Brody, H.1
  • 2
    • 84906886315 scopus 로고    scopus 로고
    • Hierarchical lung field segmentation with joint shape and appearance sparse learning
    • Shao Y, Gao Y, Guo Y, Shi Y, Yang X, Shen D. 2014. Hierarchical lung field segmentation with joint shape and appearance sparse learning. IEEE Trans. Med. Imaging 33: 1761-80
    • (2014) IEEE Trans. Med. Imaging , vol.33 , pp. 1761-1780
    • Shao, Y.1    Gao, Y.2    Guo, Y.3    Shi, Y.4    Yang, X.5    Shen, D.6
  • 3
    • 84897039890 scopus 로고    scopus 로고
    • Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization
    • Wang L, Chen KC, Gao Y, Shi F, Liao S, et al. 2014. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization. Med. Phys. 41: 043503
    • (2014) Med. Phys. , vol.41 , pp. 043503
    • Wang, L.1    Chen, K.C.2    Gao, Y.3    Shi, F.4    Liao, S.5
  • 4
    • 84984908548 scopus 로고    scopus 로고
    • Multi-tissue decomposition of diffusion MRI signals via L0 sparsegroup estimation
    • Yap PH, Zhang Y, Shen D. 2016. Multi-tissue decomposition of diffusion MRI signals via L0 sparsegroup estimation. IEEE Trans. Image Process. 25: 4340-53
    • (2016) IEEE Trans. Image Process. , vol.25 , pp. 4340-4353
    • Yap, P.H.1    Zhang, Y.2    Shen, D.3
  • 5
    • 84929692240 scopus 로고    scopus 로고
    • Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis
    • Suk HI, Lee SW, Shen D. 2016. Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis. Brain Struct. Funct. 221: 2569-87
    • (2016) Brain Struct. Funct. , vol.221 , pp. 2569-2587
    • Suk, H.I.1    Lee, S.W.2    Shen, D.3
  • 6
    • 84928992103 scopus 로고    scopus 로고
    • Probabilistic air segmentation and sparse regression estimated pseudo CT for PET/MR attenuation correction
    • Chen Y, Juttukonda M, Su Y, Benzinger T, Rubin BG, et al. 2015. Probabilistic air segmentation and sparse regression estimated pseudo CT for PET/MR attenuation correction. Radiology 275: 562-69
    • (2015) Radiology , vol.275 , pp. 562-569
    • Chen, Y.1    Juttukonda, M.2    Su, Y.3    Benzinger, T.4    Rubin, B.G.5
  • 7
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber J. 2015. Deep learning in neural networks: an overview. Neural Netw. 61: 85-117
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 10
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton GE, Salakhutdinov RR. 2006. Reducing the dimensionality of data with neural networks. Science 313: 504-7
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 11
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. 2010. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11: 3371-408
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 14
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • New York: ACM
    • Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, pp. 448-56. New York: ACM
    • (2015) Proceedings of the 32nd International Conference on Machine Learning , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 16
    • 56449095373 scopus 로고    scopus 로고
    • Aunified architecture for natural language processing: Deep neural networks with multitask learning
    • New York: ACM
    • Collobert R, Weston J. 2008. Aunified architecture for natural language processing: deep neural networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning, pp. 160-67. New York: ACM
    • (2008) Proceedings of the 25th International Conference on Machine Learning , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 18
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton GE, Deng L, Yu D, Dahl GE, Mohamed A, et al. 2012. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Proc. Mag. 29: 82-97
    • (2012) IEEE Signal Proc. Mag. , vol.29 , pp. 82-97
    • Hinton, G.E.1    Deng, L.2    Yu, D.3    Dahl, G.E.4    Mohamed, A.5
  • 19
    • 84898989329 scopus 로고    scopus 로고
    • Deep neural networks for object detection
    • ed. CJC Burges, L Bottou, MWelling, Z Ghahramani, KQ Weinberger
    • Szegedy C, Toshev A, Erhan D. 2013. Deep neural networks for object detection. In Proceedings of the 26th Neural Information Processing Systems Conference (NIPS 2013), ed. CJC Burges, L Bottou, MWelling, Z Ghahramani, KQ Weinberger, pp. 2553-61. https: //papers. nips. cc/paper/5207-deepneural-networks-for-object-detection
    • (2013) Proceedings of the 26th Neural Information Processing Systems Conference (NIPS 2013) , pp. 2553-2561
    • Szegedy, C.1    Toshev, A.2    Erhan, D.3
  • 21
    • 84941213571 scopus 로고    scopus 로고
    • Deep neural networks in machine translation: An overview
    • Zhang J, Zong C. 2015. Deep neural networks in machine translation: an overview. IEEE Intell. Syst. 30: 16-25
    • (2015) IEEE Intell. Syst. , vol.30 , pp. 16-25
    • Zhang, J.1    Zong, C.2
  • 23
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of Go with deep neural networks and tree search
    • Silver D, Huang A, Maddison CJ, Guez A, Sifre L, et al. 2016. Mastering the game of Go with deep neural networks and tree search. Nature 529: 484-89
    • (2016) Nature , vol.529 , pp. 484-489
    • Silver, D.1    Huang, A.2    Maddison, C.J.3    Guez, A.4    Sifre, L.5
  • 26
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multimodality isointense infant brain image segmentation
    • ZhangW, Li R, Deng H, Wang L, Lin W, et al. 2015. Deep convolutional neural networks for multimodality isointense infant brain image segmentation. NeuroImage 108: 214-24
    • (2015) NeuroImage , vol.108 , pp. 214-224
    • Zhang, W.1    Li, R.2    Deng, H.3    Wang, L.4    Lin, W.5
  • 27
    • 84959203985 scopus 로고    scopus 로고
    • Deep MRI brain extraction: A 3D convolutional neural network for skull stripping
    • Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, et al. 2016. Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage 129: 460-69
    • (2016) NeuroImage , vol.129 , pp. 460-469
    • Kleesiek, J.1    Urban, G.2    Hubert, A.3    Schwarz, D.4    Maier-Hein, K.5
  • 28
    • 84978033606 scopus 로고    scopus 로고
    • Scalable high-performance image registration framework by unsupervised deep feature representations learning
    • Wu G, Kim M, Wang Q, Munsell BC, Shen D. 2016. Scalable high-performance image registration framework by unsupervised deep feature representations learning. IEEE Trans. Biomed. Eng. 63: 1505-16
    • (2016) IEEE Trans. Biomed. Eng. , vol.63 , pp. 1505-1516
    • Wu, G.1    Kim, M.2    Wang, Q.3    Munsell, B.C.4    Shen, D.5
  • 29
    • 84907019192 scopus 로고    scopus 로고
    • Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
    • Suk HI, Lee SW, Shen D. 2014. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 101: 569-82
    • (2014) NeuroImage , vol.101 , pp. 569-582
    • Suk, H.I.1    Lee, S.W.2    Shen, D.3
  • 31
    • 84923814844 scopus 로고    scopus 로고
    • Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
    • Suk HI, Lee SW, Shen D. 2015. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220: 841-59
    • (2015) Brain Struct. Funct. , vol.220 , pp. 841-859
    • Suk, H.I.1    Lee, S.W.2    Shen, D.3
  • 32
    • 85021160662 scopus 로고    scopus 로고
    • Deep learning in diagnosis of brain disorders
    • ed. SW Lee, HH Bülthoff, KR Müller. Berlin: Springer
    • Suk HI, Shen D. 2015. Deep learning in diagnosis of brain disorders. In Recent Progress in Brain and Cognitive Engineering, ed. SW Lee, HH Bülthoff, KR Müller, pp. 203-13. Berlin: Springer
    • (2015) Recent Progress in Brain and Cognitive Engineering , pp. 203-213
    • Suk, H.I.1    Shen, D.2
  • 33
    • 84957052106 scopus 로고    scopus 로고
    • State-space model with deep learning for functional dynamics estimation in resting-state fMRI
    • SukHI, Wee CY, Lee SW, Shen D. 2016. State-space model with deep learning for functional dynamics estimation in resting-state fMRI. NeuroImage 129: 292-307
    • (2016) NeuroImage , vol.129 , pp. 292-307
    • Suk, H.I.1    Wee, C.Y.2    Lee, S.W.3    Shen, D.4
  • 34
    • 84968610616 scopus 로고    scopus 로고
    • Brain tumor segmentation using convolutional neural networks in MRI images
    • Pereira S, Pinto A, Alves V, Silva CA. 2016. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35: 1240-51
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1240-1251
    • Pereira, S.1    Pinto, A.2    Alves, V.3    Silva, C.A.4
  • 35
    • 84968572560 scopus 로고    scopus 로고
    • Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted Boltzmann machines
    • van Tulder G, de Bruijne M. 2016. Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted Boltzmann machines. IEEE Trans. Med. Imaging 35: 1262-72
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1262-1272
    • Van Tulder, G.1    De Bruijne, M.2
  • 36
    • 84968542337 scopus 로고    scopus 로고
    • Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
    • Dou Q, Chen H, Yu L, Zhao L, Qin J, et al. 2016. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans. Med. Imaging 35: 1182-95
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1182-1195
    • Dou, Q.1    Chen, H.2    Yu, L.3    Zhao, L.4    Qin, J.5
  • 39
    • 84964292829 scopus 로고    scopus 로고
    • Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans
    • Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, et al. 2016. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep. 6: 24454
    • (2016) Sci. Rep. , vol.6 , pp. 24454
    • Cheng, J.Z.1    Ni, D.2    Chou, Y.H.3    Qin, J.4    Tiu, C.M.5
  • 40
    • 84969916782 scopus 로고    scopus 로고
    • Improving computer-aided detection using convolutional neural networks and random view aggregation
    • Roth HR, Lu L, Liu J, Yao J, Seff A, et al. 2016. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans. Med. Imaging 35: 1170-81
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1170-1181
    • Roth, H.R.1    Lu, L.2    Liu, J.3    Yao, J.4    Seff, A.5
  • 41
    • 84983670549 scopus 로고    scopus 로고
    • Multi-scale convolutional neural networks for lung nodule classification
    • Information Processing in Medical Imaging. Berlin: Springer
    • Shen W, Zhou M, Yang F, Yang C, Tian J. 2015. Multi-scale convolutional neural networks for lung nodule classification. In Lecture Notes in Computer Science, vol. 9123: Information Processing in Medical Imaging, pp. 588-99. Berlin: Springer
    • (2015) Lecture Notes in Computer Science , vol.9123 , pp. 588-599
    • Shen, W.1    Zhou, M.2    Yang, F.3    Yang, C.4    Tian, J.5
  • 42
    • 84968638584 scopus 로고    scopus 로고
    • Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks
    • Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, et al. 2016. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35: 1160-69
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1160-1169
    • Setio, A.A.A.1    Ciompi, F.2    Litjens, G.3    Gerke, P.4    Jacobs, C.5
  • 43
    • 84943752367 scopus 로고    scopus 로고
    • Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2Dviews and a convolutional neural network out-of-the-box
    • Ciompi F, de Hoop B, van Riel SJ, Chung K, Scholten ET, et al. 2015. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2Dviews and a convolutional neural network out-of-the-box. Med. Image Anal. 26: 195-202
    • (2015) Med. Image Anal. , vol.26 , pp. 195-202
    • Ciompi, F.1    De Hoop, B.2    Van Riel, S.J.3    Chung, K.4    Scholten, E.T.5
  • 45
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning
    • ShinHC, Roth HR, GaoM, Lu L, Xu Z, et al. 2016. Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35: 1285-98
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1285-1298
    • Shin, H.C.1    Roth, H.R.2    Gao, M.3    Lu, L.4    Xu, Z.5
  • 49
    • 84968586012 scopus 로고    scopus 로고
    • Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
    • Brosch T, Tang LYW, Yoo Y, Li DKB, Traboulsee A, Tam R. 2016. Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35: 1229-39
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1229-1239
    • Brosch, T.1    Tang, L.Y.W.2    Yoo, Y.3    Li, D.K.B.4    Traboulsee, A.5    Tam, R.6
  • 51
    • 84879853539 scopus 로고    scopus 로고
    • Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
    • Shin HC, Orton MR, Collins DJ, Doran SJ, Leach MO. 2013. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans. Pattern Anal. Mach. Intell. 35: 1930-43
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , pp. 1930-1943
    • Shin, H.C.1    Orton, M.R.2    Collins, D.J.3    Doran, S.J.4    Leach, M.O.5
  • 54
    • 84959375736 scopus 로고    scopus 로고
    • Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
    • Xu J, Xiang L, Liu Q, Gilmore H, Wu J, et al. 2016. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35: 119-30
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 119-130
    • Xu, J.1    Xiang, L.2    Liu, Q.3    Gilmore, H.4    Wu, J.5
  • 55
    • 84928170467 scopus 로고    scopus 로고
    • Learning deep generative models
    • Salakhutdinov R. 2015. Learning deep generative models. Annu. Rev. Stat. Appl. 2: 361-85
    • (2015) Annu. Rev. Stat. Appl. , vol.2 , pp. 361-385
    • Salakhutdinov, R.1
  • 56
    • 84935007247 scopus 로고    scopus 로고
    • Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data
    • Munsell BC, Wee CY, Keller SS, Weber B, Elger C, et al. 2015. Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data. NeuroImage 118: 219-30
    • (2015) NeuroImage , vol.118 , pp. 219-230
    • Munsell, B.C.1    Wee, C.Y.2    Keller, S.S.3    Weber, B.4    Elger, C.5
  • 57
    • 84956616219 scopus 로고    scopus 로고
    • Classifiers for ischemic stroke lesion segmentation: A comparison study
    • Maier O, Schrder C, Forkert ND, Martinetz T, Handels H. 2015. Classifiers for ischemic stroke lesion segmentation: a comparison study. PLOS ONE 10: 1-16
    • (2015) PLOS ONE , vol.10 , pp. 1-16
    • Maier, O.1    Schrder, C.2    Forkert, N.D.3    Martinetz, T.4    Handels, H.5
  • 60
    • 84991439219 scopus 로고    scopus 로고
    • Deep models for brain em image segmentation: Novel insights and improved performance
    • Fakhry A, Peng H, Ji S. 2016. Deep models for brain EM image segmentation: novel insights and improved performance. Bioinformatics 32: 2352-58
    • (2016) Bioinformatics , vol.32 , pp. 2352-2358
    • Fakhry, A.1    Peng, H.2    Ji, S.3
  • 62
    • 84968572880 scopus 로고    scopus 로고
    • Marginal space deep learning: Efficient architecture for volumetric image parsing
    • Ghesu FC, Krubasik E, Georgescu B, Singh V, Zheng Y, et al. 2016. Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE Trans. Med. Imaging 35: 1217-28
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1217-1228
    • Ghesu, F.C.1    Krubasik, E.2    Georgescu, B.3    Singh, V.4    Zheng, Y.5
  • 63
    • 84960353898 scopus 로고    scopus 로고
    • A benchmark for comparison of dental radiography analysis algorithms
    • Wang CW, Huang CT, Lee JH, Li CH, Chang SW, et al. 2016. A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 31: 63-76
    • (2016) Med. Image Anal. , vol.31 , pp. 63-76
    • Wang, C.W.1    Huang, C.T.2    Lee, J.H.3    Li, C.H.4    Chang, S.W.5
  • 64
    • 0001075522 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958: 65-386
    • (1958) Psychol. Rev. , vol.1958 , pp. 65-386
    • Rosenblatt, F.1
  • 65
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hinton GE, Williams RJ. 1986. Learning representations by back-propagating errors. Nature 323: 533-36
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 67
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik K. 1991. Approximation capabilities of multilayer feedforward networks. Neural Netw. 4: 251-57
    • (1991) Neural Netw. , vol.4 , pp. 251-257
    • Hornik, K.1
  • 68
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. 1978. Estimating the dimension of a model. Ann. Stat. 6: 461-64
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 69
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • Bourlard H, Kamp Y. 1988. Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 59: 291-94
    • (1988) Biol. Cybern. , vol.59 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 72
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, Teh YW. 2006. A fast learning algorithm for deep belief nets. Neural Comput. 18: 1527-54
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 74
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton GE. 2002. Training products of experts by minimizing contrastive divergence. Neural Comput. 14: 1771-800
    • (2002) Neural Comput. , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 75
    • 0029652445 scopus 로고
    • The "wake-sleep" algorithm for unsupervised neural networks
    • Hinton G, DayanP, FreyB, NealR. 1995. The "wake-sleep" algorithm for unsupervised neural networks. Science 268: 1158-61
    • (1995) Science , vol.268 , pp. 1158-1161
    • Hinton, G.1    Dayan, P.2    Frey, B.3    Neal, R.4
  • 76
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LecunY, BottouL, BengioY, Haffner P. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86: 2278-324
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 82
    • 46949103361 scopus 로고    scopus 로고
    • New brain atlas-mapping the human brain in vivo with 7. 0 T MRI and comparison with postmortem histology: Will these images change modern medicine
    • Cho ZH, Kim YB, Han JY, Min HK, Kim KN, et al. 2008. New brain atlas-mapping the human brain in vivo with 7. 0 T MRI and comparison with postmortem histology: Will these images change modern medicine Int. J. Imaging Syst. Technol. 18: 2-8
    • (2008) Int. J. Imaging Syst. Technol. , vol.18 , pp. 2-8
    • Cho, Z.H.1    Kim, Y.B.2    Han, J.Y.3    Min, H.K.4    Kim, K.N.5
  • 83
    • 33748095663 scopus 로고    scopus 로고
    • Learning-based deformable registration of MR brain images
    • Wu G, Qi F, Shen D. 2006. Learning-based deformable registration of MR brain images. IEEE Trans. Med. Imaging 25: 1145-57
    • (2006) IEEE Trans. Med. Imaging , vol.25 , pp. 1145-1157
    • Wu, G.1    Qi, F.2    Shen, D.3
  • 84
    • 78951494198 scopus 로고    scopus 로고
    • DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting
    • Ou Y, Sotiras A, Paragios N, Davatzikos C. 2011. DRAMMS: deformable registration via attribute matching and mutual-saliency weighting. Med. Image Anal. 15: 622-39
    • (2011) Med. Image Anal. , vol.15 , pp. 622-639
    • Ou, Y.1    Sotiras, A.2    Paragios, N.3    Davatzikos, C.4
  • 87
    • 63849264858 scopus 로고    scopus 로고
    • Diffeomorphic demons: Efficient non-parametric image registration
    • VercauterenT, PennecX, Perchant A, AyacheN. 2009. Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45: S61-72
    • (2009) NeuroImage , vol.45 , pp. S61-72
    • Vercauteren, T.1    Pennec, X.2    Perchant, A.3    Ayache, N.4
  • 88
    • 84893782766 scopus 로고    scopus 로고
    • S-HAMMER: Hierarchical attribute-guided, symmetric diffeomorphic registration for MR brain images
    • Wu G, Kim M, Wang Q, Shen D. 2014. S-HAMMER: hierarchical attribute-guided, symmetric diffeomorphic registration for MR brain images. Hum. Brain Mapp. 35: 1044-60
    • (2014) Hum. Brain Mapp. , vol.35 , pp. 1044-1060
    • Wu, G.1    Kim, M.2    Wang, Q.3    Shen, D.4
  • 90
    • 84963878431 scopus 로고    scopus 로고
    • Deformable MR prostate segmentation via deep feature learning and sparse patch matching
    • Guo Y, Gao Y, Shen D. 2016. Deformable MR prostate segmentation via deep feature learning and sparse patch matching. IEEE Trans. Med. Imaging 35: 1077-89
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1077-1089
    • Guo, Y.1    Gao, Y.2    Shen, D.3
  • 91
    • 84901279625 scopus 로고    scopus 로고
    • Automatic prostateMRimage segmentationwith sparse label propagation and domain-specific manifold regularization
    • Liao S, GaoY, Shi Y, Yousuf A, Karademir I, et al. 2013. Automatic prostateMRimage segmentationwith sparse label propagation and domain-specific manifold regularization. Inf. Proc. Med. Imaging 23: 511-23
    • (2013) Inf. Proc. Med. Imaging , vol.23 , pp. 511-523
    • Liao, S.1    Gao, Y.2    Shi, Y.3    Yousuf, A.4    Karademir, I.5
  • 92
    • 84886731548 scopus 로고    scopus 로고
    • Unsupervised deep learning for hippocampus segmentation in 7 0 Tesla MR images
    • Machine Learning in Medical Imaging. Berlin: Springer
    • Kim M, Wu G, Shen D. 2013. Unsupervised deep learning for hippocampus segmentation in 7. 0 Tesla MR images. In Lecture Notes in Computer Science, vol. 8184: Machine Learning in Medical Imaging, pp. 1-8. Berlin: Springer
    • (2013) Lecture Notes in Computer Science , vol.8184 , pp. 1-8
    • Kim, M.1    Wu, G.2    Shen, D.3
  • 95
    • 84968680221 scopus 로고    scopus 로고
    • Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition
    • Yan Z, Zhan Y, Peng Z, Liao S, Shinagawa Y, et al. 2016. Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition. IEEE Trans. Med. Imaging 35: 1332-43
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1332-1343
    • Yan, Z.1    Zhan, Y.2    Peng, Z.3    Liao, S.4    Shinagawa, Y.5
  • 103
    • 67349126887 scopus 로고    scopus 로고
    • Automatic segmentation of newborn brain MRI
    • Weisenfeld NI, Warfield SK. 2009. Automatic segmentation of newborn brain MRI. NeuroImage 47: 564-72
    • (2009) NeuroImage , vol.47 , pp. 564-572
    • Weisenfeld, N.I.1    Warfield, S.K.2
  • 104
    • 35148872689 scopus 로고    scopus 로고
    • Automatic segmentation and reconstruction of the cortex from neonatal MRI
    • Xue H, Srinivasan L, Jiang S, Rutherford M, Edwards AD, et al. 2007. Automatic segmentation and reconstruction of the cortex from neonatal MRI. NeuroImage 38: 461-77
    • (2007) NeuroImage , vol.38 , pp. 461-477
    • Xue, H.1    Srinivasan, L.2    Jiang, S.3    Rutherford, M.4    Edwards, A.D.5
  • 106
    • 0034151398 scopus 로고    scopus 로고
    • Adaptive, templatemoderated, spatially varying statistical classification
    • Warfield S, KausM, Jolesz FA, Kikinis R. 2000. Adaptive, templatemoderated, spatially varying statistical classification. Med. Image Anal. 4: 43-55
    • (2000) Med. Image Anal. , vol.4 , pp. 43-55
    • Warfield, S.1    Kaus, M.2    Jolesz, F.A.3    Kikinis, R.4
  • 107
    • 23844494015 scopus 로고    scopus 로고
    • Automatic segmentation of MR images of the developing newborn brain
    • Prastawa M, Gilmore JH, LinW, Gerig G. 2005. Automatic segmentation of MR images of the developing newborn brain. Med. Image Anal. 9: 457-66
    • (2005) Med. Image Anal. , vol.9 , pp. 457-466
    • Prastawa, M.1    Gilmore, J.H.2    Lin, W.3    Gerig, G.4
  • 108
    • 80052159689 scopus 로고    scopus 로고
    • Automatic segmentation of neonatal images using convex optimization and coupled level sets
    • Wang L, Shi F, LinW, Gilmore JH, Shen D. 2011. Automatic segmentation of neonatal images using convex optimization and coupled level sets. NeuroImage 58: 805-17
    • (2011) NeuroImage , vol.58 , pp. 805-817
    • Wang, L.1    Shi, F.2    Lin, W.3    Gilmore, J.H.4    Shen, D.5
  • 109
    • 84883658529 scopus 로고    scopus 로고
    • Segmentation of neonatal brain MR images using patch-driven level sets
    • Wang L, Shi F, Li G, Gao Y, Lin W, et al. 2014. Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage 84: 141-58
    • (2014) NeuroImage , vol.84 , pp. 141-158
    • Wang, L.1    Shi, F.2    Li, G.3    Gao, Y.4    Lin, W.5
  • 110
    • 84920882082 scopus 로고    scopus 로고
    • Links: Learning-based multi-source integration framework for segmentation of infant brain images
    • Wang L, Gao Y, Shi F, Li G, Gilmore JH, et al. 2015. Links: learning-based multi-source integration framework for segmentation of infant brain images. NeuroImage 108: 160-72
    • (2015) NeuroImage , vol.108 , pp. 160-172
    • Wang, L.1    Gao, Y.2    Shi, F.3    Li, G.4    Gilmore, J.H.5
  • 112
    • 85044296907 scopus 로고    scopus 로고
    • Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks
    • GaoM, Bagci U, Lu L, Wu A, Buty M, et al. 2016. Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Comput. Methods Biomech. Biomed. Eng. 2016: 1-6
    • (2016) Comput. Methods Biomech. Biomed. Eng. , vol.2016 , pp. 1-6
    • Gao, M.1    Bagci, U.2    Lu, L.3    Wu, A.4    Buty, M.5
  • 118
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Gönen M, Alpaydn E. 2011. Multiple kernel learning algorithms. J. Mach. Learn. Res. 12: 2211-68
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2211-2268
    • Gönen, M.1    Alpaydn, E.2
  • 121
    • 84941964814 scopus 로고    scopus 로고
    • Deep neural network with weight sparsity control and pretraining extracts hierarchical features and enhances classification performance: Evidence from wholebrain resting-state functional connectivity patterns of schizophrenia
    • Kim J, Calhoun VD, Shim E, Lee JH. 2016. Deep neural network with weight sparsity control and pretraining extracts hierarchical features and enhances classification performance: evidence from wholebrain resting-state functional connectivity patterns of schizophrenia. NeuroImage 124: 127-46
    • (2016) NeuroImage , vol.124 , pp. 127-146
    • Kim, J.1    Calhoun, V.D.2    Shim, E.3    Lee, J.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.