-
1
-
-
84876252000
-
Quantitative analysis of multiparametric prostate Mr images: differentiation between prostate cancer and normal tissue and correlation with gleason score—a computer-aided diagnosis development study
-
PID: 23392430
-
Peng Y, Jiang Y, Yang C, Brown JB, Antic T, Sethi I, et al: Quantitative analysis of multiparametric prostate Mr images: differentiation between prostate cancer and normal tissue and correlation with gleason score—a computer-aided diagnosis development study. Radiology 267(3):787–96, 2013
-
(2013)
Radiology
, vol.267
, Issue.3
, pp. 787-796
-
-
Peng, Y.1
Jiang, Y.2
Yang, C.3
Brown, J.B.4
Antic, T.5
Sethi, I.6
-
2
-
-
0008283947
-
Automated computer analysis of radiographic images 1
-
COI: 1:STN:280:DyaF2M%2FjtFaisg%3D%3D, PID: 14226800
-
Meyers PH, Nice Jr, CM, Becker HC, Nettleton Jr, WJ, Sweeney JW, Meckstroth GR: Automated computer analysis of radiographic images 1. Radiology 83(6):1029–34, 1964
-
(1964)
Radiology
, vol.83
, Issue.6
, pp. 1029-1034
-
-
Meyers, P.H.1
Nice, C.M.2
Becker, H.C.3
Nettleton, W.J.4
Sweeney, J.W.5
Meckstroth, G.R.6
-
3
-
-
0000178127
-
Pattern recognition of chest x-ray images
-
Toriwaki J, Suenaga Y, Negoro T, Fukumura T: Pattern recognition of chest x-ray images. Comput Graph Image Process 2(3):252–71, 1973
-
(1973)
Comput Graph Image Process
, vol.2
, Issue.3
, pp. 252-271
-
-
Toriwaki, J.1
Suenaga, Y.2
Negoro, T.3
Fukumura, T.4
-
5
-
-
84930630277
-
Deep learning
-
COI: 1:CAS:528:DC%2BC2MXht1WlurzP, PID: 26017442
-
Lecun Y, Bengio Y, Hinton G: Deep learning. Nature 521(7553):436–44, 2015
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
6
-
-
84876231242
-
-
Hinton Ge: Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst
-
Krizhevsky A, Sutskever I, Hinton Ge: Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst, 2012
-
(2012)
Sutskever
, vol.1
-
-
Krizhevsky, A.1
-
7
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
PID: 16764513
-
Hinton GE, Osindero S, Teh Y: A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–54, 2006
-
(2006)
Neural Comput
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
9
-
-
85055090691
-
Medical image deep learning with hospital Pacs dataset
-
Cho J, Lee K, Shin E, Choy G, Do S: Medical image deep learning with hospital Pacs dataset. Arxiv Preprint Arxiv:1511.06348, 2015
-
(2015)
Arxiv Preprint Arxiv
, vol.1511
, pp. 06348
-
-
Cho, J.1
Lee, K.2
Shin, E.3
Choy, G.4
Do, S.5
-
11
-
-
85010556627
-
A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac Mri
-
Avendi M, Kheradvar A, Jafarkhani H: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac Mri. Arxiv Preprint Arxiv:1512.07951, 2015
-
(2015)
Arxiv Preprint Arxiv
, vol.1512
, pp. 07951
-
-
Avendi, M.1
Kheradvar, A.2
Jafarkhani, H.3
-
12
-
-
84973293116
-
Urinary bladder segmentation in Ct urography using deep-learning convolutional neural network and level sets
-
PID: 27036584
-
Cha K, Hadjiiski L, Samala RK, Chan H, Caoili EM, Cohan RH: Urinary bladder segmentation in Ct urography using deep-learning convolutional neural network and level sets. Med Phys 43(4):1882–96, 2016
-
(2016)
Med Phys
, vol.43
, Issue.4
, pp. 1882-1896
-
-
Cha, K.1
Hadjiiski, L.2
Samala, R.K.3
Chan, H.4
Caoili, E.M.5
Cohan, R.H.6
-
13
-
-
85024495276
-
Igel C
-
Kallenberg M, Petersen K, Nielsen M, Ng A, Diao P, Igel C, et al: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. 2016
-
(2016)
Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
-
-
Kallenberg, M.1
Petersen, K.2
Nielsen, M.3
Ng, A.4
Diao, P.5
-
14
-
-
84983670549
-
Multi-scale convolutional neural networks for lung nodule classification
-
Shen W, Zhou M, Yang F, Yang C, Tian J:; Springer, 2015
-
Shen W, Zhou M, Yang F, Yang C, Tian J: Multi-scale convolutional neural networks for lung nodule classification. Information Processing In Medical Imaging; Springer, 2015.
-
Information Processing In Medical Imaging
-
-
-
15
-
-
85020311273
-
Learning to read chest X-rays: recurrent neural cascade model for automated image annotation
-
Shin H, Roberts K, Lu L, Demner-Fushman D, Yao J, Summers RM: Learning to read chest X-rays: recurrent neural cascade model for automated image annotation. Arxiv Preprint Arxiv:1603.08486, 2016
-
(2016)
Arxiv Preprint Arxiv
, vol.1603
, pp. 08486
-
-
Shin, H.1
Roberts, K.2
Lu, L.3
Demner-Fushman, D.4
Yao, J.5
Summers, R.M.6
-
17
-
-
84963729804
-
Preparing a collection of radiology examinations for distribution and retrieval
-
PID: 26133894
-
Demner-Fushman D, Kohli MD, Rosenman MB, Shooshan SE, Rodriguez L, Antani S, et al: Preparing a collection of radiology examinations for distribution and retrieval. J Am Med Inform Assoc 23(2):304–10, 2016
-
(2016)
J Am Med Inform Assoc
, vol.23
, Issue.2
, pp. 304-310
-
-
Demner-Fushman, D.1
Kohli, M.D.2
Rosenman, M.B.3
Shooshan, S.E.4
Rodriguez, L.5
Antani, S.6
-
18
-
-
85116182532
-
-
Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, et al: Caffe: Convolutional Architecture For Fast Feature Embedding. Proc ACM Int Conf Multimedia ACM, 2014
-
(2014)
Caffe: Convolutional Architecture For Fast Feature Embedding. Proc ACM Int Conf Multimedia ACM
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
-
19
-
-
84937522268
-
Going deeper with convolutions
-
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al: Going deeper with convolutions. Proc IEEE Conf Comput Vis Pattern Recognit, 2015
-
(2015)
Proc IEEE Conf Comput Vis Pattern Recognit
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
-
20
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al: Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–52, 2015
-
(2015)
Int J Comput Vis
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
-
21
-
-
16244366026
-
Index for rating diagnostic tests
-
COI: 1:STN:280:DyaG3c%2FhsFeisw%3D%3D, PID: 15405679
-
Youden WJ: Index for rating diagnostic tests. Cancer 3(1):32–5, 1950
-
(1950)
Cancer
, vol.3
, Issue.1
, pp. 32-35
-
-
Youden, W.J.1
-
22
-
-
0001072895
-
The use of confidence or fiducial limits illustrated in the case of the binomial
-
Clopper CJ, Pearson ES: The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26(4):404–13, 1934
-
(1934)
Biometrika
, vol.26
, Issue.4
, pp. 404-413
-
-
Clopper, C.J.1
Pearson, E.S.2
-
23
-
-
0026901845
-
Recognition of chest radiograph orientation for picture archiving and communications systems display using neural networks
-
COI: 1:STN:280:DyaK38zpt12gsw%3D%3D, PID: 1520746
-
Boone JM, Seshagiri S, Steiner RM: Recognition of chest radiograph orientation for picture archiving and communications systems display using neural networks. J Digit Imaging 5(3):190–3, 1992
-
(1992)
J Digit Imaging
, vol.5
, Issue.3
, pp. 190-193
-
-
Boone, J.M.1
Seshagiri, S.2
Steiner, R.M.3
-
24
-
-
85119630547
-
Chest x-ray image view classification. 2015 I.E
-
Xue Z, You D, Candemir S, Jaeger S, Antani S, Long LR, et al: Chest x-ray image view classification. 2015 I.E. 28th International Symposium On Computer-Based Medical Systems; IEEE, 2015
-
(2015)
28th International Symposium On Computer-Based Medical Systems; IEEE
-
-
Xue, Z.1
You, D.2
Candemir, S.3
Jaeger, S.4
Antani, S.5
Long, L.R.6
|