-
1
-
-
0021271971
-
Clinical diagnosis of Alzheimer's disease report of the NINCDSADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease
-
G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, and E. M. Stadlan, "Clinical diagnosis of Alzheimer's disease report of the NINCDSADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease, " Neurology, vol. 34, no. 7, pp. 939-939, 1984.
-
(1984)
Neurology
, vol.34
, Issue.7
, pp. 939
-
-
McKhann, G.1
Drachman, D.2
Folstein, M.3
Katzman, R.4
Price, D.5
Stadlan, E.M.6
-
2
-
-
34249697099
-
Forecasting the global burden of Alzheimer's disease
-
R. Brookmeyer, E. Johnson, K. Ziegler-Graham, and H. Michael Arrighi, "Forecasting the global burden of Alzheimer's disease, " Alzheimers Dementia, vol. 3, no. 3, pp. 186-191, 2007.
-
(2007)
Alzheimers Dementia
, vol.3
, Issue.3
, pp. 186-191
-
-
Brookmeyer, R.1
Johnson, E.2
Ziegler-Graham, K.3
Michael Arrighi, H.4
-
3
-
-
85032751078
-
Neuroimaging for the diagnosis and study of psychiatric disorders
-
Jul.
-
J. A. Turner, S. G. Potkin, G. G. Brown, D. B. Keator, G. McCarthy, and G. H. Glover, "Neuroimaging for the diagnosis and study of psychiatric disorders, " IEEE Signal Process. Mag., vol. 24, no. 4, pp. 112-117, Jul. 2007.
-
(2007)
IEEE Signal Process. Mag.
, vol.24
, Issue.4
, pp. 112-117
-
-
Turner, J.A.1
Potkin, S.G.2
Brown, G.G.3
Keator, D.B.4
McCarthy, G.5
Glover, G.H.6
-
4
-
-
84967022502
-
Multimodal neuroimaging computing: A review of the applications in neuropsychiatric disorders
-
S. D. Liu et al., "Multimodal neuroimaging computing: A review of the applications in neuropsychiatric disorders, " Brain Informat., vol. 2, pp. 167-180, 2015.
-
(2015)
Brain Informat.
, vol.2
, pp. 167-180
-
-
Liu, S.D.1
-
5
-
-
84865852030
-
Alzheimer's disease: A clinical practice-oriented review
-
L. Alves, A. S. A. Correia, R. Miguel, P. Alegria, and P. Bugalho, "Alzheimer's disease: A clinical practice-oriented review, " Front. Neurol., vol. 3, pp. 1-20, 2012.
-
(2012)
Front. Neurol.
, vol.3
, pp. 1-20
-
-
Alves, L.1
Correia, A.S.A.2
Miguel, R.3
Alegria, P.4
Bugalho, P.5
-
6
-
-
84875903418
-
Neuroimaging and other biomarkers for Alzheimer's disease: The changing landscape of early detection
-
S. L. Risacher and A. J. Saykin, "Neuroimaging and other biomarkers for Alzheimer's disease: The changing landscape of early detection, " Annu. Rev. Clin. Psychol., vol. 9, pp. 621-648, 2013.
-
(2013)
Annu. Rev. Clin. Psychol.
, vol.9
, pp. 621-648
-
-
Risacher, S.L.1
Saykin, A.J.2
-
7
-
-
84912558026
-
Biomarkers in dementia: Clinical utility and new directions
-
R. M. Ahmedet al., "Biomarkers in dementia: Clinical utility and new directions, " J. Neurol. Neurosurg. Psych., vol. 85, pp. 1426-1434, 2014.
-
(2014)
J. Neurol. Neurosurg. Psych.
, vol.85
, pp. 1426-1434
-
-
Ahmed, R.M.1
-
8
-
-
79955059574
-
Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database
-
R. Cuingnetet al., "Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database, " NeuroImage, vol. 56, no. 2, pp. 766-781, 2011.
-
(2011)
NeuroImage
, vol.56
, Issue.2
, pp. 766-781
-
-
Cuingnet, R.1
-
9
-
-
84921491253
-
Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging
-
F. Falahati, E. Westman, and A. Simmons, "Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging, " J. Alzheimers Dis., vol. 41, no. 3, pp. 685-708, 2014.
-
(2014)
J. Alzheimers Dis.
, vol.41
, Issue.3
, pp. 685-708
-
-
Falahati, F.1
Westman, E.2
Simmons, A.3
-
10
-
-
84899902574
-
A review of feature reduction techniques in neuroimaging
-
B. Mwangi, T. S. Tian, and J. C. Soares, "A review of feature reduction techniques in neuroimaging, " Neuroinformatics, vol. 12, pp. 229-244, 2014.
-
(2014)
Neuroinformatics
, vol.12
, pp. 229-244
-
-
Mwangi, B.1
Tian, T.S.2
Soares, J.C.3
-
11
-
-
84908347504
-
General overview on the merits of multimodal neuroimaging data fusion
-
K. Uludag, and A. Roebroeck, "General overview on the merits of multimodal neuroimaging data fusion, " NeuroImage, vol. 102, pp. 3-10, 2014.
-
(2014)
NeuroImage
, vol.102
, pp. 3-10
-
-
Uludag, K.1
Roebroeck, A.2
-
12
-
-
85027875638
-
A review of heterogeneous data mining for brain disorder identification
-
B. K. Cao, X. N. Kong, and P. S. Yu, "A review of heterogeneous data mining for brain disorder identification, " Brain Informat., vol. 2, no. 4, pp. 253-264, 2015.
-
(2015)
Brain Informat.
, vol.2
, Issue.4
, pp. 253-264
-
-
Cao, B.K.1
Kong, X.N.2
Yu, P.S.3
-
13
-
-
79551576499
-
Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population
-
and ADNI
-
C. Hinrichs, V. Singh, G. F. Xu, S. C. Johnson, and ADNI, "Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population, " NeuroImage, vol. 55, no. 2, pp. 574-589, 2011.
-
(2011)
NeuroImage
, vol.55
, Issue.2
, pp. 574-589
-
-
Hinrichs, C.1
Singh, V.2
Xu, G.F.3
Johnson, S.C.4
-
14
-
-
79952073234
-
Multimodal classification of Alzheimer's disease and mild cognitive impairment
-
and ADNI
-
D. Q. Zhang, Y. P. Wang, L. P. Zhou, H. Yuan, D. G. Shen, and ADNI, "Multimodal classification of Alzheimer's disease and mild cognitive impairment, " NeuroImage, vol. 55, pp. 856-867, 2011.
-
(2011)
NeuroImage
, vol.55
, pp. 856-867
-
-
Zhang, D.Q.1
Wang, Y.P.2
Zhou, L.P.3
Yuan, H.4
Shen, D.G.5
-
15
-
-
84868215748
-
Random forest-based similarity measures for multi-modal classification of Alzheimer's disease
-
and ADNI
-
K. R. Gray, P. Aljabar, R. A. Heckemann, A. Hammers, D. Rueckert, and ADNI, "Random forest-based similarity measures for multi-modal classification of Alzheimer's disease, " NeuroImage, vol. 65, pp. 167-175, 2013.
-
(2013)
NeuroImage
, vol.65
, pp. 167-175
-
-
Gray, K.R.1
Aljabar, P.2
Heckemann, R.A.3
Hammers, A.4
Rueckert, D.5
-
16
-
-
84900841488
-
Multiple kernel learning in the primal for multi-modal Alzheimer's disease classification
-
May
-
F. Y. Liu, L. P. Zhou, C. H. Shen, and J. P. Yin, "Multiple kernel learning in the primal for multi-modal Alzheimer's disease classification, " IEEE J. Biomed. Health Informat., vol. 18, no. 3, pp. 984-990, May 2014.
-
(2014)
IEEE J. Biomed. Health Informat.
, vol.18
, Issue.3
, pp. 984-990
-
-
Liu, F.Y.1
Zhou, L.P.2
Shen, C.H.3
Yin, J.P.4
-
17
-
-
84928769522
-
Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM
-
M. Dyrba, M. Grothe, T. Kirste, and S. J. Teipel, "Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM, " Hum. Brain Mapping, vol. 36, no. 6, pp. 2118-2131, 2015.
-
(2015)
Hum. Brain Mapping
, vol.36
, Issue.6
, pp. 2118-2131
-
-
Dyrba, M.1
Grothe, M.2
Kirste, T.3
Teipel, S.J.4
-
18
-
-
84922322664
-
Manifold regularized multitask feature learning for multimodality disease classification
-
and ADNI
-
B. Jie, D. Q. Zhang, B. Cheng, D. G. Shen, and ADNI, "Manifold regularized multitask feature learning for multimodality disease classification, " Hum. Brain Mapping, vol. 36, pp. 489-507, 2015.
-
(2015)
Hum. Brain Mapping
, vol.36
, pp. 489-507
-
-
Jie, B.1
Zhang, D.Q.2
Cheng, B.3
Shen, D.G.4
-
19
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Aug.
-
Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
20
-
-
84907019192
-
Hierarchical feature representation and multimodal fusion with deep learning for AD MCI diagnosis
-
Nov.
-
H. I. Suk, S. W. Lee, D. G. Shen, and ADNI, "Hierarchical feature representation and multimodal fusion with deep learning for AD MCI diagnosis, " NeuroImage, vol. 101, pp. 569-582, Nov. 2014.
-
(2014)
NeuroImage
, vol.101
, pp. 569-582
-
-
Suk, H.I.1
Lee, S.W.2
Shen, D.G.3
-
21
-
-
84862778147
-
Ensemble sparse classification of Alzheimer's disease
-
M. H. Liu, D. Q. Zhang, and D. G. Shen, "Ensemble sparse classification of Alzheimer's disease, " NeuroImage, vol. 60, pp. 1106-1116, 2012.
-
(2012)
NeuroImage
, vol.60
, pp. 1106-1116
-
-
Liu, M.H.1
Zhang, D.Q.2
Shen, D.G.3
-
22
-
-
84871988578
-
Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease
-
P. Coupé et al., "Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease, " NeuroImage, Clin., vol. 1, pp. 141-152, 2012.
-
(2012)
NeuroImage, Clin.
, vol.1
, pp. 141-152
-
-
Coupé, P.1
-
23
-
-
84897502525
-
Natural image bases to represent neuroimaging data
-
A. Gupta, M. Ayhan, and A. Maida, "Natural image bases to represent neuroimaging data, " in Proc. Int. Conf. Mach. Learn., 2013, pp. 987-994.
-
Proc. Int. Conf. Mach. Learn., 2013
, pp. 987-994
-
-
Gupta, A.1
Ayhan, M.2
Maida, A.3
-
24
-
-
84938872693
-
Predicting Alzheimer's disease: A neuroimaging study with 3D convolutional neural networks
-
A. Payan and G. Montana, "Predicting Alzheimer's disease: A neuroimaging study with 3D convolutional neural networks, " in Proc. Int. Conf. Pattern Recog. Appl. Methods, 2015.
-
(2015)
Proc. Int. Conf. Pattern Recog. Appl. Methods
-
-
Payan, A.1
Montana, G.2
-
25
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets, " Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.3
-
26
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Science, vol. 313, no. 5786, pp. 504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
27
-
-
85032782045
-
Deep learning and its applications to signal and information processing
-
Jan.
-
D. Yu and L. Deng, "Deep learning and its applications to signal and information processing, " IEEE Signal Process. Mag., vol. 28, no. 1, pp. 145-154, Jan. 2011.
-
(2011)
IEEE Signal Process. Mag.
, vol.28
, Issue.1
, pp. 145-154
-
-
Yu, D.1
Deng, L.2
-
28
-
-
84910651844
-
Deep learning in neural networks: An overview
-
J. Schmidhuber, "Deep learning in neural networks: An overview, " Neural Netw., vol. 61, pp. 85-117, 2015.
-
(2015)
Neural Netw.
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
29
-
-
84857295176
-
The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods
-
Mar.
-
G. Carneiro, J. C. Nascimento, and A. Freitas, "The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods, " IEEE Trans. Image Process., vol. 12, no. 3, pp. 968-982, Mar. 2012.
-
(2012)
IEEE Trans. Image Process.
, vol.12
, Issue.3
, pp. 968-982
-
-
Carneiro, G.1
Nascimento, J.C.2
Freitas, A.3
-
30
-
-
84881641626
-
Deep neural networks segment neuronal membranes in electron microscopy images
-
D. C. Cires, L. M. Gambardella, A. Giusti, and J. Schmidhuber, "Deep neural networks segment neuronal membranes in electron microscopy images, " in Proc. Neural Inf. Process. Syst. Conf., 2012, pp. 2852-2860.
-
(2012)
Proc. Neural Inf. Process. Syst. Conf.
, pp. 2852-2860
-
-
Cires, D.C.1
Gambardella, L.M.2
Giusti, A.3
Schmidhuber, J.4
-
31
-
-
84879853539
-
Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4Dpatient data
-
Aug.
-
H. C. Shin, M. R. Orton, D. J. Collins, S. J. Doran, and M. O. Leach, "Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4Dpatient data, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1930-1943, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1930-1943
-
-
Shin, H.C.1
Orton, M.R.2
Collins, D.J.3
Doran, S.J.4
Leach, M.O.5
-
32
-
-
84884546164
-
Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data
-
Nov.
-
G. Carneiro and J. C. Nascimento, "Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2592-2607, Nov. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.11
, pp. 2592-2607
-
-
Carneiro, G.1
Nascimento, J.C.2
-
33
-
-
85040360514
-
A new 2. 5D representation for lymph node detection using random sets of deep convolutional
-
H. Roth et al., "A new 2. 5D representation for lymph node detection using random sets of deep convolutional, " in Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv., 2014, pp. 520-527.
-
(2014)
Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv.
, pp. 520-527
-
-
Roth, H.1
-
34
-
-
84905900149
-
Deep learning for neuroimaging: A validation study
-
M. P. Sergey et al., "Deep learning for neuroimaging: A validation study, " Front. Neurosci., vol. 8, pp. 1-11, 2014.
-
(2014)
Front. Neurosci.
, vol.8
, pp. 1-11
-
-
Sergey, M.P.1
-
35
-
-
84921492033
-
Deep convolutional neural networks for multimodality isointense infant brain image segmentation
-
W. L. Zhang et al., "Deep convolutional neural networks for multimodality isointense infant brain image segmentation, " NeuroImage, vol. 108, pp. 214-224, 2015.
-
(2015)
NeuroImage
, vol.108
, pp. 214-224
-
-
Zhang, W.L.1
-
36
-
-
84897570416
-
Manifold learning of brain MRIs by deep learning
-
T. Brosch, R. Tam, and ADNI, "Manifold learning of brain MRIs by deep learning, " in Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv., 2013, pp. 633-640,.
-
(2013)
Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv.
, pp. 633-640
-
-
Brosch, T.1
Tam, R.2
-
37
-
-
84906991004
-
Randomized denoising autoencoders for smaller and efficient imaging based AD clinical trials
-
V. K. Ithapu, V. Singh, O. Okonkwo, and S. C. Johnson, "Randomized denoising autoencoders for smaller and efficient imaging based AD clinical trials, " in Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv., 2014, pp. 470-478,.
-
(2014)
Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv.
, pp. 470-478
-
-
Ithapu, V.K.1
Singh, V.2
Okonkwo, O.3
Johnson, S.C.4
-
38
-
-
84925851214
-
Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease
-
Apr.
-
S. Q. Liu et al., "Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease, " IEEE Trans. Biomed. Eng., vol. 62, no. 4, pp. 1132-1140, Apr. 2015.
-
(2015)
IEEE Trans. Biomed. Eng.
, vol.62
, Issue.4
, pp. 1132-1140
-
-
Liu, S.Q.1
-
40
-
-
84929692240
-
Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis
-
ADNI
-
H. I. Suk, S. W. Lee, D. Shen, and ADNI, "Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis, " Brain Struct. Funct., vol. 221, pp. 1-19, 2015.
-
(2015)
Brain Struct. Funct.
, vol.221
, pp. 1-19
-
-
Suk, H.I.1
Lee, S.W.2
Shen, D.3
-
41
-
-
84940975497
-
A robust deep model for improved classification of AD/MCI patients
-
Sep.
-
F. Li, L. Tran, K. H. Thung, S. W. Ji, D. G. Shen, and J. Li, "A robust deep model for improved classification of AD/MCI patients, " IEEE J. Biomed. Health Informat., vol. 19, no. 5, pp. 1610-1616, Sep. 2015.
-
(2015)
IEEE J. Biomed. Health Informat.
, vol.19
, Issue.5
, pp. 1610-1616
-
-
Li, F.1
Tran, L.2
Thung, K.H.3
Ji, S.W.4
Shen, D.G.5
Li, J.6
-
42
-
-
84998977762
-
Nonlinear feature transformation and deep fusion for Alzheimer's disease staging analysis
-
B. Shi, Y. Chen, P. Zhang, C. D. Smith, and J. Liu, "Nonlinear feature transformation and deep fusion for Alzheimer's disease staging analysis, " Pattern Recog., vol. 63, pp. 487-498, 2017.
-
(2017)
Pattern Recog.
, vol.63
, pp. 487-498
-
-
Shi, B.1
Chen, Y.2
Zhang, P.3
Smith, C.D.4
Liu, J.5
-
44
-
-
84864073449
-
Greedy layerwise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layerwise training of deep networks, " in Proc. Neural Inf. Process. Syst. Conf., 2006, pp. 153-160.
-
(2006)
Proc. Neural Inf. Process. Syst. Conf.
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
45
-
-
41949137974
-
The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
-
C. R. Jack et al., "The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods, " J. Magn. Reson. Imag., vol. 27, pp. 685-691, 2008.
-
(2008)
J. Magn. Reson. Imag.
, vol.27
, pp. 685-691
-
-
Jack, C.R.1
-
46
-
-
0031987382
-
A nonparametric method for automatic correction of intensity nonuniformity in MRI data
-
Feb.
-
J. G. Sled, A. P. Zijdenbos, and A. C. Evans, "A nonparametric method for automatic correction of intensity nonuniformity in MRI data, " IEEE Trans. Med. Imag., vol. 17, no. 1, pp. 87-97, Feb. 1998.
-
(1998)
IEEE Trans. Med. Imag.
, vol.17
, Issue.1
, pp. 87-97
-
-
Sled, J.G.1
Zijdenbos, A.P.2
Evans, A.C.3
-
47
-
-
82255185706
-
Robust deformable-surface-based skull-stripping for large-scale studies
-
Y. P. Wang, J. X. Nie, P. T. Yap, F. Shi, L. Guo, and D. G. Shen, "Robust deformable-surface-based skull-stripping for large-scale studies, " in Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv., 2011, pp. 635-642.
-
(2011)
Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv.
, pp. 635-642
-
-
Wang, Y.P.1
Nie, J.X.2
Yap, P.T.3
Shi, F.4
Guo, L.5
Shen, D.G.6
-
48
-
-
84896373761
-
Knowledge-guided robust MRI brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates
-
Y. P. Wang et al., "Knowledge-guided robust MRI brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates, " Plos One, vol. 9, p. e77810, 2014.
-
(2014)
Plos One
, vol.9
, pp. e77810
-
-
Wang, Y.P.1
-
49
-
-
0034745001
-
Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm
-
Jan.
-
Y. Zhang, M. Brady, and S. Smith, "Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm, " IEEE Trans. Med. Imag., vol. 20, no. 1, pp. 45-57, Jan. 2001.
-
(2001)
IEEE Trans. Med. Imag.
, vol.20
, Issue.1
, pp. 45-57
-
-
Zhang, Y.1
Brady, M.2
Smith, S.3
-
50
-
-
0036880516
-
HAMMER: Hierarchical attribute matching mechanism for elastic registration
-
Nov.
-
D. G. Shen and C. Davatzikos, "HAMMER: Hierarchical attribute matching mechanism for elastic registration, " IEEE Trans. Med. Imag., vol. 21, no. 11, pp. 1421-1439, Nov. 2002.
-
(2002)
IEEE Trans. Med. Imag.
, vol.21
, Issue.11
, pp. 1421-1439
-
-
Shen, D.G.1
Davatzikos, C.2
-
51
-
-
0342723538
-
A 3D atlas of the human brain
-
N. Kabani, D. MacDonald, C. J. Holmes, and A. Evans, "A 3D atlas of the human brain, " NeuroImage, vol. 7, p. S717, 1998.
-
(1998)
NeuroImage
, vol.7
, pp. S717
-
-
Kabani, N.1
MacDonald, D.2
Holmes, C.J.3
Evans, A.4
-
52
-
-
84999007060
-
Multimodal classification of Alzheimer's disease using nonlinear graph fusion
-
T. Tong, K. Gray, Q Gao, L. Chen, D. Rueckert, and ADNI, "Multimodal classification of Alzheimer's disease using nonlinear graph fusion, " Pattern Recog., vol. 63, pp. 171-181, 2017.
-
(2017)
Pattern Recog.
, vol.63
, pp. 171-181
-
-
Tong, T.1
Gray, K.2
Gao, Q.3
Chen, L.4
Rueckert, D.5
-
54
-
-
79955702502
-
LIBSVM: A library for support vector machines
-
C. C. Chang and C. J. Lin, "LIBSVM: A library for support vector machines, " ACM Trans. Intell. Syst. Technol., vol. 2, pp. 1-39, 2001.
-
(2001)
ACM Trans. Intell. Syst. Technol.
, vol.2
, pp. 1-39
-
-
Chang, C.C.1
Lin, C.J.2
-
55
-
-
72049130805
-
Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
-
C. R. Jack et al., "Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade, " Lancet Neurol., vol. 9, pp. 119-128, 2010.
-
(2010)
Lancet Neurol.
, vol.9
, pp. 119-128
-
-
Jack, C.R.1
|