메뉴 건너뛰기




Volumn 65, Issue , 2017, Pages 211-222

Explaining nonlinear classification decisions with deep Taylor decomposition

Author keywords

Deep neural networks; Heatmapping; Image recognition; Relevance propagation; Taylor decomposition

Indexed keywords

IMAGE RECOGNITION; LEARNING SYSTEMS; MULTILAYERS; NETWORK ARCHITECTURE;

EID: 85010676902     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2016.11.008     Document Type: Article
Times cited : (1439)

References (52)
  • 1
    • 0004283231 scopus 로고    scopus 로고
    • Learning in Graphical Models
    • MIT Press Cambridge, MA, USA
    • [1] Jordan, M.I., Learning in Graphical Models. 1998, MIT Press, Cambridge, MA, USA.
    • (1998)
    • Jordan, M.I.1
  • 2
    • 0003408420 scopus 로고    scopus 로고
    • Learning with Kernels Support Vector Machines, Regularization, Optimization, and Beyond
    • MIT Press Cambridge, MA, USA
    • [2] Schölkopf, B., Smola, A.J., Learning with Kernels Support Vector Machines, Regularization, Optimization, and Beyond. 2002, MIT Press, Cambridge, MA, USA.
    • (2002)
    • Schölkopf, B.1    Smola, A.J.2
  • 4
    • 25444448065 scopus 로고    scopus 로고
    • Gaussian Processes for Machine Learning
    • MIT Press Cambridge, MA, USA
    • [4] Rasmussen, C.E., Williams, C.K.I., Gaussian Processes for Machine Learning. 2006, MIT Press, Cambridge, MA, USA.
    • (2006)
    • Rasmussen, C.E.1    Williams, C.K.I.2
  • 5
    • 0003487601 scopus 로고
    • Neural Networks for Pattern Recognition
    • Oxford University Press, Inc. New York, NY, USA
    • [5] Bishop, C.M., Neural Networks for Pattern Recognition. 1995, Oxford University Press, Inc., New York, NY, USA.
    • (1995)
    • Bishop, C.M.1
  • 6
    • 85010640577 scopus 로고    scopus 로고
    • K.-R. Müller (eds.), Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, vol. 7700. Springer, Berlin Heidelberg, 2012.
    • [6] G. Montavon, G.B. Orr, K.-R. Müller (eds.), Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, vol. 7700. Springer, Berlin Heidelberg, 2012.
    • Montavon, G.1    Orr, G.B.2
  • 7
    • 84872543023 scopus 로고    scopus 로고
    • Efficient backprop, in: Neural Networks: Tricks of the Trade, 2nd ed., Springer, Berlin Heidelberg, 2012, pp. 9–48.
    • [7] Y. LeCun, L. Bottou, G.B. Orr, K.-R. Müller, Efficient backprop, in: Neural Networks: Tricks of the Trade, 2nd ed., Springer, Berlin Heidelberg, 2012, pp. 9–48.
    • LeCun, Y.1    Bottou, L.2    Orr, G.B.3    Müller, K.-R.4
  • 8
    • 84880285561 scopus 로고    scopus 로고
    • Boosting
    • MIT Press Cambridge, MA, USA
    • [8] Schapire, R.E., Freund, Y., Boosting. 2012, MIT Press, Cambridge, MA, USA.
    • (2012)
    • Schapire, R.E.1    Freund, Y.2
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • [9] Breiman, L., Random forests. Mach. Learn. 45:1 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 14
    • 84926358845 scopus 로고    scopus 로고
    • Recursive deep models for semantic compositionality over a sentiment treebank,
    • Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, October 2013, pp. 1631–1642.
    • [14] R. Socher, A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A. Ng, C. Potts, Recursive deep models for semantic compositionality over a sentiment treebank, in: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, October 2013, pp. 1631–1642.
    • Socher, R.1    Perelygin, A.2    Wu, J.3    Chuang, J.4    Manning, C.D.5    Ng, A.6    Potts, C.7
  • 17
    • 84956860695 scopus 로고    scopus 로고
    • Human action recognition using genetic algorithms and convolutional neural networks
    • [17] Ijjina, E.P., Chalavadi, K.M., Human action recognition using genetic algorithms and convolutional neural networks. Pattern Recognit., 2016.
    • (2016) Pattern Recognit.
    • Ijjina, E.P.1    Chalavadi, K.M.2
  • 19
    • 84903779279 scopus 로고    scopus 로고
    • Searching for exotic particles in high-energy physics with deep learning
    • [19] Baldi, P., Sadowski, P., Whiteson, D., Searching for exotic particles in high-energy physics with deep learning. Nat. Commun., 5(4308), 2014.
    • (2014) Nat. Commun. , vol.5 , Issue.4308
    • Baldi, P.1    Sadowski, P.2    Whiteson, D.3
  • 21
    • 0001169470 scopus 로고
    • Male-female wage differentials in urban labor markets
    • [21] Oaxaca, R., Male-female wage differentials in urban labor markets. Int. Econ. Rev. 14:3 (1973), 693–709.
    • (1973) Int. Econ. Rev. , vol.14 , Issue.3 , pp. 693-709
    • Oaxaca, R.1
  • 23
    • 84938239875 scopus 로고    scopus 로고
    • Deep inside convolutional networks: visualising image classification models and saliency maps
    • vol. abs/1312.6034
    • [23] Simonyan, K., Vedaldi, A., Zisserman, A., Deep inside convolutional networks: visualising image classification models and saliency maps. CoRR, 2013 vol. abs/1312.6034.
    • (2013) CoRR
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 25
    • 84940560152 scopus 로고    scopus 로고
    • On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
    • [25] Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., Samek, W., On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One, 10(7), 2015, e0130140.
    • (2015) PLoS One , vol.10 , Issue.7 , pp. e0130140
    • Bach, S.1    Binder, A.2    Montavon, G.3    Klauschen, F.4    Müller, K.-R.5    Samek, W.6
  • 26
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • [26] Rumelhart, D., Hinton, G., Williams, R., Learning representations by back-propagating errors. Nature 323:6088 (1986), 533–536.
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 28
    • 50949127418 scopus 로고    scopus 로고
    • On relevant dimensions in kernel feature spaces
    • [28] Braun, M.L., Buhmann, J.M., Müller, K.-R., On relevant dimensions in kernel feature spaces. J. Mach. Learn. Res. 9 (2008), 1875–1908.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1875-1908
    • Braun, M.L.1    Buhmann, J.M.2    Müller, K.-R.3
  • 29
    • 85032751251 scopus 로고    scopus 로고
    • Analyzing local structure in kernel-based learning: explanation, complexity, and reliability assessment
    • [29] Montavon, G., Braun, M.L., Krueger, T., Müller, K.-R., Analyzing local structure in kernel-based learning: explanation, complexity, and reliability assessment. IEEE Signal Process. Mag. 30:4 (2013), 62–74.
    • (2013) IEEE Signal Process. Mag. , vol.30 , Issue.4 , pp. 62-74
    • Montavon, G.1    Braun, M.L.2    Krueger, T.3    Müller, K.-R.4
  • 32
    • 85010678034 scopus 로고    scopus 로고
    • Understanding Representations Learned in Deep Architectures, Technical Report 1355, University of Montreal, 2010.
    • [32] D. Erhan, A. Courville, Y. Bengio, Understanding Representations Learned in Deep Architectures, Technical Report 1355, University of Montreal, 2010.
    • Erhan, D.1    Courville, A.2    Bengio, Y.3
  • 33
    • 0032708870 scopus 로고    scopus 로고
    • Extracting decision trees from trained neural networks
    • [33] Krishnan, R., Sivakumar, G., Bhattacharya, P., Extracting decision trees from trained neural networks. Pattern Recognit. 32:12 (1999), 1999–2009.
    • (1999) Pattern Recognit. , vol.32 , Issue.12 , pp. 1999-2009
    • Krishnan, R.1    Sivakumar, G.2    Bhattacharya, P.3
  • 34
    • 0033097962 scopus 로고    scopus 로고
    • A search technique for rule extraction from trained neural networks
    • [34] Krishnan, R., Sivakumar, G., Bhattacharya, P., A search technique for rule extraction from trained neural networks. Pattern Recognit. Lett. 20:3 (1999), 273–280.
    • (1999) Pattern Recognit. Lett. , vol.20 , Issue.3 , pp. 273-280
    • Krishnan, R.1    Sivakumar, G.2    Bhattacharya, P.3
  • 38
    • 85010680644 scopus 로고    scopus 로고
    • The Taylor decomposition: a unified generalization of the Oaxaca method to nonlinear models, Technical Report 2013-32, Aix-Marseille University, 2013.
    • [38] S. Bazen, X. Joutard, The Taylor decomposition: a unified generalization of the Oaxaca method to nonlinear models, Technical Report 2013-32, Aix-Marseille University, 2013.
    • Bazen, S.1    Joutard, X.2
  • 40
    • 85162061663 scopus 로고    scopus 로고
    • Learning to combine foveal glimpses with a third-order Boltzmann machine,
    • [40] H. Larochelle, G.E. Hinton, Learning to combine foveal glimpses with a third-order Boltzmann machine, in: Advances in Neural Information Processing Systems 23, 2010, pp. 1243–1251.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 1243-1251
    • Larochelle, H.1    Hinton, G.E.2
  • 43
    • 84993965279 scopus 로고    scopus 로고
    • Interpretable deep neural networks for single-trial EEG classification
    • [43] Sturm, I., Lapuschkin, S., Samek, W., Müller, K.-R., Interpretable deep neural networks for single-trial EEG classification. J. Neurosci. Methods 274 (2016), 141–145.
    • (2016) J. Neurosci. Methods , vol.274 , pp. 141-145
    • Sturm, I.1    Lapuschkin, S.2    Samek, W.3    Müller, K.-R.4
  • 44
    • 0037442845 scopus 로고    scopus 로고
    • Review and comparison of methods to study the contribution of variables in artificial neural network models
    • [44] Gevrey, M., Dimopoulos, I., Lek, S., Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model. 160:3 (2003), 249–264.
    • (2003) Ecol. Model. , vol.160 , Issue.3 , pp. 249-264
    • Gevrey, M.1    Dimopoulos, I.2    Lek, S.3
  • 45
    • 85024491816 scopus 로고    scopus 로고
    • Deepfool: a simple and accurate method to fool deep neural networks
    • vol. abs/1511.04599
    • [45] Moosavi-Dezfooli, S., Fawzi, A., Frossard, P., Deepfool: a simple and accurate method to fool deep neural networks. CoRR, 2015 vol. abs/1511.04599.
    • (2015) CoRR
    • Moosavi-Dezfooli, S.1    Fawzi, A.2    Frossard, P.3
  • 46
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • [46] Garson, D.G., Interpreting neural-network connection weights. AI Expert 6:4 (1991), 46–51.
    • (1991) AI Expert , vol.6 , Issue.4 , pp. 46-51
    • Garson, D.G.1
  • 48
    • 85010652746 scopus 로고    scopus 로고
    • Caffe: an open source convolutional architecture for fast feature embedding, 2016, 〈〉.
    • [48] Y. Jia, Caffe: an open source convolutional architecture for fast feature embedding, 2016, 〈 http://caffe.berkeleyvision.org〉.
    • Jia, Y.1
  • 49
    • 85010647943 scopus 로고    scopus 로고
    • The ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) 〈〉.
    • [49] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, F.-F. Li, The ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) 〈 http://www.image-net.org/challenges/LSVRC/2012〉.
    • Deng, J.1    Berg, A.2    Satheesh, S.3    Su, H.4    Khosla, A.5    Li, F.-F.6
  • 51
    • 85057858432 scopus 로고    scopus 로고
    • Visualizing and comparing convolutional neural networks
    • vol. abs/1412.6631
    • [51] Yu, W., Yang, K., Bai, Y., Yao, H., Rui, Y., Visualizing and comparing convolutional neural networks. CoRR, 2014 vol. abs/1412.6631.
    • (2014) CoRR
    • Yu, W.1    Yang, K.2    Bai, Y.3    Yao, H.4    Rui, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.