메뉴 건너뛰기




Volumn 26, Issue 7, 2016, Pages

Ensembles of Deep Learning Architectures for the Early Diagnosis of the Alzheimer's Disease

Author keywords

Alzheimer's disease classification; Deep learning; ensemble

Indexed keywords

BRAIN; DIAGNOSIS; NETWORK ARCHITECTURE; NEUROIMAGING;

EID: 84980348164     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065716500258     Document Type: Conference Paper
Times cited : (350)

References (82)
  • 1
    • 75149136696 scopus 로고    scopus 로고
    • Alzheimers disease and the β-amyloid peptide
    • M. P. Murphy and H. LeVine, Alzheimers disease and the β-amyloid peptide, J. Alzheimer's Dis. 19(1) (2010) 311-318.
    • (2010) J. Alzheimer's Dis , vol.19 , Issue.1 , pp. 311-318
    • Murphy, M.P.1    LeVine, H.2
  • 2
    • 84983606881 scopus 로고    scopus 로고
    • Alzheimer's Disease Society Factsheet: Drug treatments for Alzheimer's Disease (London UK, Last accessed May 2016
    • Alzheimer's Disease Society, Factsheet: Drug treatments for Alzheimer's Disease (London, UK, 2014), https://www.alzheimers.org.uk. Last accessed May 2016.
    • (2014)
  • 7
    • 82455199256 scopus 로고    scopus 로고
    • The Alzheimer's disease neuroimaging initiative, A comparative study of the feature extraction methods for the diagnosis of Alzheimer's disease using the adni database
    • F. Segovia, J. M. Górriz, J. Ramírez, D. Salas- González, I. Álvarez, M. López and R. Chaves, The Alzheimer's disease neuroimaging initiative, A comparative study of the feature extraction methods for the diagnosis of Alzheimer's disease using the adni database, Neurocomputing 75 (2012) 64-71.
    • (2012) Neurocomputing , vol.75 , pp. 64-71
    • Segovia, F.1    Górriz, J.M.2    Ramírez, J.3    Salas-González, D.4    Álvarez, I.5    López, M.6    Chaves, R.7
  • 8
    • 21444435892 scopus 로고    scopus 로고
    • Alzheimer's disease and models of computation: Imaging, classification, and neural models, J
    • H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, Alzheimer's disease and models of computation: Imaging, classification, and neural models, J. Alzheimer's Dis. 7(3) (2005) 187-199.
    • (2005) Alzheimer's Dis , vol.7 , Issue.3 , pp. 187-199
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 9
    • 23844473285 scopus 로고    scopus 로고
    • Alzheimer's Disease: Models of computation and analysis of EEGs Clin
    • H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, Alzheimer's Disease: Models of computation and analysis of EEGs, Clin. EEG Neurosci. 36(3) (2005) 131-140.
    • (2005) EEG Neurosci , vol.36 , Issue.3 , pp. 131-140
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 10
    • 77956469969 scopus 로고    scopus 로고
    • New diagnostic EEG markers of the Alzheimer's disease using visibility graph
    • A. H. Ahmadlou, M. and A. Adeli, New diagnostic EEG markers of the Alzheimer's disease using visibility graph, J. Neural Transm. 117(9) (2010) 1099-1109.
    • (2010) J. Neural Transm , vol.117 , Issue.9 , pp. 1099-1109
    • Ahmadlou M, A.H.1    Adeli, A.2
  • 11
    • 78651088422 scopus 로고    scopus 로고
    • Intrahemispheric, interhemispheric and distal EEG coherence in Alzheimer's disease
    • Z. Sankari and H. Adeli, Intrahemispheric, interhemispheric and distal EEG coherence in Alzheimer's disease, Clin. Neurophysiol. 122(5) (2011) 897-906.
    • (2011) Clin. Neurophysiol , vol.122 , Issue.5 , pp. 897-906
    • Sankari, Z.1    Adeli, H.2
  • 13
    • 51349083532 scopus 로고    scopus 로고
    • A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease
    • H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease, Neurosci. Lett. 444(2) (2008) 190-194.
    • (2008) Neurosci. Lett , vol.444 , Issue.2 , pp. 190-194
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 15
    • 79952194903 scopus 로고    scopus 로고
    • Fractality and a wavelet-chao methodology for EEG-based diagnosis of Alzheimer's disease
    • A. H. Ahmadlou and A. Adeli, Fractality and a wavelet-chao methodology for EEG-based diagnosis of Alzheimer's disease, Alzheimer Dis. Assoc. Disord. 25(1) (2011) 85-92.
    • (2011) Alzheimer Dis. Assoc. Disord , vol.25 , Issue.1 , pp. 85-92
    • Ahmadlou, A.H.1    Adeli, A.2
  • 16
    • 79953032936 scopus 로고    scopus 로고
    • Probabilistic neural networks for EEG-based diagnosis of Alzheimer's disease using conventional and wavelet coherence
    • Z. Sankari and H. Adeli, Probabilistic neural networks for EEG-based diagnosis of Alzheimer's disease using conventional and wavelet coherence, J. Neurosci. Methods 197(1) (2011) 165-170.
    • (2011) J. Neurosci. Methods , vol.197 , Issue.1 , pp. 165-170
    • Sankari, Z.1    Adeli, H.2
  • 17
    • 84870532507 scopus 로고    scopus 로고
    • Wavelet coherence model for diagnosis of Alzheimer's disease
    • Z. Sankari and H. Adeli, Wavelet coherence model for diagnosis of Alzheimer's disease, Clin. EEG Neurosci. 43(3) (2012) 268-278.
    • (2012) Clin. EEG Neurosci , vol.43 , Issue.3 , pp. 268-278
    • Sankari, Z.1    Adeli, H.2
  • 18
    • 84899649749 scopus 로고    scopus 로고
    • Automatic ROI selection in structural brain MRI using som 3d projection
    • A. Ortiz, J. M. Górriz, J. Ramírez and F. J. Martínez-Murcia, Automatic ROI selection in structural brain MRI using som 3d projection, PLOS One 9(4) (2014) 1-12.
    • (2014) PLOS One , vol.9 , Issue.4 , pp. 1-12
    • Ortiz, A.1    Górriz, J.M.2    Ramírez, J.3    Martínez-Murcia, F.J.4
  • 19
    • 84885602719 scopus 로고    scopus 로고
    • LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer's disease
    • A. Ortiz, J. M. Górriz, J. Ramírez and F. J. Martínez-Murcia, LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer's disease, Pattern Recogn. Lett. 34(14) (2013) 1725-1733.
    • (2013) Pattern Recogn. Lett , vol.34 , Issue.14 , pp. 1725-1733
    • Ortiz, A.1    Górriz, J.M.2    Ramírez, J.3    Martínez-Murcia, F.J.4
  • 20
    • 82455164245 scopus 로고    scopus 로고
    • Hybrid dendritic computing with kernel-lica applied to Alzheimer's disease detection in MRI
    • D. Chyzhyk, M. Graña, A. Savio and J. Maiora, Hybrid dendritic computing with kernel-lica applied to Alzheimer's disease detection in MRI, Neurocomputing 75(1) (2012) 72-77.
    • (2012) Neurocomputing , vol.75 , Issue.1 , pp. 72-77
    • Chyzhyk, D.1    Graña, M.2    Savio, A.3    Maiora, J.4
  • 21
    • 79955059574 scopus 로고    scopus 로고
    • Alzheimer's disease neuroimaging initiative, automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the adni database
    • R. Cuingnet, E. Gerardin, J. Tessieras, G. Auzias, S. Lehéricy, M. Habert, M. Chupin, H. Benali and O. Colliot, Alzheimer's disease neuroimaging initiative, automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the adni database, Neuroimage 56(2) (2010) 766-781.
    • (2010) Neuroimage , vol.56 , Issue.2 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3    Auzias, G.4    Lehéricy, S.5    Habert, M.6    Chupin, M.7    Benali, H.8    Colliot, O.9
  • 22
    • 84862778147 scopus 로고    scopus 로고
    • Alzheimer's disease neuroimaging initiative, ensemble sparse classification of Alzheimer's disease
    • M. Liu, D. Zhang and D. Shen, Alzheimer's disease neuroimaging initiative, ensemble sparse classification of Alzheimer's disease, Neuroimage 60(2) (2012) 1106-1116.
    • (2012) Neuroimage , vol.60 , Issue.2 , pp. 1106-1116
    • Liu, M.1    Zhang, D.2    Shen, D.3
  • 23
    • 84880072756 scopus 로고    scopus 로고
    • An ensemble of classifiers guided by the aal brain atlas for Alzheimers disease detection
    • eds. I. Rojas, G. Joya and J. Cabestany, Lecture Notes in Computer Science, Springer Berlin Heidelberg
    • A. Savio and M. Graa, An ensemble of classifiers guided by the aal brain atlas for Alzheimers disease detection, in Advances in Computational Intelligence, eds. I. Rojas, G. Joya and J. Cabestany, Lecture Notes in Computer Science, Vol. 7903 (Springer Berlin Heidelberg, 2013), pp. 107-114.
    • (2013) Advances in Computational Intelligence , vol.7903 , pp. 107-114
    • Savio, A.1    Graa, M.2
  • 24
    • 84983620966 scopus 로고    scopus 로고
    • J. Dukart, K. Mueller, H. Barthel, A. Villringer, O. Sabri and M. L. Schroeter, Alzheimer's Disease Neuroimaging Initiative
    • J. Dukart, K. Mueller, H. Barthel, A. Villringer, O. Sabri and M. L. Schroeter, Alzheimer's Disease Neuroimaging Initiative.
  • 26
    • 84926347409 scopus 로고    scopus 로고
    • When mars versus venus is not a clich: Gender differences in the neurobiology of Alzheimers disease
    • K. A. Lin and P. M. Doraiswamy, When mars versus venus is not a clich: Gender differences in the neurobiology of Alzheimers disease, Front. Neurol. 5(288) (2015) 1-3.
    • (2015) Front. Neurol , vol.5 , Issue.288 , pp. 1-3
    • Lin, K.A.1    Doraiswamy, P.M.2
  • 28
    • 34548795886 scopus 로고    scopus 로고
    • Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment
    • S. J. Teipel, C. Born, M. Ewers, A. L. Bokde, M. F. Reiser, H.-J. Mller and H. Hampel, Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment, Neuroimage 38(1) (2007) 13-24.
    • (2007) Neuroimage , vol.38 , Issue.1 , pp. 13-24
    • Teipel, S.J.1    Born, C.2    Ewers, M.3    Bokde, A.L.4    Reiser, M.F.5    Mller, H.-J.6    Hampel, H.7
  • 30
    • 84983599968 scopus 로고    scopus 로고
    • (Functional Imaging Laboratory, Institute of Neurology, UK
    • J. Ashburner and T. Group, SPM8 Manuel, Vol. 12 (Functional Imaging Laboratory, Institute of Neurology, UK, 2011).
    • (2011) SPM8 Manuel , vol.12
    • Ashburner, J.1    Group, T.2
  • 31
    • 84983674356 scopus 로고    scopus 로고
    • Structural Brain Mapping Group, Department of Psychiatry, [Accessed on 10 March 2014]
    • Structural Brain Mapping Group, Department of Psychiatry, Available at http://dbm.neuro.unijena. de/vbm8/VBM8-Manual.pdf [Accessed on 10 March 2014].
  • 37
    • 84933532290 scopus 로고    scopus 로고
    • Alzheimer's Disease Neuroimaging Initiative, the relative importance of imaging markers for the prediction of Alzheimer's disease dementia in mild cognitive impairment - Beyond classical regression
    • S. J. Teipel, J. Kurth, B. Krause and M. J. Grothe, Alzheimer's Disease Neuroimaging Initiative, The relative importance of imaging markers for the prediction of alzheimer's disease dementia in mild cognitive impairment - beyond classical regression, Neuroimage Clin. 8 (2015) 583-593.
    • (2015) Neuroimage Clin , vol.8 , pp. 583-593
    • Teipel, S.J.1    Kurth, J.2    Krause, B.3    Grothe, M.J.4
  • 39
    • 0028131438 scopus 로고
    • Metabolic reduction in the posterior cinculate cortex in very early Alzheimer's disease
    • A. Minoshima, N. Foster and D. Kuhl, Metabolic reduction in the posterior cinculate cortex in very early Alzheimer's disease, Lancet 3440(8926) (1994) 895.
    • (1994) Lancet , vol.3440 , Issue.8926 , pp. 895
    • Minoshima, A.1    Foster, N.2    Kuhl, D.3
  • 40
    • 3142588721 scopus 로고    scopus 로고
    • Advances in the early detection of Alzheimer's disease
    • P. J. Nestor, P. Scheltens and J. R. Hodges, Advances in the early detection of Alzheimer's disease, Nat. Rev. Neurosci. 5(1) (2004) 34-41.
    • (2004) Nat. Rev. Neurosci , vol.5 , Issue.1 , pp. 34-41
    • Nestor, P.J.1    Scheltens, P.2    Hodges, J.R.3
  • 41
    • 77249118678 scopus 로고    scopus 로고
    • Initiative Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation
    • N A.D.
    • S. Huang, J. Li, L. Sun, J. Ye, A. Fleisher, T. Wu, K. Chen, E. Reiman and A. D. N. Initiative, Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation, Neuroimage 50(3) (2010) 935-949.
    • (2010) Neuroimage , vol.50 , Issue.3 , pp. 935-949
    • Huang, S.1    Li, J.2    Sun, L.3    Ye, J.4    Fleisher, A.5    Wu, T.6    Chen, K.7    Reiman, E.8
  • 42
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton and S. Osindero, A fast learning algorithm for deep belief nets, Neural Comput. 18 (2006) 2006.
    • (2006) Neural Comput , vol.18 , pp. 2006
    • Hinton, G.E.1    Osindero, S.2
  • 46
    • 84882261563 scopus 로고    scopus 로고
    • Multimodal integration of micro-doppler sonar and auditory signals for behavior classification with convolutional networks
    • S. Dura-Bernal, G. Garreau, A. Andreou, S. Denham and T. wennekers, Multimodal integration of micro-doppler sonar and auditory signals for behavior classification with convolutional networks, Int. J. Neural Syst. 13(1) (2013) 1-15.
    • (2013) Int. J. Neural Syst , vol.13 , Issue.1 , pp. 1-15
    • Dura-Bernal, S.1    Garreau, G.2    Andreou, A.3    Denham, S.4    Wennekers, T.5
  • 48
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for ai, Found
    • Y. Bengio, Learning deep architectures for ai, Found. Trends Mach. Learn. 2 (2009) 1-127.
    • (2009) Trends Mach. Learn , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 49
    • 33745780732 scopus 로고    scopus 로고
    • Exponential family harmoniums with an application to information retrieval
    • M. Welling, M. Rosen-Zvi and G. E. Hinton, Exponential family harmoniums with an application to information retrieval, Vol. 17, Neural Inform. Process. Syst. (NIPS) (2004), pp. 1481-1488.
    • (2004) Neural Inform. Process. Syst. (NIPS) , vol.17 , pp. 1481-1488
    • Welling, M.1    Rosen-Zvi, M.2    Hinton, G.E.3
  • 50
    • 68049138790 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. Hinton, Training products of experts by minimizing contrastive divergence, Neural Comput. 14 (2000) 2002.
    • (2000) Neural Comput , vol.14 , pp. 2002
    • Hinton, G.1
  • 53
    • 85161966246 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • eds. J. Platt, D. Koller, Y. Singer and S. Roweis (Curran Associates, Inc
    • M. Aurelio Ranzato, Y. lan Boureau and Y. L. Cun, Sparse feature learning for deep belief networks, in Advances in Neural Information Processing Systems, Vol. 20, eds. J. Platt, D. Koller, Y. Singer and S. Roweis (Curran Associates, Inc., 2008), pp. 1185- 1192.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 1185-1192
    • Aurelio Ranzato, M.1    Lan Boureau, Y.2    Cun, Y.L.3
  • 54
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • eds. Y. Bengio, D. Schuurmans, J. Lafferty, C.Williams and A. Culotta (Curran Associates, Inc
    • H. Lee, P. Pham, Y. Largman and A. Y. Ng, Unsupervised feature learning for audio classification using convolutional deep belief networks, in Advances in Neural Information Processing Systems, Vol. 22, eds. Y. Bengio, D. Schuurmans, J. Lafferty, C.Williams and A. Culotta (Curran Associates, Inc., 2009), pp. 1096-1104.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1096-1104
    • Lee, H.1    Pham, P.2    Largman, Y.3    Ng, A.Y.4
  • 55
    • 84885898432 scopus 로고    scopus 로고
    • Deep learning-based feature representation for AD/MCI classification., Medical image computing and computer-assisted intervention
    • H. Suk and D. Shen, Deep learning-based feature representation for AD/MCI classification., Medical image computing and computer-assisted intervention, Int. Conf. Medical Image Computing and Computer-Assisted Intervention -MICCAI 2013 (2013), pp. 583-590.
    • (2013) Int. Conf. Medical Image Computing and Computer-Assisted Intervention -MICCAI , vol.2013 , pp. 583-590
    • Suk, H.1    Shen, D.2
  • 57
    • 79958842816 scopus 로고    scopus 로고
    • Discriminative deep belief networks for visual data classification
    • Y. Liu, S. Zhou and Q. Chen, Discriminative deep belief networks for visual data classification, Pattern Recogn. 44 (2011) 2287-2296.
    • (2011) Pattern Recogn , vol.44 , pp. 2287-2296
    • Liu, Y.1    Zhou, S.2    Chen, Q.3
  • 59
    • 84954027508 scopus 로고    scopus 로고
    • Multifractal analysis and relevance vector machine-based automatic seizure detection in intracranial
    • Y. Zhang and W. Zhou, Multifractal analysis and relevance vector machine-based automatic seizure detection in intracranial, Int. J. Neural Syst. 25(6) (2015) 1-14.
    • (2015) Int. J. Neural Syst , vol.25 , Issue.6 , pp. 1-14
    • Zhang, Y.1    Zhou, W.2
  • 61
    • 84895830132 scopus 로고    scopus 로고
    • Regions of interest computed by svm wrapped method for Alzheimers disease examination from segmented mri Front
    • A. Hidalgo-Munñoz, J. Górriz, J. Ramírez and P. Padilla, Regions of interest computed by svm wrapped method for Alzheimers disease examination from segmented mri, Front. Aging Neurosci. 6(20) (2014).
    • (2014) Aging Neurosci , vol.6 , Issue.20
    • Hidalgo-Munñoz, A.1    Górriz, J.2    Ramírez, J.3    Padilla, P.4
  • 64
    • 77957741951 scopus 로고    scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • G. Hughes, On the mean accuracy of statistical pattern recognizers, IEEE Trans. Inf. Theor. 14 (2006) 55-63.
    • (2006) IEEE Trans. Inf. Theor , vol.14 , pp. 55-63
    • Hughes, G.1
  • 65
    • 84880072756 scopus 로고    scopus 로고
    • An ensemble of classifiers guided by the AAL brain atlas for Alzheimer's disease detection
    • Artificial Neural Networks, IWANN 2013, Puerto de la Cruz, Tenerife, Spain, June 12-14, 2013, Proceedings, Part II (Springer
    • A. Savio and M. Graña, An ensemble of classifiers guided by the AAL brain atlas for Alzheimer's disease detection, in Advances in Computational Intelligence - 12th International Work-Conf. Artificial Neural Networks, IWANN 2013, Puerto de la Cruz, Tenerife, Spain, June 12-14, 2013, Proceedings, Part II (Springer, 2013), pp. 107-114.
    • (2013) Advances in Computational Intelligence - 12th International Work-Conf , pp. 107-114
    • Savio, A.1    Graña, M.2
  • 67
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
    • M. Galar, A. Fernández, E. Barrenechea, H. Bustince and F. Herrera, An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes, Pattern Recogn. 44 (2011) 1761-1776.
    • (2011) Pattern Recogn , vol.44 , pp. 1761-1776
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 68
    • 67650085798 scopus 로고    scopus 로고
    • A comparative study of data sampling techniques for constructing neural network ensembles
    • M. A. H. Akhand, M. Islam and M. Kazuyuki, A comparative study of data sampling techniques for constructing neural network ensembles, Int. J. Neural Syst. 19(2) (2009) 67-89.
    • (2009) Int. J. Neural Syst , vol.19 , Issue.2 , pp. 67-89
    • Akhand, M.A.H.1    Islam, M.2    Kazuyuki, M.3
  • 69
  • 70
    • 84896690650 scopus 로고    scopus 로고
    • Complexity of functional connectivity networks in mild cognitive impairment patients during a working memory task
    • M. Ahmadlou, A. Adeli, R. Bajo and H. Adeli, Complexity of functional connectivity networks in mild cognitive impairment patients during a working memory task, Clin. Neurophysiol. 125(4) (2014) 694-702.
    • (2014) Clin. Neurophysiol , vol.125 , Issue.4 , pp. 694-702
    • Ahmadlou, M.1    Adeli, A.2    Bajo, R.3    Adeli, H.4
  • 71
  • 74
    • 34548551168 scopus 로고    scopus 로고
    • Svm feature selection for classification of spect images of Alzheimer's disease using spatial information
    • J. Stoeckel and G. Fung, Svm feature selection for classification of spect images of Alzheimer's disease using spatial information, in Proc. Fifth IEEE Int. Data Mining Conf. (2005), pp. 243-258.
    • (2005) Proc. Fifth IEEE Int. Data Mining Conf , pp. 243-258
    • Stoeckel, J.1    Fung, G.2
  • 76
    • 77957553895 scopus 로고    scopus 로고
    • Principal component analysis Wiley Interdisciplinary
    • H. Abdi and L. Williams, Principal component analysis, Wiley Interdisciplinary Reviews: Comput. Stat. 2 (2010) 433-459.
    • (2010) Reviews: Comput. Stat , vol.2 , pp. 433-459
    • Abdi, H.1    Williams, L.2
  • 77
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: From precision, recall and f-measure to ROC, informedness, markedness & correlation
    • D. M. W. Powers, Evaluation: From precision, recall and f-measure to ROC, informedness, markedness & correlation, J. Mach. Learning Technol. 2(1) (2011) 37-63.
    • (2011) J. Mach. Learning Technol , vol.2 , Issue.1 , pp. 37-63
    • Powers, D.M.W.1
  • 79
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to roc analysis
    • T. Fawcett, An introduction to roc analysis, Pattern Recognt. Lett. 27 (2006) 861-874.
    • (2006) Pattern Recognt. Lett , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 81
    • 79551576499 scopus 로고    scopus 로고
    • Alzheimers disease neuroimaging initiative, predictive markers for AD in multi-modality framework: An analysis of MCI progression in the ADNI population
    • C. Hinrichs, V. Singh, G. Xu and S. Johnson and the Alzheimers disease neuroimaging initiative, predictive markers for AD in multi-modality framework: An analysis of MCI progression in the ADNI population, Neuroimage 55 (2011) 574-589.
    • (2011) Neuroimage , vol.55 , pp. 574-589
    • Hinrichs, C.1    Singh, V.2    Xu, G.3    Johnson, S.4
  • 82
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • D. Zhang, Y. Wang, L. Zhou, H. Yuan and D. Shen, Multimodal classification of Alzheimer's disease and mild cognitive impairment, Neuroimage 55(1) (2011) 856-867.
    • (2011) Neuroimage , vol.55 , Issue.1 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.