-
1
-
-
0004283231
-
Learning in Graphical Models
-
MIT Press Cambridge, MA, USA
-
[1] Jordan, M.I., Learning in Graphical Models. 1998, MIT Press, Cambridge, MA, USA.
-
(1998)
-
-
Jordan, M.I.1
-
2
-
-
0003408420
-
Learning with Kernels Support Vector Machines, Regularization, Optimization, and Beyond
-
MIT Press Cambridge, MA, USA
-
[2] Schölkopf, B., Smola, A.J., Learning with Kernels Support Vector Machines, Regularization, Optimization, and Beyond. 2002, MIT Press, Cambridge, MA, USA.
-
(2002)
-
-
Schölkopf, B.1
Smola, A.J.2
-
3
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
[3] Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B., An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12:2 (2001), 181–201.
-
(2001)
IEEE Trans. Neural Netw.
, vol.12
, Issue.2
, pp. 181-201
-
-
Müller, K.-R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
4
-
-
25444448065
-
Gaussian Processes for Machine Learning
-
MIT Press Cambridge, MA, USA
-
[4] Rasmussen, C.E., Williams, C.K.I., Gaussian Processes for Machine Learning. 2006, MIT Press, Cambridge, MA, USA.
-
(2006)
-
-
Rasmussen, C.E.1
Williams, C.K.I.2
-
5
-
-
0003487601
-
Neural Networks for Pattern Recognition
-
Oxford University Press, Inc. New York, NY, USA
-
[5] Bishop, C.M., Neural Networks for Pattern Recognition. 1995, Oxford University Press, Inc., New York, NY, USA.
-
(1995)
-
-
Bishop, C.M.1
-
6
-
-
85010640577
-
-
K.-R. Müller (eds.), Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, vol. 7700. Springer, Berlin Heidelberg, 2012.
-
[6] G. Montavon, G.B. Orr, K.-R. Müller (eds.), Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, vol. 7700. Springer, Berlin Heidelberg, 2012.
-
-
-
Montavon, G.1
Orr, G.B.2
-
7
-
-
84872543023
-
-
Efficient backprop, in: Neural Networks: Tricks of the Trade, 2nd ed., Springer, Berlin Heidelberg, 2012, pp. 9–48.
-
[7] Y. LeCun, L. Bottou, G.B. Orr, K.-R. Müller, Efficient backprop, in: Neural Networks: Tricks of the Trade, 2nd ed., Springer, Berlin Heidelberg, 2012, pp. 9–48.
-
-
-
LeCun, Y.1
Bottou, L.2
Orr, G.B.3
Müller, K.-R.4
-
8
-
-
84880285561
-
Boosting
-
MIT Press Cambridge, MA, USA
-
[8] Schapire, R.E., Freund, Y., Boosting. 2012, MIT Press, Cambridge, MA, USA.
-
(2012)
-
-
Schapire, R.E.1
Freund, Y.2
-
9
-
-
0035478854
-
Random forests
-
[9] Breiman, L., Random forests. Mach. Learn. 45:1 (2001), 5–32.
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
10
-
-
84878919540
-
Imagenet classification with deep convolutional neural networks,
-
[10] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, vol. 25, 2012, pp. 1106–1114.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
11
-
-
84877789057
-
Deep neural networks segment neuronal membranes in electron microscopy images,
-
[11] D.C. Ciresan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Deep neural networks segment neuronal membranes in electron microscopy images, in: Advances in Neural Information Processing Systems, vol. 25, 2012, pp. 2852–2860.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 2852-2860
-
-
Ciresan, D.C.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
12
-
-
84937522268
-
Going deeper with convolutions,
-
[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, 2015, pp. 1–9.
-
(2015)
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12,
, vol.2015
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.E.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
13
-
-
80053558787
-
Natural language processing (almost) from scratch
-
[13] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P., Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12 (2011), 2493–2537.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2493-2537
-
-
Collobert, R.1
Weston, J.2
Bottou, L.3
Karlen, M.4
Kavukcuoglu, K.5
Kuksa, P.P.6
-
14
-
-
84926358845
-
Recursive deep models for semantic compositionality over a sentiment treebank,
-
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, October 2013, pp. 1631–1642.
-
[14] R. Socher, A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A. Ng, C. Potts, Recursive deep models for semantic compositionality over a sentiment treebank, in: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, October 2013, pp. 1631–1642.
-
-
-
Socher, R.1
Perelygin, A.2
Wu, J.3
Chuang, J.4
Manning, C.D.5
Ng, A.6
Potts, C.7
-
15
-
-
77956507967
-
3d convolutional neural networks for human action recognition,
-
[15] S. Ji, W. Xu, M. Yang, K. Yu, 3d convolutional neural networks for human action recognition, in: Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21–24, 2010, Haifa, Israel, 2010, pp. 495–502.
-
(2010)
Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21–24, 2010, Haifa, Israel
, pp. 495-502
-
-
Ji, S.1
Xu, W.2
Yang, M.3
Yu, K.4
-
16
-
-
80052874098
-
Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis,
-
[16] Q.V. Le, W.Y. Zou, S.Y. Yeung, A.Y. Ng, Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis, in: The 24th IEEE Conference on Computer Vision and Pattern Recognition, pp. 3361–3368, 2011.
-
(2011)
The 24th IEEE Conference on Computer Vision and Pattern Recognition
-
-
Le, Q.V.1
Zou, W.Y.2
Yeung, S.Y.3
Ng, A.Y.4
-
17
-
-
84956860695
-
Human action recognition using genetic algorithms and convolutional neural networks
-
[17] Ijjina, E.P., Chalavadi, K.M., Human action recognition using genetic algorithms and convolutional neural networks. Pattern Recognit., 2016.
-
(2016)
Pattern Recognit.
-
-
Ijjina, E.P.1
Chalavadi, K.M.2
-
18
-
-
84885045537
-
Machine learning of molecular electronic properties in chemical compound space
-
[18] Montavon, G., Rupp, M., Gobre, V., Vazquez-Mayagoitia, A., Hansen, K., Tkatchenko, A., Müller, K.-R., von Lilienfeld, O.A., Machine learning of molecular electronic properties in chemical compound space. New J. Phys., 15(9), 2013, 095003.
-
(2013)
New J. Phys.
, vol.15
, Issue.9
, pp. 095003
-
-
Montavon, G.1
Rupp, M.2
Gobre, V.3
Vazquez-Mayagoitia, A.4
Hansen, K.5
Tkatchenko, A.6
Müller, K.-R.7
von Lilienfeld, O.A.8
-
19
-
-
84903779279
-
Searching for exotic particles in high-energy physics with deep learning
-
[19] Baldi, P., Sadowski, P., Whiteson, D., Searching for exotic particles in high-energy physics with deep learning. Nat. Commun., 5(4308), 2014.
-
(2014)
Nat. Commun.
, vol.5
, Issue.4308
-
-
Baldi, P.1
Sadowski, P.2
Whiteson, D.3
-
20
-
-
84890905553
-
On the interpretation of weight vectors of linear models in multivariate neuroimaging
-
[20] Haufe, S., Meinecke, F.C., Görgen, K., Dähne, S., Haynes, J., Blankertz, B., Bießmann, F., On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage 87 (2014), 96–110.
-
(2014)
NeuroImage
, vol.87
, pp. 96-110
-
-
Haufe, S.1
Meinecke, F.C.2
Görgen, K.3
Dähne, S.4
Haynes, J.5
Blankertz, B.6
Bießmann, F.7
-
21
-
-
0001169470
-
Male-female wage differentials in urban labor markets
-
[21] Oaxaca, R., Male-female wage differentials in urban labor markets. Int. Econ. Rev. 14:3 (1973), 693–709.
-
(1973)
Int. Econ. Rev.
, vol.14
, Issue.3
, pp. 693-709
-
-
Oaxaca, R.1
-
22
-
-
33750708213
-
Visual explanation of evidence with additive classifiers,
-
[22] B. Poulin, R. Eisner, D. Szafron, P. Lu, R. Greiner, D.S. Wishart, A. Fyshe, B. Pearcy, C. Macdonell, J. Anvik, Visual explanation of evidence with additive classifiers, in: Proceedings, The Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, 2006, pp. 1822–1829.
-
(2006)
Proceedings, The Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference
, pp. 1822-1829
-
-
Poulin, B.1
Eisner, R.2
Szafron, D.3
Lu, P.4
Greiner, R.5
Wishart, D.S.6
Fyshe, A.7
Pearcy, B.8
Macdonell, C.9
Anvik, J.10
-
23
-
-
84938239875
-
Deep inside convolutional networks: visualising image classification models and saliency maps
-
vol. abs/1312.6034
-
[23] Simonyan, K., Vedaldi, A., Zisserman, A., Deep inside convolutional networks: visualising image classification models and saliency maps. CoRR, 2013 vol. abs/1312.6034.
-
(2013)
CoRR
-
-
Simonyan, K.1
Vedaldi, A.2
Zisserman, A.3
-
25
-
-
84940560152
-
On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
-
[25] Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., Samek, W., On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One, 10(7), 2015, e0130140.
-
(2015)
PLoS One
, vol.10
, Issue.7
, pp. e0130140
-
-
Bach, S.1
Binder, A.2
Montavon, G.3
Klauschen, F.4
Müller, K.-R.5
Samek, W.6
-
26
-
-
0022471098
-
Learning representations by back-propagating errors
-
[26] Rumelhart, D., Hinton, G., Williams, R., Learning representations by back-propagating errors. Nature 323:6088 (1986), 533–536.
-
(1986)
Nature
, vol.323
, Issue.6088
, pp. 533-536
-
-
Rumelhart, D.1
Hinton, G.2
Williams, R.3
-
27
-
-
85027179087
-
Evaluating the visualization of what a deep neural network has learned
-
[27] Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R., Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 99 (2016), 1–14.
-
(2016)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.99
, pp. 1-14
-
-
Samek, W.1
Binder, A.2
Montavon, G.3
Lapuschkin, S.4
Müller, K.-R.5
-
28
-
-
50949127418
-
On relevant dimensions in kernel feature spaces
-
[28] Braun, M.L., Buhmann, J.M., Müller, K.-R., On relevant dimensions in kernel feature spaces. J. Mach. Learn. Res. 9 (2008), 1875–1908.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1875-1908
-
-
Braun, M.L.1
Buhmann, J.M.2
Müller, K.-R.3
-
29
-
-
85032751251
-
Analyzing local structure in kernel-based learning: explanation, complexity, and reliability assessment
-
[29] Montavon, G., Braun, M.L., Krueger, T., Müller, K.-R., Analyzing local structure in kernel-based learning: explanation, complexity, and reliability assessment. IEEE Signal Process. Mag. 30:4 (2013), 62–74.
-
(2013)
IEEE Signal Process. Mag.
, vol.30
, Issue.4
, pp. 62-74
-
-
Montavon, G.1
Braun, M.L.2
Krueger, T.3
Müller, K.-R.4
-
30
-
-
80555140085
-
Kernel analysis of deep networks
-
[30] Montavon, G., Braun, M.L., Müller, K.-R., Kernel analysis of deep networks. J. Mach. Learn. Res. 12 (2011), 2563–2581.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2563-2581
-
-
Montavon, G.1
Braun, M.L.2
Müller, K.-R.3
-
31
-
-
84860644702
-
Measuring invariances in deep networks,
-
[31] I.J. Goodfellow, Q.V. Le, A.M. Saxe, H. Lee, A.Y. Ng, Measuring invariances in deep networks, in: Advances in Neural Information Processing Systems, vol. 22, pp. 646–654, 2009.
-
(2009)
Advances in Neural Information Processing Systems
-
-
Goodfellow, I.J.1
Le, Q.V.2
Saxe, A.M.3
Lee, H.4
Ng, A.Y.5
-
32
-
-
85010678034
-
-
Understanding Representations Learned in Deep Architectures, Technical Report 1355, University of Montreal, 2010.
-
[32] D. Erhan, A. Courville, Y. Bengio, Understanding Representations Learned in Deep Architectures, Technical Report 1355, University of Montreal, 2010.
-
-
-
Erhan, D.1
Courville, A.2
Bengio, Y.3
-
33
-
-
0032708870
-
Extracting decision trees from trained neural networks
-
[33] Krishnan, R., Sivakumar, G., Bhattacharya, P., Extracting decision trees from trained neural networks. Pattern Recognit. 32:12 (1999), 1999–2009.
-
(1999)
Pattern Recognit.
, vol.32
, Issue.12
, pp. 1999-2009
-
-
Krishnan, R.1
Sivakumar, G.2
Bhattacharya, P.3
-
34
-
-
0033097962
-
A search technique for rule extraction from trained neural networks
-
[34] Krishnan, R., Sivakumar, G., Bhattacharya, P., A search technique for rule extraction from trained neural networks. Pattern Recognit. Lett. 20:3 (1999), 273–280.
-
(1999)
Pattern Recognit. Lett.
, vol.20
, Issue.3
, pp. 273-280
-
-
Krishnan, R.1
Sivakumar, G.2
Bhattacharya, P.3
-
35
-
-
77954665728
-
How to explain individual classification decisions
-
[35] Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.-R., How to explain individual classification decisions. J. Mach. Learn. Res. 11 (2010), 1803–1831.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 1803-1831
-
-
Baehrens, D.1
Schroeter, T.2
Harmeling, S.3
Kawanabe, M.4
Hansen, K.5
Müller, K.-R.6
-
36
-
-
84885678081
-
Interpreting individual classifications of hierarchical networks,
-
[36] W. Landecker, M.D. Thomure, L.M.A. Bettencourt, M. Mitchell, G.T. Kenyon, S.P. Brumby, Interpreting individual classifications of hierarchical networks, in: IEEE Symposium on Computational Intelligence and Data Mining, 2013, pp. 32–38.
-
(2013)
IEEE Symposium on Computational Intelligence and Data Mining
, pp. 32-38
-
-
Landecker, W.1
Thomure, M.D.2
Bettencourt, L.M.A.3
Mitchell, M.4
Kenyon, G.T.5
Brumby, S.P.6
-
37
-
-
84908877742
-
Intriguing properties of neural networks
-
vol. abs/1312.6199
-
[37] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J., Fergus, R., Intriguing properties of neural networks. CoRR, 2013 vol. abs/1312.6199.
-
(2013)
CoRR
-
-
Szegedy, C.1
Zaremba, W.2
Sutskever, I.3
Bruna, J.4
Erhan, D.5
Goodfellow, I.J.6
Fergus, R.7
-
38
-
-
85010680644
-
-
The Taylor decomposition: a unified generalization of the Oaxaca method to nonlinear models, Technical Report 2013-32, Aix-Marseille University, 2013.
-
[38] S. Bazen, X. Joutard, The Taylor decomposition: a unified generalization of the Oaxaca method to nonlinear models, Technical Report 2013-32, Aix-Marseille University, 2013.
-
-
-
Bazen, S.1
Joutard, X.2
-
39
-
-
84959250180
-
From captions to visual concepts and back,
-
[39] H. Fang, S. Gupta, F.N. Iandola, R.K. Srivastava, L. Deng, P. Dollár, J. Gao, X. He, M. Mitchell, J.C. Platt, C.L. Zitnick, G. Zweig, From captions to visual concepts and back, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, 2015, pp. 1473–1482.
-
(2015)
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12,
, vol.2015
, pp. 1473-1482
-
-
Fang, H.1
Gupta, S.2
Iandola, F.N.3
Srivastava, R.K.4
Deng, L.5
Dollár, P.6
Gao, J.7
He, X.8
Mitchell, M.9
Platt, J.C.10
Zitnick, C.L.11
Zweig, G.12
-
40
-
-
85162061663
-
Learning to combine foveal glimpses with a third-order Boltzmann machine,
-
[40] H. Larochelle, G.E. Hinton, Learning to combine foveal glimpses with a third-order Boltzmann machine, in: Advances in Neural Information Processing Systems 23, 2010, pp. 1243–1251.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 1243-1251
-
-
Larochelle, H.1
Hinton, G.E.2
-
41
-
-
84970002232
-
Show, attend and tell: Neural image caption generation with visual attention,
-
[41] K. Xu, J. Ba, R. Kiros, K. Cho, A.C. Courville, R. Salakhutdinov, R.S. Zemel, Y. Bengio, Show, attend and tell: Neural image caption generation with visual attention, in: Proceedings of the 32nd International Conference on Machine Learning, 2015, pp. 2048–2057.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning
, pp. 2048-2057
-
-
Xu, K.1
Ba, J.2
Kiros, R.3
Cho, K.4
Courville, A.C.5
Salakhutdinov, R.6
Zemel, R.S.7
Bengio, Y.8
-
42
-
-
85121212264
-
Explaining predictions of non-linear classifiers in NLP,
-
[42] L. Arras, F. Horn, G. Montavon, K.-R. Müller, W. Samek, Explaining predictions of non-linear classifiers in NLP, in: Proceedings of the Workshop on Representation Learning for NLP at Association for Computational Linguistics (ACL), 2016.
-
(2016)
Proceedings of the Workshop on Representation Learning for NLP at Association for Computational Linguistics (ACL)
-
-
Arras, L.1
Horn, F.2
Montavon, G.3
Müller, K.-R.4
Samek, W.5
-
43
-
-
84993965279
-
Interpretable deep neural networks for single-trial EEG classification
-
[43] Sturm, I., Lapuschkin, S., Samek, W., Müller, K.-R., Interpretable deep neural networks for single-trial EEG classification. J. Neurosci. Methods 274 (2016), 141–145.
-
(2016)
J. Neurosci. Methods
, vol.274
, pp. 141-145
-
-
Sturm, I.1
Lapuschkin, S.2
Samek, W.3
Müller, K.-R.4
-
44
-
-
0037442845
-
Review and comparison of methods to study the contribution of variables in artificial neural network models
-
[44] Gevrey, M., Dimopoulos, I., Lek, S., Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model. 160:3 (2003), 249–264.
-
(2003)
Ecol. Model.
, vol.160
, Issue.3
, pp. 249-264
-
-
Gevrey, M.1
Dimopoulos, I.2
Lek, S.3
-
45
-
-
85024491816
-
Deepfool: a simple and accurate method to fool deep neural networks
-
vol. abs/1511.04599
-
[45] Moosavi-Dezfooli, S., Fawzi, A., Frossard, P., Deepfool: a simple and accurate method to fool deep neural networks. CoRR, 2015 vol. abs/1511.04599.
-
(2015)
CoRR
-
-
Moosavi-Dezfooli, S.1
Fawzi, A.2
Frossard, P.3
-
46
-
-
0001867238
-
Interpreting neural-network connection weights
-
[46] Garson, D.G., Interpreting neural-network connection weights. AI Expert 6:4 (1991), 46–51.
-
(1991)
AI Expert
, vol.6
, Issue.4
, pp. 46-51
-
-
Garson, D.G.1
-
47
-
-
0342898730
-
Generalization and network design strategies,
-
[47] Y. LeCun, Generalization and network design strategies, in: Connectionism in Perspective, Elsevier, Zurich, Switzerland, 1989.
-
(1989)
Connectionism in Perspective, Elsevier, Zurich, Switzerland
-
-
LeCun, Y.1
-
48
-
-
85010652746
-
-
Caffe: an open source convolutional architecture for fast feature embedding, 2016, 〈〉.
-
[48] Y. Jia, Caffe: an open source convolutional architecture for fast feature embedding, 2016, 〈 http://caffe.berkeleyvision.org〉.
-
-
-
Jia, Y.1
-
49
-
-
85010647943
-
-
The ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) 〈〉.
-
[49] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, F.-F. Li, The ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) 〈 http://www.image-net.org/challenges/LSVRC/2012〉.
-
-
-
Deng, J.1
Berg, A.2
Satheesh, S.3
Su, H.4
Khosla, A.5
Li, F.-F.6
-
50
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
[50] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Li, F., Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115:3 (2015), 211–252.
-
(2015)
Int. J. Comput. Vis.
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.S.10
Berg, A.C.11
Li, F.12
-
51
-
-
85057858432
-
Visualizing and comparing convolutional neural networks
-
vol. abs/1412.6631
-
[51] Yu, W., Yang, K., Bai, Y., Yao, H., Rui, Y., Visualizing and comparing convolutional neural networks. CoRR, 2014 vol. abs/1412.6631.
-
(2014)
CoRR
-
-
Yu, W.1
Yang, K.2
Bai, Y.3
Yao, H.4
Rui, Y.5
-
52
-
-
84986268738
-
Analyzing classifiers: Fisher vectors and deep neural networks,
-
[52] S. Lapuschkin, A. Binder, G. Montavon, K.-R. Müller, W. Samek, Analyzing classifiers: Fisher vectors and deep neural networks, in: IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2912–2920.
-
(2016)
IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2912-2920
-
-
Lapuschkin, S.1
Binder, A.2
Montavon, G.3
Müller, K.-R.4
Samek, W.5
|