-
1
-
-
84891606377
-
Medical imaging
-
Brody H. 2013. Medical imaging. Nature 502: S81
-
(2013)
Nature
, vol.502
, pp. S81
-
-
Brody, H.1
-
2
-
-
84906886315
-
Hierarchical lung field segmentation with joint shape and appearance sparse learning
-
Shao Y, Gao Y, Guo Y, Shi Y, Yang X, Shen D. 2014. Hierarchical lung field segmentation with joint shape and appearance sparse learning. IEEE Trans. Med. Imaging 33: 1761-80
-
(2014)
IEEE Trans. Med. Imaging
, vol.33
, pp. 1761-1780
-
-
Shao, Y.1
Gao, Y.2
Guo, Y.3
Shi, Y.4
Yang, X.5
Shen, D.6
-
3
-
-
84897039890
-
Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization
-
Wang L, Chen KC, Gao Y, Shi F, Liao S, et al. 2014. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization. Med. Phys. 41: 043503
-
(2014)
Med. Phys.
, vol.41
, pp. 043503
-
-
Wang, L.1
Chen, K.C.2
Gao, Y.3
Shi, F.4
Liao, S.5
-
4
-
-
84984908548
-
Multi-tissue decomposition of diffusion MRI signals via L0 sparsegroup estimation
-
Yap PH, Zhang Y, Shen D. 2016. Multi-tissue decomposition of diffusion MRI signals via L0 sparsegroup estimation. IEEE Trans. Image Process. 25: 4340-53
-
(2016)
IEEE Trans. Image Process.
, vol.25
, pp. 4340-4353
-
-
Yap, P.H.1
Zhang, Y.2
Shen, D.3
-
5
-
-
84929692240
-
Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis
-
Suk HI, Lee SW, Shen D. 2016. Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis. Brain Struct. Funct. 221: 2569-87
-
(2016)
Brain Struct. Funct.
, vol.221
, pp. 2569-2587
-
-
Suk, H.I.1
Lee, S.W.2
Shen, D.3
-
6
-
-
84928992103
-
Probabilistic air segmentation and sparse regression estimated pseudo CT for PET/MR attenuation correction
-
Chen Y, Juttukonda M, Su Y, Benzinger T, Rubin BG, et al. 2015. Probabilistic air segmentation and sparse regression estimated pseudo CT for PET/MR attenuation correction. Radiology 275: 562-69
-
(2015)
Radiology
, vol.275
, pp. 562-569
-
-
Chen, Y.1
Juttukonda, M.2
Su, Y.3
Benzinger, T.4
Rubin, B.G.5
-
7
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber J. 2015. Deep learning in neural networks: an overview. Neural Netw. 61: 85-117
-
(2015)
Neural Netw.
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
10
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton GE, Salakhutdinov RR. 2006. Reducing the dimensionality of data with neural networks. Science 313: 504-7
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
11
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. 2010. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11: 3371-408
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.A.5
-
13
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. 2014. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15: 1929-58
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
14
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
New York: ACM
-
Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, pp. 448-56. New York: ACM
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
16
-
-
56449095373
-
Aunified architecture for natural language processing: Deep neural networks with multitask learning
-
New York: ACM
-
Collobert R, Weston J. 2008. Aunified architecture for natural language processing: deep neural networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning, pp. 160-67. New York: ACM
-
(2008)
Proceedings of the 25th International Conference on Machine Learning
, pp. 160-167
-
-
Collobert, R.1
Weston, J.2
-
18
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Hinton GE, Deng L, Yu D, Dahl GE, Mohamed A, et al. 2012. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Proc. Mag. 29: 82-97
-
(2012)
IEEE Signal Proc. Mag.
, vol.29
, pp. 82-97
-
-
Hinton, G.E.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.5
-
19
-
-
84898989329
-
Deep neural networks for object detection
-
ed. CJC Burges, L Bottou, MWelling, Z Ghahramani, KQ Weinberger
-
Szegedy C, Toshev A, Erhan D. 2013. Deep neural networks for object detection. In Proceedings of the 26th Neural Information Processing Systems Conference (NIPS 2013), ed. CJC Burges, L Bottou, MWelling, Z Ghahramani, KQ Weinberger, pp. 2553-61. https: //papers. nips. cc/paper/5207-deepneural-networks-for-object-detection
-
(2013)
Proceedings of the 26th Neural Information Processing Systems Conference (NIPS 2013)
, pp. 2553-2561
-
-
Szegedy, C.1
Toshev, A.2
Erhan, D.3
-
20
-
-
84911198048
-
DeepFace: Closing the gap to human-level performance in face verification
-
Washington, DC: IEEE
-
Taigman Y, YangM, RanzatoM, Wolf L. 2014. DeepFace: closing the gap to human-level performance in face verification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701-8. Washington, DC: IEEE
-
(2014)
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1701-1708
-
-
Taigman, Y.1
Yang, M.2
Ranzato, M.3
Wolf, L.4
-
21
-
-
84941213571
-
Deep neural networks in machine translation: An overview
-
Zhang J, Zong C. 2015. Deep neural networks in machine translation: an overview. IEEE Intell. Syst. 30: 16-25
-
(2015)
IEEE Intell. Syst.
, vol.30
, pp. 16-25
-
-
Zhang, J.1
Zong, C.2
-
23
-
-
84963949906
-
Mastering the game of Go with deep neural networks and tree search
-
Silver D, Huang A, Maddison CJ, Guez A, Sifre L, et al. 2016. Mastering the game of Go with deep neural networks and tree search. Nature 529: 484-89
-
(2016)
Nature
, vol.529
, pp. 484-489
-
-
Silver, D.1
Huang, A.2
Maddison, C.J.3
Guez, A.4
Sifre, L.5
-
24
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, et al. 2015. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115: 211-52
-
(2015)
Int. J. Comput. Vis.
, vol.115
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
-
26
-
-
84921492033
-
Deep convolutional neural networks for multimodality isointense infant brain image segmentation
-
ZhangW, Li R, Deng H, Wang L, Lin W, et al. 2015. Deep convolutional neural networks for multimodality isointense infant brain image segmentation. NeuroImage 108: 214-24
-
(2015)
NeuroImage
, vol.108
, pp. 214-224
-
-
Zhang, W.1
Li, R.2
Deng, H.3
Wang, L.4
Lin, W.5
-
27
-
-
84959203985
-
Deep MRI brain extraction: A 3D convolutional neural network for skull stripping
-
Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, et al. 2016. Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage 129: 460-69
-
(2016)
NeuroImage
, vol.129
, pp. 460-469
-
-
Kleesiek, J.1
Urban, G.2
Hubert, A.3
Schwarz, D.4
Maier-Hein, K.5
-
28
-
-
84978033606
-
Scalable high-performance image registration framework by unsupervised deep feature representations learning
-
Wu G, Kim M, Wang Q, Munsell BC, Shen D. 2016. Scalable high-performance image registration framework by unsupervised deep feature representations learning. IEEE Trans. Biomed. Eng. 63: 1505-16
-
(2016)
IEEE Trans. Biomed. Eng.
, vol.63
, pp. 1505-1516
-
-
Wu, G.1
Kim, M.2
Wang, Q.3
Munsell, B.C.4
Shen, D.5
-
29
-
-
84907019192
-
Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
-
Suk HI, Lee SW, Shen D. 2014. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 101: 569-82
-
(2014)
NeuroImage
, vol.101
, pp. 569-582
-
-
Suk, H.I.1
Lee, S.W.2
Shen, D.3
-
30
-
-
84986277510
-
Learning to read chest X-rays: Recurrent neural cascade model for automated image annotation
-
Washington, DC: IEEE
-
Shin H, Roberts K, Lu L, Demner-Fushman D, Yao J, Summers RM. 2016. Learning to read chest X-rays: recurrent neural cascade model for automated image annotation. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2497-506. Washington, DC: IEEE
-
(2016)
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2497-2506
-
-
Shin, H.1
Roberts, K.2
Lu, L.3
Demner-Fushman, D.4
Yao, J.5
Summers, R.M.6
-
31
-
-
84923814844
-
Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
-
Suk HI, Lee SW, Shen D. 2015. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220: 841-59
-
(2015)
Brain Struct. Funct.
, vol.220
, pp. 841-859
-
-
Suk, H.I.1
Lee, S.W.2
Shen, D.3
-
32
-
-
85021160662
-
Deep learning in diagnosis of brain disorders
-
ed. SW Lee, HH Bülthoff, KR Müller. Berlin: Springer
-
Suk HI, Shen D. 2015. Deep learning in diagnosis of brain disorders. In Recent Progress in Brain and Cognitive Engineering, ed. SW Lee, HH Bülthoff, KR Müller, pp. 203-13. Berlin: Springer
-
(2015)
Recent Progress in Brain and Cognitive Engineering
, pp. 203-213
-
-
Suk, H.I.1
Shen, D.2
-
33
-
-
84957052106
-
State-space model with deep learning for functional dynamics estimation in resting-state fMRI
-
SukHI, Wee CY, Lee SW, Shen D. 2016. State-space model with deep learning for functional dynamics estimation in resting-state fMRI. NeuroImage 129: 292-307
-
(2016)
NeuroImage
, vol.129
, pp. 292-307
-
-
Suk, H.I.1
Wee, C.Y.2
Lee, S.W.3
Shen, D.4
-
34
-
-
84968610616
-
Brain tumor segmentation using convolutional neural networks in MRI images
-
Pereira S, Pinto A, Alves V, Silva CA. 2016. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35: 1240-51
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1240-1251
-
-
Pereira, S.1
Pinto, A.2
Alves, V.3
Silva, C.A.4
-
35
-
-
84968572560
-
Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted Boltzmann machines
-
van Tulder G, de Bruijne M. 2016. Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted Boltzmann machines. IEEE Trans. Med. Imaging 35: 1262-72
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1262-1272
-
-
Van Tulder, G.1
De Bruijne, M.2
-
36
-
-
84968542337
-
Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
-
Dou Q, Chen H, Yu L, Zhao L, Qin J, et al. 2016. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans. Med. Imaging 35: 1182-95
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1182-1195
-
-
Dou, Q.1
Chen, H.2
Yu, L.3
Zhao, L.4
Qin, J.5
-
38
-
-
85007153968
-
Mitosis detection in breast cancer histology images via deep cascaded networks
-
Palo Alto, CA: AAAI
-
Chen H, DouQ, Wang X, Qin J, Heng PA. 2016. Mitosis detection in breast cancer histology images via deep cascaded networks. In Proceedings of the 30th AAAI Conference on Artificial Intelligence, pp. 1167-73. Palo Alto, CA: AAAI
-
(2016)
Proceedings of the 30th AAAI Conference on Artificial Intelligence
, pp. 1167-1173
-
-
Chen, H.1
Dou, Q.2
Wang, X.3
Qin, J.4
Heng, P.A.5
-
39
-
-
84964292829
-
Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans
-
Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, et al. 2016. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep. 6: 24454
-
(2016)
Sci. Rep.
, vol.6
, pp. 24454
-
-
Cheng, J.Z.1
Ni, D.2
Chou, Y.H.3
Qin, J.4
Tiu, C.M.5
-
40
-
-
84969916782
-
Improving computer-aided detection using convolutional neural networks and random view aggregation
-
Roth HR, Lu L, Liu J, Yao J, Seff A, et al. 2016. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans. Med. Imaging 35: 1170-81
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1170-1181
-
-
Roth, H.R.1
Lu, L.2
Liu, J.3
Yao, J.4
Seff, A.5
-
41
-
-
84983670549
-
Multi-scale convolutional neural networks for lung nodule classification
-
Information Processing in Medical Imaging. Berlin: Springer
-
Shen W, Zhou M, Yang F, Yang C, Tian J. 2015. Multi-scale convolutional neural networks for lung nodule classification. In Lecture Notes in Computer Science, vol. 9123: Information Processing in Medical Imaging, pp. 588-99. Berlin: Springer
-
(2015)
Lecture Notes in Computer Science
, vol.9123
, pp. 588-599
-
-
Shen, W.1
Zhou, M.2
Yang, F.3
Yang, C.4
Tian, J.5
-
42
-
-
84968638584
-
Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks
-
Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, et al. 2016. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35: 1160-69
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1160-1169
-
-
Setio, A.A.A.1
Ciompi, F.2
Litjens, G.3
Gerke, P.4
Jacobs, C.5
-
43
-
-
84943752367
-
Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2Dviews and a convolutional neural network out-of-the-box
-
Ciompi F, de Hoop B, van Riel SJ, Chung K, Scholten ET, et al. 2015. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2Dviews and a convolutional neural network out-of-the-box. Med. Image Anal. 26: 195-202
-
(2015)
Med. Image Anal.
, vol.26
, pp. 195-202
-
-
Ciompi, F.1
De Hoop, B.2
Van Riel, S.J.3
Chung, K.4
Scholten, E.T.5
-
44
-
-
84906979740
-
Deep learning based imaging data completion for improved brain disease diagnosis
-
Berlin: Springer
-
Li R, Zhang W, Suk HI, Wang L, Li J, et al. 2014. Deep learning based imaging data completion for improved brain disease diagnosis. In Proceedings of the 2014 Medical Image Computing and Computer-Assisted Intervention Conference, pp. 305-12. Berlin: Springer
-
(2014)
Proceedings of the 2014 Medical Image Computing and Computer-Assisted Intervention Conference
, pp. 305-312
-
-
Li, R.1
Zhang, W.2
Suk, H.I.3
Wang, L.4
Li, J.5
-
45
-
-
84969962996
-
Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning
-
ShinHC, Roth HR, GaoM, Lu L, Xu Z, et al. 2016. Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35: 1285-98
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1285-1298
-
-
Shin, H.C.1
Roth, H.R.2
Gao, M.3
Lu, L.4
Xu, Z.5
-
48
-
-
84978427941
-
Fully convolutional networks for multi-modality isointense infant brain image segmentation
-
Washington, DC: IEEE
-
NieD, Wang L, Gao Y, ShenD. 2016. Fully convolutional networks for multi-modality isointense infant brain image segmentation. In Proceedings of the 13th IEEE International Symposium on Biomedical Imaging, pp. 1342-45. Washington, DC: IEEE
-
(2016)
Proceedings of the 13th IEEE International Symposium on Biomedical Imaging
, pp. 1342-1345
-
-
Nie, D.1
Wang, L.2
Gao, Y.3
ShenD4
-
49
-
-
84968586012
-
Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
-
Brosch T, Tang LYW, Yoo Y, Li DKB, Traboulsee A, Tam R. 2016. Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35: 1229-39
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1229-1239
-
-
Brosch, T.1
Tang, L.Y.W.2
Yoo, Y.3
Li, D.K.B.4
Traboulsee, A.5
Tam, R.6
-
50
-
-
85007153968
-
Mitosis detection in breast cancer histological images via deep cascaded networks
-
Palo Alto, CA: AAAI
-
Chen H, DouQ, Wang X, Qin J, Heng P. 2016. Mitosis detection in breast cancer histological images via deep cascaded networks. In Proceedings of the 30th AAAI Conference on Artificial Intelligence, pp. 1160-66. Palo Alto, CA: AAAI
-
(2016)
Proceedings of the 30th AAAI Conference on Artificial Intelligence
, pp. 1160-1166
-
-
Chen, H.1
Dou, Q.2
Wang, X.3
Qin, J.4
Heng, P.5
-
51
-
-
84879853539
-
Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
-
Shin HC, Orton MR, Collins DJ, Doran SJ, Leach MO. 2013. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans. Pattern Anal. Mach. Intell. 35: 1930-43
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, pp. 1930-1943
-
-
Shin, H.C.1
Orton, M.R.2
Collins, D.J.3
Doran, S.J.4
Leach, M.O.5
-
52
-
-
84892841517
-
Unsupervised deep feature learning for deformable registration of MR brain images
-
Berlin: Springer
-
Wu G, Kim M, Wang Q, Gao Y, Liao S, Shen D. 2013. Unsupervised deep feature learning for deformable registration of MR brain images. In Proceedings of the 2013 Medical Image Computing and Computer-Assisted Intervention Conference, pp. 649-56. Berlin: Springer
-
(2013)
Proceedings of the 2013 Medical Image Computing and Computer-Assisted Intervention Conference
, pp. 649-656
-
-
Wu, G.1
Kim, M.2
Wang, Q.3
Gao, Y.4
Liao, S.5
Shen, D.6
-
53
-
-
84951749617
-
Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders
-
Berlin: Springer
-
Su H, Xing F, Kong X, Xie Y, Zhang S, Yang L. 2015. Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders. In Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention Conference, pp. 383-90. Berlin: Springer
-
(2015)
Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention Conference
, pp. 383-390
-
-
Su, H.1
Xing, F.2
Kong, X.3
Xie, Y.4
Zhang, S.5
Yang, L.6
-
54
-
-
84959375736
-
Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
-
Xu J, Xiang L, Liu Q, Gilmore H, Wu J, et al. 2016. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35: 119-30
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 119-130
-
-
Xu, J.1
Xiang, L.2
Liu, Q.3
Gilmore, H.4
Wu, J.5
-
55
-
-
84928170467
-
Learning deep generative models
-
Salakhutdinov R. 2015. Learning deep generative models. Annu. Rev. Stat. Appl. 2: 361-85
-
(2015)
Annu. Rev. Stat. Appl.
, vol.2
, pp. 361-385
-
-
Salakhutdinov, R.1
-
56
-
-
84935007247
-
Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data
-
Munsell BC, Wee CY, Keller SS, Weber B, Elger C, et al. 2015. Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data. NeuroImage 118: 219-30
-
(2015)
NeuroImage
, vol.118
, pp. 219-230
-
-
Munsell, B.C.1
Wee, C.Y.2
Keller, S.S.3
Weber, B.4
Elger, C.5
-
57
-
-
84956616219
-
Classifiers for ischemic stroke lesion segmentation: A comparison study
-
Maier O, Schrder C, Forkert ND, Martinetz T, Handels H. 2015. Classifiers for ischemic stroke lesion segmentation: a comparison study. PLOS ONE 10: 1-16
-
(2015)
PLOS ONE
, vol.10
, pp. 1-16
-
-
Maier, O.1
Schrder, C.2
Forkert, N.D.3
Martinetz, T.4
Handels, H.5
-
58
-
-
84973442994
-
Brain tumor segmentation with deep neural networks
-
Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, et al. 2017. Brain tumor segmentation with deep neural networks. Med. Image Anal. 35: 18-31
-
(2017)
Med. Image Anal.
, vol.35
, pp. 18-31
-
-
Havaei, M.1
Davy, A.2
Warde-Farley, D.3
Biard, A.4
Courville, A.5
-
60
-
-
84991439219
-
Deep models for brain em image segmentation: Novel insights and improved performance
-
Fakhry A, Peng H, Ji S. 2016. Deep models for brain EM image segmentation: novel insights and improved performance. Bioinformatics 32: 2352-58
-
(2016)
Bioinformatics
, vol.32
, pp. 2352-2358
-
-
Fakhry, A.1
Peng, H.2
Ji, S.3
-
61
-
-
85021072159
-
-
arXiv: 1505. 06236 [cs. CV]
-
Farag A, Lu L, Roth HR, Liu J, Turkbey E, Summers RM. 2015. A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. arXiv: 1505. 06236 [cs. CV]
-
(2015)
A Bottom-up Approach for Pancreas Segmentation Using Cascaded Superpixels and (Deep) Image Patch Labeling
-
-
Farag, A.1
Lu, L.2
Roth, H.R.3
Liu, J.4
Turkbey, E.5
Summers, R.M.6
-
62
-
-
84968572880
-
Marginal space deep learning: Efficient architecture for volumetric image parsing
-
Ghesu FC, Krubasik E, Georgescu B, Singh V, Zheng Y, et al. 2016. Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE Trans. Med. Imaging 35: 1217-28
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1217-1228
-
-
Ghesu, F.C.1
Krubasik, E.2
Georgescu, B.3
Singh, V.4
Zheng, Y.5
-
63
-
-
84960353898
-
A benchmark for comparison of dental radiography analysis algorithms
-
Wang CW, Huang CT, Lee JH, Li CH, Chang SW, et al. 2016. A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 31: 63-76
-
(2016)
Med. Image Anal.
, vol.31
, pp. 63-76
-
-
Wang, C.W.1
Huang, C.T.2
Lee, J.H.3
Li, C.H.4
Chang, S.W.5
-
64
-
-
0001075522
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
Rosenblatt F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958: 65-386
-
(1958)
Psychol. Rev.
, vol.1958
, pp. 65-386
-
-
Rosenblatt, F.1
-
65
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart DE, Hinton GE, Williams RJ. 1986. Learning representations by back-propagating errors. Nature 323: 533-36
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
66
-
-
80053437034
-
On optimization methods for deep learning
-
New York: ACM
-
Le QV, Ngiam J, Coates A, Lahiri A, Prochnow B, Ng AY. 2011. On optimization methods for deep learning. In Proceedings of the 28th International Conference on Machine Learning, pp. 265-72. New York: ACM
-
(2011)
Proceedings of the 28th International Conference on Machine Learning
, pp. 265-272
-
-
Le, Q.V.1
Ngiam, J.2
Coates, A.3
Lahiri, A.4
Prochnow, B.5
Ng, A.Y.6
-
67
-
-
0025751820
-
Approximation capabilities of multilayer feedforward networks
-
Hornik K. 1991. Approximation capabilities of multilayer feedforward networks. Neural Netw. 4: 251-57
-
(1991)
Neural Netw.
, vol.4
, pp. 251-257
-
-
Hornik, K.1
-
68
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz G. 1978. Estimating the dimension of a model. Ann. Stat. 6: 461-64
-
(1978)
Ann. Stat.
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
69
-
-
0024220237
-
Auto-association by multilayer perceptrons and singular value decomposition
-
Bourlard H, Kamp Y. 1988. Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 59: 291-94
-
(1988)
Biol. Cybern.
, vol.59
, pp. 291-294
-
-
Bourlard, H.1
Kamp, Y.2
-
70
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
ed. B Schölkopf, JC Platt, T Hoffmann
-
Bengio Y, Lamblin P, Popovici D, Larochelle H. 2007. Greedy layer-wise training of deep networks. In Proceedings of the 19th Conference on Neural Information Processing Systems (NIPS 2006), ed. B Schölkopf, JC Platt, T Hoffmann, pp. 153-60. https: //papers. nips. cc/paper/3048-greedy-layer-wise-trainingof-deep-networks
-
(2007)
Proceedings of the 19th Conference on Neural Information Processing Systems (NIPS 2006)
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
72
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton GE, Osindero S, Teh YW. 2006. A fast learning algorithm for deep belief nets. Neural Comput. 18: 1527-54
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
74
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton GE. 2002. Training products of experts by minimizing contrastive divergence. Neural Comput. 14: 1771-800
-
(2002)
Neural Comput.
, vol.14
, pp. 1771-1800
-
-
Hinton, G.E.1
-
75
-
-
0029652445
-
The "wake-sleep" algorithm for unsupervised neural networks
-
Hinton G, DayanP, FreyB, NealR. 1995. The "wake-sleep" algorithm for unsupervised neural networks. Science 268: 1158-61
-
(1995)
Science
, vol.268
, pp. 1158-1161
-
-
Hinton, G.1
Dayan, P.2
Frey, B.3
Neal, R.4
-
76
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LecunY, BottouL, BengioY, Haffner P. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86: 2278-324
-
(1998)
Proc. IEEE
, vol.86
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
79
-
-
84862294866
-
Deep sparse rectifier neural networks
-
ed. GGordon, DDunson, MDudik Brookline, MA: Microtome
-
Glorot X, Bordes A, Bengio Y. 2011. Deep sparse rectifier neural networks. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, ed. GGordon, DDunson, MDudik, pp. 315-23 Brookline, MA: Microtome
-
(2011)
Proceedings of the 14th International Conference on Artificial Intelligence and Statistics
, pp. 315-323
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
80
-
-
84893676344
-
Rectifier nonlinearities improve neural network acoustic models
-
New York: ACM
-
Maas AL, Hannun AY, Ng AY. 2013. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 30th International Conference on Machine Learning, Workshop on Deep Learning for Audio, Speech, and Language Processing, p. 192. New York: ACM
-
(2013)
Proceedings of the 30th International Conference on Machine Learning, Workshop on Deep Learning for Audio, Speech, and Language Processing
, pp. 192
-
-
Maas, A.L.1
Hannun, A.Y.2
Ng, A.Y.3
-
81
-
-
84897550107
-
Regularization of neural networks using DropConnect
-
New York: ACM
-
Wan L, Zeiler MD, Zhang S, LeCun Y, Fergus R. 2013. Regularization of neural networks using DropConnect. In Proceedings of the 30th International Conference on Machine Learning, pp. 1056-66. New York: ACM
-
(2013)
Proceedings of the 30th International Conference on Machine Learning
, pp. 1056-1066
-
-
Wan, L.1
Zeiler, M.D.2
Zhang, S.3
LeCun, Y.4
Fergus, R.5
-
82
-
-
46949103361
-
New brain atlas-mapping the human brain in vivo with 7. 0 T MRI and comparison with postmortem histology: Will these images change modern medicine
-
Cho ZH, Kim YB, Han JY, Min HK, Kim KN, et al. 2008. New brain atlas-mapping the human brain in vivo with 7. 0 T MRI and comparison with postmortem histology: Will these images change modern medicine Int. J. Imaging Syst. Technol. 18: 2-8
-
(2008)
Int. J. Imaging Syst. Technol.
, vol.18
, pp. 2-8
-
-
Cho, Z.H.1
Kim, Y.B.2
Han, J.Y.3
Min, H.K.4
Kim, K.N.5
-
83
-
-
33748095663
-
Learning-based deformable registration of MR brain images
-
Wu G, Qi F, Shen D. 2006. Learning-based deformable registration of MR brain images. IEEE Trans. Med. Imaging 25: 1145-57
-
(2006)
IEEE Trans. Med. Imaging
, vol.25
, pp. 1145-1157
-
-
Wu, G.1
Qi, F.2
Shen, D.3
-
84
-
-
78951494198
-
DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting
-
Ou Y, Sotiras A, Paragios N, Davatzikos C. 2011. DRAMMS: deformable registration via attribute matching and mutual-saliency weighting. Med. Image Anal. 15: 622-39
-
(2011)
Med. Image Anal.
, vol.15
, pp. 622-639
-
-
Ou, Y.1
Sotiras, A.2
Paragios, N.3
Davatzikos, C.4
-
87
-
-
63849264858
-
Diffeomorphic demons: Efficient non-parametric image registration
-
VercauterenT, PennecX, Perchant A, AyacheN. 2009. Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45: S61-72
-
(2009)
NeuroImage
, vol.45
, pp. S61-72
-
-
Vercauteren, T.1
Pennec, X.2
Perchant, A.3
Ayache, N.4
-
88
-
-
84893782766
-
S-HAMMER: Hierarchical attribute-guided, symmetric diffeomorphic registration for MR brain images
-
Wu G, Kim M, Wang Q, Shen D. 2014. S-HAMMER: hierarchical attribute-guided, symmetric diffeomorphic registration for MR brain images. Hum. Brain Mapp. 35: 1044-60
-
(2014)
Hum. Brain Mapp.
, vol.35
, pp. 1044-1060
-
-
Wu, G.1
Kim, M.2
Wang, Q.3
Shen, D.4
-
90
-
-
84963878431
-
Deformable MR prostate segmentation via deep feature learning and sparse patch matching
-
Guo Y, Gao Y, Shen D. 2016. Deformable MR prostate segmentation via deep feature learning and sparse patch matching. IEEE Trans. Med. Imaging 35: 1077-89
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1077-1089
-
-
Guo, Y.1
Gao, Y.2
Shen, D.3
-
91
-
-
84901279625
-
Automatic prostateMRimage segmentationwith sparse label propagation and domain-specific manifold regularization
-
Liao S, GaoY, Shi Y, Yousuf A, Karademir I, et al. 2013. Automatic prostateMRimage segmentationwith sparse label propagation and domain-specific manifold regularization. Inf. Proc. Med. Imaging 23: 511-23
-
(2013)
Inf. Proc. Med. Imaging
, vol.23
, pp. 511-523
-
-
Liao, S.1
Gao, Y.2
Shi, Y.3
Yousuf, A.4
Karademir, I.5
-
92
-
-
84886731548
-
Unsupervised deep learning for hippocampus segmentation in 7 0 Tesla MR images
-
Machine Learning in Medical Imaging. Berlin: Springer
-
Kim M, Wu G, Shen D. 2013. Unsupervised deep learning for hippocampus segmentation in 7. 0 Tesla MR images. In Lecture Notes in Computer Science, vol. 8184: Machine Learning in Medical Imaging, pp. 1-8. Berlin: Springer
-
(2013)
Lecture Notes in Computer Science
, vol.8184
, pp. 1-8
-
-
Kim, M.1
Wu, G.2
Shen, D.3
-
93
-
-
84944317431
-
Anatomy-specific classification of medical images using deep convolutional nets
-
Washington, DC: IEEE
-
Roth HR, Lee CT, Shin HC, Seff A, Kim L, et al. 2015. Anatomy-specific classification of medical images using deep convolutional nets. In Proceedings of the IEEE 12th International Symposium on Biomedical Imaging, pp. 293-303. Washington, DC: IEEE
-
(2015)
Proceedings of the IEEE 12th International Symposium on Biomedical Imaging
, pp. 293-303
-
-
Roth, H.R.1
Lee, C.T.2
Shin, H.C.3
Seff, A.4
Kim, L.5
-
94
-
-
84983568260
-
Bodypart recognition using multi-stage deep learning
-
New York: ACM
-
Yan Z, Zhan Y, Peng Z, Liao S, Shinagawa Y, et al. 2015. Bodypart recognition using multi-stage deep learning. In Proceedings of the 24th Conference on Information Processing in Medical Imaging, pp. 449-61. New York: ACM
-
(2015)
Proceedings of the 24th Conference on Information Processing in Medical Imaging
, pp. 449-461
-
-
Yan, Z.1
Zhan, Y.2
Peng, Z.3
Liao, S.4
Shinagawa, Y.5
-
95
-
-
84968680221
-
Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition
-
Yan Z, Zhan Y, Peng Z, Liao S, Shinagawa Y, et al. 2016. Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition. IEEE Trans. Med. Imaging 35: 1332-43
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1332-1343
-
-
Yan, Z.1
Zhan, Y.2
Peng, Z.3
Liao, S.4
Shinagawa, Y.5
-
98
-
-
84951858138
-
Beyond classification: Structured regression for robust cell detection using convolutional neural network
-
Berlin: Springer
-
Xie Y, Xing F, Kong X, Su H, Yang L. 2015. Beyond classification: structured regression for robust cell detection using convolutional neural network. In Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention Conference, pp. 358-65. Berlin: Springer
-
(2015)
Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention Conference
, pp. 358-365
-
-
Xie, Y.1
Xing, F.2
Kong, X.3
Su, H.4
Yang, L.5
-
99
-
-
84951843710
-
Deep voting: A robust approach toward nucleus localization in microscopy images
-
Berlin: Springer
-
Xie Y, Kong X, Xing F, Liu F, Su H, Yang L. 2015. Deep voting: a robust approach toward nucleus localization in microscopy images. In Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention Conference, pp. 374-82. Berlin: Springer
-
(2015)
Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention Conference
, pp. 374-382
-
-
Xie, Y.1
Kong, X.2
Xing, F.3
Liu, F.4
Su, H.5
Yang, L.6
-
100
-
-
84968542311
-
Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
-
Sirinukunwattana K, Raza SEA, Tsang YW, Snead DRJ, Cree IA, Rajpoot NM. 2016. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35: 1196-206
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1196-1206
-
-
Sirinukunwattana, K.1
Raza, S.E.A.2
Tsang, Y.W.3
Snead, D.R.J.4
Cree, I.A.5
Rajpoot, N.M.6
-
102
-
-
84968626579
-
Automatic segmentation of MR brain images with a convolutional neural network
-
Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJNL, Ísgum I. 2016. Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans. Med. Imaging 35: 1252-61
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1252-1261
-
-
Moeskops, P.1
Viergever, M.A.2
Mendrik, A.M.3
De Vries, L.S.4
Benders, M.J.N.L.5
Ísgum, I.6
-
103
-
-
67349126887
-
Automatic segmentation of newborn brain MRI
-
Weisenfeld NI, Warfield SK. 2009. Automatic segmentation of newborn brain MRI. NeuroImage 47: 564-72
-
(2009)
NeuroImage
, vol.47
, pp. 564-572
-
-
Weisenfeld, N.I.1
Warfield, S.K.2
-
104
-
-
35148872689
-
Automatic segmentation and reconstruction of the cortex from neonatal MRI
-
Xue H, Srinivasan L, Jiang S, Rutherford M, Edwards AD, et al. 2007. Automatic segmentation and reconstruction of the cortex from neonatal MRI. NeuroImage 38: 461-77
-
(2007)
NeuroImage
, vol.38
, pp. 461-477
-
-
Xue, H.1
Srinivasan, L.2
Jiang, S.3
Rutherford, M.4
Edwards, A.D.5
-
105
-
-
84870060046
-
Morphology-driven automatic segmentation of MR images of the neonatal brain
-
Gui L, Lisowski R, Faundez T, Hüppi PS, Lazeyras F, Kocher M. 2012. Morphology-driven automatic segmentation of MR images of the neonatal brain. Med. Image Anal. 16: 1565-79
-
(2012)
Med. Image Anal.
, vol.16
, pp. 1565-1579
-
-
Gui, L.1
Lisowski, R.2
Faundez, T.3
Hüppi, P.S.4
Lazeyras, F.5
Kocher, M.6
-
106
-
-
0034151398
-
Adaptive, templatemoderated, spatially varying statistical classification
-
Warfield S, KausM, Jolesz FA, Kikinis R. 2000. Adaptive, templatemoderated, spatially varying statistical classification. Med. Image Anal. 4: 43-55
-
(2000)
Med. Image Anal.
, vol.4
, pp. 43-55
-
-
Warfield, S.1
Kaus, M.2
Jolesz, F.A.3
Kikinis, R.4
-
107
-
-
23844494015
-
Automatic segmentation of MR images of the developing newborn brain
-
Prastawa M, Gilmore JH, LinW, Gerig G. 2005. Automatic segmentation of MR images of the developing newborn brain. Med. Image Anal. 9: 457-66
-
(2005)
Med. Image Anal.
, vol.9
, pp. 457-466
-
-
Prastawa, M.1
Gilmore, J.H.2
Lin, W.3
Gerig, G.4
-
108
-
-
80052159689
-
Automatic segmentation of neonatal images using convex optimization and coupled level sets
-
Wang L, Shi F, LinW, Gilmore JH, Shen D. 2011. Automatic segmentation of neonatal images using convex optimization and coupled level sets. NeuroImage 58: 805-17
-
(2011)
NeuroImage
, vol.58
, pp. 805-817
-
-
Wang, L.1
Shi, F.2
Lin, W.3
Gilmore, J.H.4
Shen, D.5
-
109
-
-
84883658529
-
Segmentation of neonatal brain MR images using patch-driven level sets
-
Wang L, Shi F, Li G, Gao Y, Lin W, et al. 2014. Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage 84: 141-58
-
(2014)
NeuroImage
, vol.84
, pp. 141-158
-
-
Wang, L.1
Shi, F.2
Li, G.3
Gao, Y.4
Lin, W.5
-
110
-
-
84920882082
-
Links: Learning-based multi-source integration framework for segmentation of infant brain images
-
Wang L, Gao Y, Shi F, Li G, Gilmore JH, et al. 2015. Links: learning-based multi-source integration framework for segmentation of infant brain images. NeuroImage 108: 160-72
-
(2015)
NeuroImage
, vol.108
, pp. 160-172
-
-
Wang, L.1
Gao, Y.2
Shi, F.3
Li, G.4
Gilmore, J.H.5
-
111
-
-
84906347546
-
-
arXiv: 1312. 6229 [cs. CV]
-
Sermanet P, EigenD, Zhang X, MathieuM, FergusR, LeCun Y. 2013. OverFeat: integrated recognition, localization and detection using convolutional networks. arXiv: 1312. 6229 [cs. CV]
-
(2013)
OverFeat: Integrated Recognition, Localization and Detection Using Convolutional Networks
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
112
-
-
85044296907
-
Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks
-
GaoM, Bagci U, Lu L, Wu A, Buty M, et al. 2016. Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Comput. Methods Biomech. Biomed. Eng. 2016: 1-6
-
(2016)
Comput. Methods Biomech. Biomed. Eng.
, vol.2016
, pp. 1-6
-
-
Gao, M.1
Bagci, U.2
Lu, L.3
Wu, A.4
Buty, M.5
-
116
-
-
84937522268
-
Going deeper with convolutions
-
Washington, DC: IEEE
-
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, et al. 2015. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-9. Washington, DC: IEEE
-
(2015)
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
-
117
-
-
84954314676
-
Deeply-supervised nets
-
Brookline, MA: Microtome
-
Lee CY, Xie S, Gallagher PW, Zhang Z, Tu Z. 2015. Deeply-supervised nets. In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, pp. 562-70. Brookline, MA: Microtome
-
(2015)
Proceedings of the 18th International Conference on Artificial Intelligence and Statistics
, pp. 562-570
-
-
Lee, C.Y.1
Xie, S.2
Gallagher, P.W.3
Zhang, Z.4
Tu, Z.5
-
118
-
-
80052213499
-
Multiple kernel learning algorithms
-
Gönen M, Alpaydn E. 2011. Multiple kernel learning algorithms. J. Mach. Learn. Res. 12: 2211-68
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2211-2268
-
-
Gönen, M.1
Alpaydn, E.2
-
120
-
-
84905900149
-
Deep learning for neuroimaging: A validation study
-
Plis SM, Hjelm D, Salakhutdinov R, Allen EA, Bockholt HJ, et al. 2014. Deep learning for neuroimaging: a validation study. Front. Neurosci. 8: 229
-
(2014)
Front. Neurosci.
, vol.8
, pp. 229
-
-
Plis, S.M.1
Hjelm, D.2
Salakhutdinov, R.3
Allen, E.A.4
Bockholt, H.J.5
-
121
-
-
84941964814
-
Deep neural network with weight sparsity control and pretraining extracts hierarchical features and enhances classification performance: Evidence from wholebrain resting-state functional connectivity patterns of schizophrenia
-
Kim J, Calhoun VD, Shim E, Lee JH. 2016. Deep neural network with weight sparsity control and pretraining extracts hierarchical features and enhances classification performance: evidence from wholebrain resting-state functional connectivity patterns of schizophrenia. NeuroImage 124: 127-46
-
(2016)
NeuroImage
, vol.124
, pp. 127-146
-
-
Kim, J.1
Calhoun, V.D.2
Shim, E.3
Lee, J.H.4
|