메뉴 건너뛰기




Volumn 7, Issue 1, 2016, Pages

Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples

Author keywords

breast cancer; convolutional neural network; digital pathology; tumor microenvironment; tumor infiltrating immune cells

Indexed keywords


EID: 85009285527     PISSN: 22295089     EISSN: 21533539     Source Type: Journal    
DOI: 10.4103/2153-3539.189703     Document Type: Article
Times cited : (99)

References (38)
  • 2
    • 84875722651 scopus 로고    scopus 로고
    • Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98
    • Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 2013;31:860-7.
    • (2013) J Clin Oncol , vol.31 , pp. 860-867
    • Loi, S.1    Sirtaine, N.2    Piette, F.3    Salgado, R.4    Viale, G.5    Van Eenoo, F.6
  • 3
    • 73949092850 scopus 로고    scopus 로고
    • Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer
    • Denkert C, Loibl S, Noske A, Roller M, Müller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 2010;28:105-13.
    • (2010) J Clin Oncol , vol.28 , pp. 105-113
    • Denkert, C.1    Loibl, S.2    Noske, A.3    Roller, M.4    Müller, B.M.5    Komor, M.6
  • 4
    • 84982889739 scopus 로고    scopus 로고
    • Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: A secondary analysis of the neoALTTO trial
    • Salgado R, Denkert C, Campbell C, Savas P, Nuciforo P, Aura C, et al. Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: A secondary analysis of the neoALTTO trial. JAMA Oncol 2015;1:448-54.
    • (2015) JAMA Oncol , vol.1 , pp. 448-454
    • Salgado, R.1    Denkert, C.2    Campbell, C.3    Savas, P.4    Nuciforo, P.5    Aura, C.6
  • 5
    • 84907198355 scopus 로고    scopus 로고
    • Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199
    • Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014;32:2959-66.
    • (2014) J Clin Oncol , vol.32 , pp. 2959-2966
    • Adams, S.1    Gray, R.J.2    Demaria, S.3    Goldstein, L.4    Perez, E.A.5    Shulman, L.N.6
  • 6
    • 84924076132 scopus 로고    scopus 로고
    • The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an International TILs Working Group 2014
    • Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an International TILs Working Group 2014. Ann Oncol 2015;26:259-71.
    • (2015) Ann Oncol , vol.26 , pp. 259-271
    • Salgado, R.1    Denkert, C.2    Demaria, S.3    Sirtaine, N.4    Klauschen, F.5    Pruneri, G.6
  • 7
    • 84925884510 scopus 로고    scopus 로고
    • Diagnostic concordance among pathologists interpreting breast biopsy specimens
    • Elmore JG, Longton GM, Carney PA, Geller BM, Onega T, Tosteson AN, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 2015;313:1122-32.
    • (2015) JAMA , vol.313 , pp. 1122-1132
    • Elmore, J.G.1    Longton, G.M.2    Carney, P.A.3    Geller, B.M.4    Onega, T.5    Tosteson, A.N.6
  • 9
    • 84857679040 scopus 로고    scopus 로고
    • Identification of tumor epithelium and stroma in tissue microarrays using texture analysis
    • Linder N, Konsti J, Turkki R, Rahtu E, Lundin M, Nordling S, et al. Identification of tumor epithelium and stroma in tissue microarrays using texture analysis. Diagn Pathol 2012;7:22.
    • (2012) Diagn Pathol , vol.7 , pp. 22
    • Linder, N.1    Konsti, J.2    Turkki, R.3    Rahtu, E.4    Lundin, M.5    Nordling, S.6
  • 10
    • 78650900647 scopus 로고    scopus 로고
    • ImmunoRatio: A publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67
    • Tuominen VJ, Ruotoistenmäki S, Viitanen A, Jumppanen M, Isola J. ImmunoRatio: A publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res 2010;12:R56.
    • (2010) Breast Cancer Res , vol.12 , pp. R56
    • Tuominen, V.J.1    Ruotoistenmäki, S.2    Viitanen, A.3    Jumppanen, M.4    Isola, J.5
  • 13
    • 84923019397 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features
    • Wang H, Cruz-Roa A, Basavanhally A, Gilmore H, Shih N, Feldman M, et al. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J Med Imaging (Bellingham) 2014;1:034003.
    • (2014) J Med Imaging (Bellingham) , vol.1 , pp. 034003
    • Wang, H.1    Cruz-Roa, A.2    Basavanhally, A.3    Gilmore, H.4    Shih, N.5    Feldman, M.6
  • 14
    • 84970028091 scopus 로고    scopus 로고
    • Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
    • Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep 2016;6:26286.
    • (2016) Sci Rep , vol.6 , pp. 26286
    • Litjens, G.1    Sánchez, C.I.2    Timofeeva, N.3    Hermsen, M.4    Nagtegaal, I.5    Kovacs, I.6
  • 22
  • 23
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20:273-97.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 27
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • Ojala T, Pietikäinen M, Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 2002;24:971-87.
    • (2002) IEEE Trans Pattern Anal Mach Intell , vol.24 , pp. 971-987
    • Ojala, T.1    Pietikäinen, M.2    Mäenpää, T.3
  • 30
    • 77953803946 scopus 로고    scopus 로고
    • Expectation-maximization-driven geodesic active contour with overlap resolution (EMaGACOR): Application to lymphocyte segmentation on breast cancer histopathology
    • Fatakdawala H, Xu J, Basavanhally A, Bhanot G, Ganesan S, Feldman M, et al. Expectation-maximization-driven geodesic active contour with overlap resolution (EMaGACOR): Application to lymphocyte segmentation on breast cancer histopathology. IEEE Trans Biomed Eng 2010;57:1676-89.
    • (2010) IEEE Trans Biomed Eng , vol.57 , pp. 1676-1689
    • Fatakdawala, H.1    Xu, J.2    Basavanhally, A.3    Bhanot, G.4    Ganesan, S.5    Feldman, M.6
  • 33
    • 84868034841 scopus 로고    scopus 로고
    • Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling
    • Yuan Y, Failmezger H, Rueda OM, Ali HR, Gräf S, Chin SF, et al. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci Transl Med 2012;4:157ra143.
    • (2012) Sci Transl Med , vol.4 , pp. 157ra143
    • Yuan, Y.1    Failmezger, H.2    Rueda, O.M.3    Ali, H.R.4    Gräf, S.5    Chin, S.F.6
  • 37
    • 84937848542 scopus 로고    scopus 로고
    • Assessment of tumour viability in human lung cancer xenografts with texture-based image analysis
    • Turkki R, Linder N, Holopainen T, Wang Y, Grote A, Lundin M, et al. Assessment of tumour viability in human lung cancer xenografts with texture-based image analysis. J Clin Pathol 2015;68:614-21.
    • (2015) J Clin Pathol , vol.68 , pp. 614-621
    • Turkki, R.1    Linder, N.2    Holopainen, T.3    Wang, Y.4    Grote, A.5    Lundin, M.6
  • 38
    • 77953363893 scopus 로고    scopus 로고
    • Local binary patterns variants as texture descriptors for medical image analysis
    • Nanni L, Lumini A, Brahnam S. Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 2010;49:117-25.
    • (2010) Artif Intell Med , vol.49 , pp. 117-125
    • Nanni, L.1    Lumini, A.2    Brahnam, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.