메뉴 건너뛰기




Volumn 30, Issue 1, 2017, Pages 95-101

High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks

Author keywords

Artificial neural networks; Chest radiographs; Computer vision; Convolutional neural network; Deep learning; Machine learning; Radiography

Indexed keywords

ARTIFICIAL INTELLIGENCE; BINS; CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; COMPUTER VISION; CONVOLUTION; LEARNING SYSTEMS; NEURAL NETWORKS; RADIATION; RADIOGRAPHY; RADIOLOGY; THROUGHPUT;

EID: 84991063753     PISSN: 08971889     EISSN: 1618727X     Source Type: Journal    
DOI: 10.1007/s10278-016-9914-9     Document Type: Article
Times cited : (125)

References (24)
  • 1
    • 84876252000 scopus 로고    scopus 로고
    • Quantitative analysis of multiparametric prostate Mr images: differentiation between prostate cancer and normal tissue and correlation with gleason score—a computer-aided diagnosis development study
    • PID: 23392430
    • Peng Y, Jiang Y, Yang C, Brown JB, Antic T, Sethi I, et al: Quantitative analysis of multiparametric prostate Mr images: differentiation between prostate cancer and normal tissue and correlation with gleason score—a computer-aided diagnosis development study. Radiology 267(3):787–96, 2013
    • (2013) Radiology , vol.267 , Issue.3 , pp. 787-796
    • Peng, Y.1    Jiang, Y.2    Yang, C.3    Brown, J.B.4    Antic, T.5    Sethi, I.6
  • 5
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • COI: 1:CAS:528:DC%2BC2MXht1WlurzP, PID: 26017442
    • Lecun Y, Bengio Y, Hinton G: Deep learning. Nature 521(7553):436–44, 2015
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.3
  • 6
    • 84876231242 scopus 로고    scopus 로고
    • Hinton Ge: Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst
    • Krizhevsky A, Sutskever I, Hinton Ge: Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst, 2012
    • (2012) Sutskever , vol.1
    • Krizhevsky, A.1
  • 7
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • PID: 16764513
    • Hinton GE, Osindero S, Teh Y: A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–54, 2006
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 9
    • 85055090691 scopus 로고    scopus 로고
    • Medical image deep learning with hospital Pacs dataset
    • Cho J, Lee K, Shin E, Choy G, Do S: Medical image deep learning with hospital Pacs dataset. Arxiv Preprint Arxiv:1511.06348, 2015
    • (2015) Arxiv Preprint Arxiv , vol.1511 , pp. 06348
    • Cho, J.1    Lee, K.2    Shin, E.3    Choy, G.4    Do, S.5
  • 11
    • 85010556627 scopus 로고    scopus 로고
    • A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac Mri
    • Avendi M, Kheradvar A, Jafarkhani H: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac Mri. Arxiv Preprint Arxiv:1512.07951, 2015
    • (2015) Arxiv Preprint Arxiv , vol.1512 , pp. 07951
    • Avendi, M.1    Kheradvar, A.2    Jafarkhani, H.3
  • 12
    • 84973293116 scopus 로고    scopus 로고
    • Urinary bladder segmentation in Ct urography using deep-learning convolutional neural network and level sets
    • PID: 27036584
    • Cha K, Hadjiiski L, Samala RK, Chan H, Caoili EM, Cohan RH: Urinary bladder segmentation in Ct urography using deep-learning convolutional neural network and level sets. Med Phys 43(4):1882–96, 2016
    • (2016) Med Phys , vol.43 , Issue.4 , pp. 1882-1896
    • Cha, K.1    Hadjiiski, L.2    Samala, R.K.3    Chan, H.4    Caoili, E.M.5    Cohan, R.H.6
  • 14
    • 84983670549 scopus 로고    scopus 로고
    • Multi-scale convolutional neural networks for lung nodule classification
    • Shen W, Zhou M, Yang F, Yang C, Tian J:; Springer, 2015
    • Shen W, Zhou M, Yang F, Yang C, Tian J: Multi-scale convolutional neural networks for lung nodule classification. Information Processing In Medical Imaging; Springer, 2015.
    • Information Processing In Medical Imaging
  • 15
    • 85020311273 scopus 로고    scopus 로고
    • Learning to read chest X-rays: recurrent neural cascade model for automated image annotation
    • Shin H, Roberts K, Lu L, Demner-Fushman D, Yao J, Summers RM: Learning to read chest X-rays: recurrent neural cascade model for automated image annotation. Arxiv Preprint Arxiv:1603.08486, 2016
    • (2016) Arxiv Preprint Arxiv , vol.1603 , pp. 08486
    • Shin, H.1    Roberts, K.2    Lu, L.3    Demner-Fushman, D.4    Yao, J.5    Summers, R.M.6
  • 21
    • 16244366026 scopus 로고
    • Index for rating diagnostic tests
    • COI: 1:STN:280:DyaG3c%2FhsFeisw%3D%3D, PID: 15405679
    • Youden WJ: Index for rating diagnostic tests. Cancer 3(1):32–5, 1950
    • (1950) Cancer , vol.3 , Issue.1 , pp. 32-35
    • Youden, W.J.1
  • 22
    • 0001072895 scopus 로고
    • The use of confidence or fiducial limits illustrated in the case of the binomial
    • Clopper CJ, Pearson ES: The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26(4):404–13, 1934
    • (1934) Biometrika , vol.26 , Issue.4 , pp. 404-413
    • Clopper, C.J.1    Pearson, E.S.2
  • 23
    • 0026901845 scopus 로고
    • Recognition of chest radiograph orientation for picture archiving and communications systems display using neural networks
    • COI: 1:STN:280:DyaK38zpt12gsw%3D%3D, PID: 1520746
    • Boone JM, Seshagiri S, Steiner RM: Recognition of chest radiograph orientation for picture archiving and communications systems display using neural networks. J Digit Imaging 5(3):190–3, 1992
    • (1992) J Digit Imaging , vol.5 , Issue.3 , pp. 190-193
    • Boone, J.M.1    Seshagiri, S.2    Steiner, R.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.