메뉴 건너뛰기




Volumn 35, Issue 5, 2016, Pages 1153-1159

Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN FUNCTION; CONVOLUTIONAL NEURAL NETWORK; DEEP LEARNING; DIAGNOSTIC IMAGING; EDITORIAL; HUMAN; IMAGE PROCESSING; LEARNING; MACHINE LEARNING; MEDICAL RESEARCH; METHODOLOGY; WORKFLOW;

EID: 84968661778     PISSN: 02780062     EISSN: 1558254X     Source Type: Journal    
DOI: 10.1109/TMI.2016.2553401     Document Type: Editorial
Times cited : (1579)

References (38)
  • 1
    • 84968665908 scopus 로고    scopus 로고
    • Online
    • MIT Technol. Rev., , 2013 [Online]. Available: https://www.technologyreview.com/s/513696/deep-learning
    • (2013)
  • 2
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 3
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Netw., vol. 61, pp. 85-117, 2015.
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 4
    • 0030270445 scopus 로고    scopus 로고
    • Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images
    • Oct.
    • B. Sahiner et al., "Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images," IEEE Trans. Med. Imag., vol. 15, no. 5, pp. 598-610, Oct. 1996.
    • (1996) IEEE Trans. Med. Imag. , vol.15 , Issue.5 , pp. 598-610
    • Sahiner, B.1
  • 5
    • 0027866883 scopus 로고
    • Computer-assisted diagnosis of lung nodule detection using artificial convolution neural-network
    • S. C. B. Lo, J. S. J. Lin, M. T. Freedman, and S. K. Mun, "Computer-assisted diagnosis of lung nodule detection using artificial convolution neural-network," Proc. SPIE Med. Imag., Image Process., vol. 1898, pp. 859-869, 1993.
    • (1993) Proc. SPIE Med. Imag., Image Process. , vol.1898 , pp. 859-869
    • Lo, S.C.B.1    Lin, J.S.J.2    Freedman, M.T.3    Mun, S.K.4
  • 6
    • 0028849805 scopus 로고
    • Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network
    • H.-P. Chan, S.-C. Lo, B. Sahiner, K. L. Lam, and M. A. Helvie, "Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network," Med. Phys., vol. 22, no. 10, pp. 1555-67, 1995.
    • (1995) Med. Phys. , vol.22 , Issue.10 , pp. 1555-1567
    • Chan, H.-P.1    Lo, S.-C.2    Sahiner, B.3    Lam, K.L.4    Helvie, M.A.5
  • 7
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
    • (1997) Neural Comput. , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 8
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y. W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 10
    • 84881108777 scopus 로고    scopus 로고
    • Medical image processing on the GPU-Past, present and future
    • A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte, "Medical image processing on the GPU-Past, present and future," Med. Image Anal., vol. 17, no. 8, pp. 1073-94, 2013.
    • (2013) Med. Image Anal. , vol.17 , Issue.8 , pp. 1073-1094
    • Eklund, A.1    Dufort, P.2    Forsberg, D.3    LaConte, S.M.4
  • 11
    • 81555205692 scopus 로고    scopus 로고
    • Computer-aided diagnosis: How to move from the laboratory to the clinic
    • B. van Ginneken, C. M. Schaefer-Prokop, and M. Prokop, "Computer-aided diagnosis: How to move from the laboratory to the clinic," Radiol., vol. 261, no. 3, pp. 719-732, 2011.
    • (2011) Radiol. , vol.261 , Issue.3 , pp. 719-732
    • Van Ginneken, B.1    Schaefer-Prokop, C.M.2    Prokop, M.3
  • 12
    • 84968638584 scopus 로고    scopus 로고
    • Pulmonary nodule detection in CT images using multiview convolutional networks
    • May
    • A. Setio et al., "Pulmonary nodule detection in CT images using multiview convolutional networks," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1160-1169, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1160-1169
    • Setio, A.1
  • 13
    • 84969916782 scopus 로고    scopus 로고
    • Improving computer-aided detection using convolutional neural networks and random view aggregation
    • May
    • H. Roth et al., "Improving computer-aided detection using convolutional neural networks and random view aggregation," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1170- 1181, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1170-1181
    • Roth, H.1
  • 14
    • 84968542337 scopus 로고    scopus 로고
    • Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
    • May
    • Q. Dou et al., "Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1182-1195, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1182-1195
    • Dou, Q.1
  • 15
    • 84968542311 scopus 로고    scopus 로고
    • Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
    • May
    • K. Sirinukunwattana et al., "Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1196-1206, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1196-1206
    • Sirinukunwattana, K.1
  • 16
    • 84968662241 scopus 로고    scopus 로고
    • Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
    • May
    • M. Anthimopoulos, S. Christodoulidis, A. Christe, and S. Mougiakakou, "Lung pattern classification for interstitial lung diseases using a deep convolutional neural network," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1207-1216, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1207-1216
    • Anthimopoulos, M.1    Christodoulidis, S.2    Christe, A.3    Mougiakakou, S.4
  • 17
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
    • May
    • H.-C. Shin et al., "Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285-1298, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1285-1298
    • Shin, H.-C.1
  • 18
    • 84968572560 scopus 로고    scopus 로고
    • Combining generative and discriminative representation learning in convolutional restricted Boltzmann machines
    • May
    • G. van Tulder and M. de Bruijne, "Combining generative and discriminative representation learning in convolutional restricted Boltzmann machines," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1262-1272, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1262-1272
    • Van Tulder, G.1    De Bruijne, M.2
  • 20
    • 84968572880 scopus 로고    scopus 로고
    • Marginal space deep learning: Efficient architecture for volumetric image parsing
    • May
    • F. Ghesu et al., "Marginal space deep learning: Efficient architecture for volumetric image parsing," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1217-1228, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1217-1228
    • Ghesu, F.1
  • 21
    • 84968586012 scopus 로고    scopus 로고
    • Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
    • May
    • T. Brosch et al., "Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1229-1239, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1229-1239
    • Brosch, T.1
  • 22
    • 84968610616 scopus 로고    scopus 로고
    • Brain tumor segmentation using convolutional neural networks in MRI images
    • May
    • S. Pereira, A. Pinto, V. Alves, and C. Silva, "Brain tumor segmentation using convolutional neural networks in MRI images," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1240-1251, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1240-1251
    • Pereira, S.1    Pinto, A.2    Alves, V.3    Silva, C.4
  • 23
    • 84968626579 scopus 로고    scopus 로고
    • Automatic segmentation of MR brain images with a convolutional neural network
    • May
    • P. Moeskops et al., "Automatic segmentation of MR brain images with a convolutional neural network," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1252-1261, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1252-1261
    • Moeskops, P.1
  • 24
    • 84968665432 scopus 로고    scopus 로고
    • Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images
    • May
    • M. van Grinsven, B. van Ginneken, C. Hoyng, T. Theelen, and C. Sánchez, "Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1273-1284, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1273-1284
    • Van Grinsven, M.1    Van Ginneken, B.2    Hoyng, C.3    Theelen, T.4    Sánchez, C.5
  • 27
    • 84943812643 scopus 로고    scopus 로고
    • Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans
    • B. van Ginneken, A. A. Setio, C. Jacobs, and F. Ciompi, "Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans," in Proc. IEEE 12th Int. Symp. Biomed. Imag., 2015, pp. 286-289.
    • (2015) Proc. IEEE 12th Int. Symp. Biomed. Imag. , pp. 286-289
    • Van Ginneken, B.1    Setio, A.A.2    Jacobs, C.3    Ciompi, F.4
  • 28
    • 84968649810 scopus 로고    scopus 로고
    • Convolutional neural networks for medical image analysis: Full training or fine tuning?
    • May
    • N. Tajbakhsh et al., "Convolutional neural networks for medical image analysis: Full training or fine tuning?," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1299-1312, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1299-1312
    • Tajbakhsh, N.1
  • 29
    • 84863338059 scopus 로고    scopus 로고
    • Distributed human intelligence for colonic polyp classification in computer-aided detection for CT colonography
    • T. B. Nguyen et al., "Distributed human intelligence for colonic polyp classification in computer-aided detection for CT colonography," Radiology, vol. 262, no. 3, pp. 824-833, 2012.
    • (2012) Radiology , vol.262 , Issue.3 , pp. 824-833
    • Nguyen, T.B.1
  • 30
    • 84866128466 scopus 로고    scopus 로고
    • Strategies for improved interpretation of computer-aided detections for CT colonography utilizing distributed human intelligence
    • M. T. McKenna et al., "Strategies for improved interpretation of computer-aided detections for CT colonography utilizing distributed human intelligence," Med. Image Anal., no. 6, pp. 1280-1292, 2012.
    • (2012) Med. Image Anal. , Issue.6 , pp. 1280-1292
    • McKenna, M.T.1
  • 31
    • 84969939903 scopus 로고    scopus 로고
    • Agg-Net: Deep learning from crowds for mitosis detection in breast cancer histology images
    • May
    • S. Albarqouni, C. Baur, F. Achilles, V. Belagiannis, S. Demirci, and N. Navab, "Agg-Net: Deep learning from crowds for mitosis detection in breast cancer histology images," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1313-1321, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1313-1321
    • Albarqouni, S.1    Baur, C.2    Achilles, F.3    Belagiannis, V.4    Demirci, S.5    Navab, N.6
  • 32
    • 84968572894 scopus 로고    scopus 로고
    • Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
    • May
    • M. Kallenberg et al., "Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1322-1331, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1322-1331
    • Kallenberg, M.1
  • 33
    • 84968680221 scopus 로고    scopus 로고
    • Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition
    • May
    • Z. Yan et al., "Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1332- 1343, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1332-1343
    • Yan, Z.1
  • 34
    • 84968662562 scopus 로고    scopus 로고
    • A CNN regression framework for real-time 2D/3D registration
    • May
    • S. Miao, Z. J. Wang, and R. Liao, "A CNN regression framework for real-time 2D/3D registration," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1352-1363, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1352-1363
    • Miao, S.1    Wang, Z.J.2    Liao, R.3
  • 35
    • 84968548037 scopus 로고    scopus 로고
    • Q-Space deep learning: Twelve-fold shorter and model free diffusion MRI scans
    • May
    • V. Golkov et al., "q-Space deep learning: Twelve-fold shorter and model free diffusion MRI scans," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1344-1351, May 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1344-1351
    • Golkov, V.1
  • 37
    • 85027835562 scopus 로고    scopus 로고
    • A new 2.5 d representation for lymph node detection in CT
    • Online
    • H. R. Roth et al., "A new 2.5 d representation for lymph node detection in CT," Cancer Imag. Arch., 2015 [Online]. Available: http://dx.doi.org/10.7937/K9/TCIA.2015.AQIIDCNM
    • (2015) Cancer Imag. Arch.
    • Roth, H.R.1
  • 38
    • 85044109646 scopus 로고    scopus 로고
    • Data from pancreas-CT
    • Online
    • H. R. Roth et al., "Data from pancreas-CT," Cancer Imag. Arch., 2016 [Online]. Available: http://dx.doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
    • (2016) Cancer Imag. Arch.
    • Roth, H.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.