-
1
-
-
84968665908
-
-
Online
-
MIT Technol. Rev., , 2013 [Online]. Available: https://www.technologyreview.com/s/513696/deep-learning
-
(2013)
-
-
-
2
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
3
-
-
84910651844
-
Deep learning in neural networks: An overview
-
J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Netw., vol. 61, pp. 85-117, 2015.
-
(2015)
Neural Netw.
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
4
-
-
0030270445
-
Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images
-
Oct.
-
B. Sahiner et al., "Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images," IEEE Trans. Med. Imag., vol. 15, no. 5, pp. 598-610, Oct. 1996.
-
(1996)
IEEE Trans. Med. Imag.
, vol.15
, Issue.5
, pp. 598-610
-
-
Sahiner, B.1
-
5
-
-
0027866883
-
Computer-assisted diagnosis of lung nodule detection using artificial convolution neural-network
-
S. C. B. Lo, J. S. J. Lin, M. T. Freedman, and S. K. Mun, "Computer-assisted diagnosis of lung nodule detection using artificial convolution neural-network," Proc. SPIE Med. Imag., Image Process., vol. 1898, pp. 859-869, 1993.
-
(1993)
Proc. SPIE Med. Imag., Image Process.
, vol.1898
, pp. 859-869
-
-
Lo, S.C.B.1
Lin, J.S.J.2
Freedman, M.T.3
Mun, S.K.4
-
6
-
-
0028849805
-
Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network
-
H.-P. Chan, S.-C. Lo, B. Sahiner, K. L. Lam, and M. A. Helvie, "Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network," Med. Phys., vol. 22, no. 10, pp. 1555-67, 1995.
-
(1995)
Med. Phys.
, vol.22
, Issue.10
, pp. 1555-1567
-
-
Chan, H.-P.1
Lo, S.-C.2
Sahiner, B.3
Lam, K.L.4
Helvie, M.A.5
-
7
-
-
0031573117
-
Long short-term memory
-
S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
-
(1997)
Neural Comput.
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
8
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y. W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
9
-
-
51549091567
-
Performance evaluation of image processing algorithms on the GPU
-
D. Castano-Diez, D. Moser, A. Schoenegger, S. Pruggnaller, and A. S. Frangakis, "Performance evaluation of image processing algorithms on the GPU," J. Struct. Biol., vol. 164, no. 1, pp. 153-160, 2008.
-
(2008)
J. Struct. Biol.
, vol.164
, Issue.1
, pp. 153-160
-
-
Castano-Diez, D.1
Moser, D.2
Schoenegger, A.3
Pruggnaller, S.4
Frangakis, A.S.5
-
10
-
-
84881108777
-
Medical image processing on the GPU-Past, present and future
-
A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte, "Medical image processing on the GPU-Past, present and future," Med. Image Anal., vol. 17, no. 8, pp. 1073-94, 2013.
-
(2013)
Med. Image Anal.
, vol.17
, Issue.8
, pp. 1073-1094
-
-
Eklund, A.1
Dufort, P.2
Forsberg, D.3
LaConte, S.M.4
-
11
-
-
81555205692
-
Computer-aided diagnosis: How to move from the laboratory to the clinic
-
B. van Ginneken, C. M. Schaefer-Prokop, and M. Prokop, "Computer-aided diagnosis: How to move from the laboratory to the clinic," Radiol., vol. 261, no. 3, pp. 719-732, 2011.
-
(2011)
Radiol.
, vol.261
, Issue.3
, pp. 719-732
-
-
Van Ginneken, B.1
Schaefer-Prokop, C.M.2
Prokop, M.3
-
12
-
-
84968638584
-
Pulmonary nodule detection in CT images using multiview convolutional networks
-
May
-
A. Setio et al., "Pulmonary nodule detection in CT images using multiview convolutional networks," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1160-1169, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1160-1169
-
-
Setio, A.1
-
13
-
-
84969916782
-
Improving computer-aided detection using convolutional neural networks and random view aggregation
-
May
-
H. Roth et al., "Improving computer-aided detection using convolutional neural networks and random view aggregation," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1170- 1181, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1170-1181
-
-
Roth, H.1
-
14
-
-
84968542337
-
Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
-
May
-
Q. Dou et al., "Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1182-1195, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1182-1195
-
-
Dou, Q.1
-
15
-
-
84968542311
-
Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
-
May
-
K. Sirinukunwattana et al., "Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1196-1206, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1196-1206
-
-
Sirinukunwattana, K.1
-
16
-
-
84968662241
-
Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
-
May
-
M. Anthimopoulos, S. Christodoulidis, A. Christe, and S. Mougiakakou, "Lung pattern classification for interstitial lung diseases using a deep convolutional neural network," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1207-1216, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1207-1216
-
-
Anthimopoulos, M.1
Christodoulidis, S.2
Christe, A.3
Mougiakakou, S.4
-
17
-
-
84969962996
-
Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
-
May
-
H.-C. Shin et al., "Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285-1298, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1285-1298
-
-
Shin, H.-C.1
-
18
-
-
84968572560
-
Combining generative and discriminative representation learning in convolutional restricted Boltzmann machines
-
May
-
G. van Tulder and M. de Bruijne, "Combining generative and discriminative representation learning in convolutional restricted Boltzmann machines," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1262-1272, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1262-1272
-
-
Van Tulder, G.1
De Bruijne, M.2
-
20
-
-
84968572880
-
Marginal space deep learning: Efficient architecture for volumetric image parsing
-
May
-
F. Ghesu et al., "Marginal space deep learning: Efficient architecture for volumetric image parsing," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1217-1228, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1217-1228
-
-
Ghesu, F.1
-
21
-
-
84968586012
-
Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
-
May
-
T. Brosch et al., "Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1229-1239, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1229-1239
-
-
Brosch, T.1
-
22
-
-
84968610616
-
Brain tumor segmentation using convolutional neural networks in MRI images
-
May
-
S. Pereira, A. Pinto, V. Alves, and C. Silva, "Brain tumor segmentation using convolutional neural networks in MRI images," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1240-1251, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1240-1251
-
-
Pereira, S.1
Pinto, A.2
Alves, V.3
Silva, C.4
-
23
-
-
84968626579
-
Automatic segmentation of MR brain images with a convolutional neural network
-
May
-
P. Moeskops et al., "Automatic segmentation of MR brain images with a convolutional neural network," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1252-1261, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1252-1261
-
-
Moeskops, P.1
-
24
-
-
84968665432
-
Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images
-
May
-
M. van Grinsven, B. van Ginneken, C. Hoyng, T. Theelen, and C. Sánchez, "Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1273-1284, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1273-1284
-
-
Van Grinsven, M.1
Van Ginneken, B.2
Hoyng, C.3
Theelen, T.4
Sánchez, C.5
-
25
-
-
84943754825
-
Deep learning with non-medical training used for chest pathology identification
-
Y. Bar, I. Diamant, L. Wolf, and H. Greenspan, "Deep learning with non-medical training used for chest pathology identification," Proc. SPIE Med. Imag. Computer-Aided Diagnosis, vol. 9414, 2015.
-
(2015)
Proc. SPIE Med. Imag. Computer-Aided Diagnosis
, vol.9414
-
-
Bar, Y.1
Diamant, I.2
Wolf, L.3
Greenspan, H.4
-
26
-
-
84943786510
-
Chest pathology detection using deep learning with non-medical training
-
Y. Bar, I. Diamant, L. Wolf, S. Lieberman, E. Konen, and H. Greenspan, "Chest pathology detection using deep learning with non-medical training," in Proc. IEEE 12th Int. Symp. Biomed. Imag., 2015, pp. 294-297.
-
(2015)
Proc. IEEE 12th Int. Symp. Biomed. Imag.
, pp. 294-297
-
-
Bar, Y.1
Diamant, I.2
Wolf, L.3
Lieberman, S.4
Konen, E.5
Greenspan, H.6
-
27
-
-
84943812643
-
Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans
-
B. van Ginneken, A. A. Setio, C. Jacobs, and F. Ciompi, "Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans," in Proc. IEEE 12th Int. Symp. Biomed. Imag., 2015, pp. 286-289.
-
(2015)
Proc. IEEE 12th Int. Symp. Biomed. Imag.
, pp. 286-289
-
-
Van Ginneken, B.1
Setio, A.A.2
Jacobs, C.3
Ciompi, F.4
-
28
-
-
84968649810
-
Convolutional neural networks for medical image analysis: Full training or fine tuning?
-
May
-
N. Tajbakhsh et al., "Convolutional neural networks for medical image analysis: Full training or fine tuning?," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1299-1312, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1299-1312
-
-
Tajbakhsh, N.1
-
29
-
-
84863338059
-
Distributed human intelligence for colonic polyp classification in computer-aided detection for CT colonography
-
T. B. Nguyen et al., "Distributed human intelligence for colonic polyp classification in computer-aided detection for CT colonography," Radiology, vol. 262, no. 3, pp. 824-833, 2012.
-
(2012)
Radiology
, vol.262
, Issue.3
, pp. 824-833
-
-
Nguyen, T.B.1
-
30
-
-
84866128466
-
Strategies for improved interpretation of computer-aided detections for CT colonography utilizing distributed human intelligence
-
M. T. McKenna et al., "Strategies for improved interpretation of computer-aided detections for CT colonography utilizing distributed human intelligence," Med. Image Anal., no. 6, pp. 1280-1292, 2012.
-
(2012)
Med. Image Anal.
, Issue.6
, pp. 1280-1292
-
-
McKenna, M.T.1
-
31
-
-
84969939903
-
Agg-Net: Deep learning from crowds for mitosis detection in breast cancer histology images
-
May
-
S. Albarqouni, C. Baur, F. Achilles, V. Belagiannis, S. Demirci, and N. Navab, "Agg-Net: Deep learning from crowds for mitosis detection in breast cancer histology images," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1313-1321, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1313-1321
-
-
Albarqouni, S.1
Baur, C.2
Achilles, F.3
Belagiannis, V.4
Demirci, S.5
Navab, N.6
-
32
-
-
84968572894
-
Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
-
May
-
M. Kallenberg et al., "Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1322-1331, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1322-1331
-
-
Kallenberg, M.1
-
33
-
-
84968680221
-
Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition
-
May
-
Z. Yan et al., "Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1332- 1343, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1332-1343
-
-
Yan, Z.1
-
34
-
-
84968662562
-
A CNN regression framework for real-time 2D/3D registration
-
May
-
S. Miao, Z. J. Wang, and R. Liao, "A CNN regression framework for real-time 2D/3D registration," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1352-1363, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1352-1363
-
-
Miao, S.1
Wang, Z.J.2
Liao, R.3
-
35
-
-
84968548037
-
Q-Space deep learning: Twelve-fold shorter and model free diffusion MRI scans
-
May
-
V. Golkov et al., "q-Space deep learning: Twelve-fold shorter and model free diffusion MRI scans," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1344-1351, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1344-1351
-
-
Golkov, V.1
-
36
-
-
84958589374
-
-
Online arXiv:1512.03385, to be published
-
K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition ArXiv, 2015 [Online]. Available: arXiv:1512.03385, to be published
-
(2015)
Deep Residual Learning for Image Recognition ArXiv
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
37
-
-
85027835562
-
A new 2.5 d representation for lymph node detection in CT
-
Online
-
H. R. Roth et al., "A new 2.5 d representation for lymph node detection in CT," Cancer Imag. Arch., 2015 [Online]. Available: http://dx.doi.org/10.7937/K9/TCIA.2015.AQIIDCNM
-
(2015)
Cancer Imag. Arch.
-
-
Roth, H.R.1
-
38
-
-
85044109646
-
Data from pancreas-CT
-
Online
-
H. R. Roth et al., "Data from pancreas-CT," Cancer Imag. Arch., 2016 [Online]. Available: http://dx.doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
-
(2016)
Cancer Imag. Arch.
-
-
Roth, H.R.1
|