메뉴 건너뛰기




Volumn 9349, Issue , 2015, Pages 556-564

Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; IMAGE SEGMENTATION; MEDICAL IMAGING; PIXELS;

EID: 84947475390     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-24553-9_68     Document Type: Chapter
Times cited : (692)

References (15)
  • 1
    • 84909581400 scopus 로고    scopus 로고
    • Geodesic patch-based segmentation
    • In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.), Springer, Heidelberg
    • Wang, Z., Bhatia, K.K., Glocker, B., Marvao, A., Dawes, T., Misawa, K., Mori, K., Rueckert, D.: Geodesic patch-based segmentation. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. MICCAI, pp. 666–673. Springer, Heidelberg (2014)
    • (2014) MICCAI 2014, Part I. LNCS , vol.MICCAI , pp. 666-673
    • Wang, Z.1    Bhatia, K.K.2    Glocker, B.3    Marvao, A.4    Dawes, T.5    Misawa, K.6    Mori, K.7    Rueckert, D.8
  • 2
    • 84897577322 scopus 로고    scopus 로고
    • Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images
    • In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.), Springer, Heidelberg
    • Chu, C., et al.: Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 165–172. Springer, Heidelberg (2013)
    • (2013) MICCAI 2013, Part II. LNCS , vol.8150 , pp. 165-172
    • Chu, C.1
  • 3
    • 84883368454 scopus 로고    scopus 로고
    • Automated abdominal multi-organ segmentation with subject-specific atlas generation
    • Wolz, R., Chu, C., Misawa, K., Fujiwara, M., Mori, K., Rueckert, D.: Automated abdominal multi-organ segmentation with subject-specific atlas generation. TMI 32(9), 1723–1730 (2013)
    • (2013) TMI , vol.32 , Issue.9 , pp. 1723-1730
    • Wolz, R.1    Chu, C.2    Misawa, K.3    Fujiwara, M.4    Mori, K.5    Rueckert, D.6
  • 6
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 8
    • 84885899176 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer histology images with deep neural networks
    • In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.), Springer, Heidelberg
    • Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013)
    • (2013) MICCAI 2013, Part II. LNCS , vol.8150 , pp. 411-418
    • Cireşan, D.C.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 9
    • 84909644435 scopus 로고    scopus 로고
    • A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations
    • In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.), Springer, Heidelberg
    • Roth, H.R., et al.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. MICCAI, pp. 520–527. Springer, Heidelberg (2014)
    • (2014) MICCAI 2014, Part I. LNCS , vol.MICCAI , pp. 520-527
    • Roth, H.R.1
  • 10
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE CVPR, pp. 580–587 (2014)
    • (2014) IEEE CVPR , pp. 580-587
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 11
    • 84866657764 scopus 로고    scopus 로고
    • Slic superpixels compared to state-of-the-art superpixel methods
    • Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. PAMI 34(11) (2012)
    • (2012) PAMI , vol.34 , Issue.11
    • Achanta, R.1    Shaji, A.2    Smith, K.3    Lucchi, A.4    Fua, P.5    Susstrunk, S.6
  • 14
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A simple way to prevent neural networks from overfitting. JMLR 15(1), 1929–1958 (2014)
    • (2014) JMLR , vol.15 , Issue.1 , pp. 1929-1958
    • Srivastava, N.1    Hinton, G.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.5
  • 15
    • 33746427122 scopus 로고    scopus 로고
    • Graph cuts and efficient ND image segmentation
    • Boykov, Y., Funka-Lea, G.: Graph cuts and efficient ND image segmentation. IJCV 70(2), 109–131 (2006)
    • (2006) IJCV , vol.70 , Issue.2 , pp. 109-131
    • Boykov, Y.1    Funka-Lea, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.