메뉴 건너뛰기




Volumn 2016-June, Issue , 2016, Pages 1397-1400

Deep features to classify skin lesions

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; CONVOLUTION; DERMATOLOGY; IMAGE PROCESSING; IMAGE SEGMENTATION; MEDICAL IMAGING; NEURAL NETWORKS;

EID: 84978426890     PISSN: 19457928     EISSN: 19458452     Source Type: Conference Proceeding    
DOI: 10.1109/ISBI.2016.7493528     Document Type: Conference Paper
Times cited : (292)

References (14)
  • 1
    • 80155172209 scopus 로고    scopus 로고
    • American Cancer Society,accessed: 2015-10-23
    • American Cancer Society, "Melanoma skin cancer, " http: //cancer. org/melanoma-skin-cancer-pdf, accessed: 2015-10-23.
    • Melanoma Skin Cancer
  • 2
    • 84869084264 scopus 로고    scopus 로고
    • Computerized analysis of pigmented skin lesions: A review
    • K. Korotkov and R. Garcia, "Computerized analysis of pigmented skin lesions: A review, " Artificial Intelligence in Medicine, vol. 56, no. 2, pp. 69-90, 2012.
    • (2012) Artificial Intelligence in Medicine , vol.56 , Issue.2 , pp. 69-90
    • Korotkov, K.1    Garcia, R.2
  • 3
    • 84860322847 scopus 로고    scopus 로고
    • A systematic review of worldwide incidence of nonmelanoma skin cancer
    • A. Lomas, J. Leonardi-Bee, and F. Bath-Hextall, "A systematic review of worldwide incidence of nonmelanoma skin cancer, " Br. J. Dermatol., vol. 166, no. 5, pp. 1069-1080, 2012.
    • (2012) Br. J. Dermatol. , vol.166 , Issue.5 , pp. 1069-1080
    • Lomas, A.1    Leonardi-Bee, J.2    Bath-Hextall, F.3
  • 4
    • 85043454425 scopus 로고    scopus 로고
    • A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions
    • L. Ballerini, R. B. Fisher, B. Aldridge, and J. Rees, "A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions, " Color Medical Image Analysis, vol. 6, pp. 63-86, 2013.
    • (2013) Color Medical Image Analysis , vol.6 , pp. 63-86
    • Ballerini, L.1    Fisher, R.B.2    Aldridge, B.3    Rees, J.4
  • 6
    • 84919941351 scopus 로고    scopus 로고
    • Four-class classification of skin lesions with task decomposition strategy
    • K. Shimizu et al., "Four-class classification of skin lesions with task decomposition strategy, " IEEE TBE, vol. 62, no. 1, pp. 274-283, 2015.
    • (2015) IEEE TBE , vol.62 , Issue.1 , pp. 274-283
    • Shimizu, K.1
  • 7
    • 84883830807 scopus 로고    scopus 로고
    • Depth data improves skin lesion segmentation
    • X. Li et al., "Depth data improves skin lesion segmentation, " in MICCAI, vol. 5762, 2009, pp. 1100-1107.
    • (2009) MICCAI , vol.5762 , pp. 1100-1107
    • Li, X.1
  • 8
    • 84947041871 scopus 로고    scopus 로고
    • ImageNet large scale visual recognition challenge
    • O. Russakovsky et al., "ImageNet large scale visual recognition challenge, " IJCV, vol. 115, no. 3, pp. 211-252, 2015.
    • (2015) IJCV , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1
  • 9
    • 84906332834 scopus 로고    scopus 로고
    • DeCAF: A deep convolutional activation feature for generic visual recognition
    • J. Donahue et al., "DeCAF: A deep convolutional activation feature for generic visual recognition, " ICML, vol. 32, pp. 647-655, 2014.
    • (2014) ICML , vol.32 , pp. 647-655
    • Donahue, J.1
  • 10
    • 84952004763 scopus 로고    scopus 로고
    • Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images
    • N. Codella, J. Cai, M. Abedini, R. Garnavi, A. Halpern, and J. R. Smith, "Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images, " in MICCAI MLMI, vol. 9352, 2015, pp. 118-126.
    • (2015) MICCAI MLMI , vol.9352 , pp. 118-126
    • Codella, N.1    Cai, J.2    Abedini, M.3    Garnavi, R.4    Halpern, A.5    Smith, J.R.6
  • 11
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition, " ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 12
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks, " in NIPS, 2012, pp. 1097-1105.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 13
    • 85083951635 scopus 로고    scopus 로고
    • OverFeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet et al., "OverFeat: Integrated recognition, localization and detection using convolutional networks, " ICLR, 2014.
    • (2014) ICLR
    • Sermanet, P.1
  • 14
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding, " ACM Conference on Multimedia, pp. 675-678, 2014.
    • (2014) ACM Conference on Multimedia , pp. 675-678
    • Jia, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.