메뉴 건너뛰기




Volumn 22, Issue 1, 2018, Pages 173-183

Multimodal Neuroimaging Feature Learning with Multimodal Stacked Deep Polynomial Networks for Diagnosis of Alzheimer's Disease

Author keywords

Alzheimer's disease; deep learning; deep polynomial networks; multimodal neuroimaging; multimodal stacked deep polynomial networks

Indexed keywords

CLASSIFICATION (OF INFORMATION); DEEP LEARNING; DIAGNOSIS; LARGE DATASET; MAGNETIC RESONANCE IMAGING; NEURODEGENERATIVE DISEASES; NEUROIMAGING; POLYNOMIALS; POSITRON EMISSION TOMOGRAPHY;

EID: 85040340661     PISSN: 21682194     EISSN: 21682208     Source Type: Journal    
DOI: 10.1109/JBHI.2017.2655720     Document Type: Article
Times cited : (360)

References (55)
  • 1
    • 0021271971 scopus 로고
    • Clinical diagnosis of Alzheimer's disease report of the NINCDSADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease
    • G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, and E. M. Stadlan, "Clinical diagnosis of Alzheimer's disease report of the NINCDSADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease, " Neurology, vol. 34, no. 7, pp. 939-939, 1984.
    • (1984) Neurology , vol.34 , Issue.7 , pp. 939
    • McKhann, G.1    Drachman, D.2    Folstein, M.3    Katzman, R.4    Price, D.5    Stadlan, E.M.6
  • 4
    • 84967022502 scopus 로고    scopus 로고
    • Multimodal neuroimaging computing: A review of the applications in neuropsychiatric disorders
    • S. D. Liu et al., "Multimodal neuroimaging computing: A review of the applications in neuropsychiatric disorders, " Brain Informat., vol. 2, pp. 167-180, 2015.
    • (2015) Brain Informat. , vol.2 , pp. 167-180
    • Liu, S.D.1
  • 6
    • 84875903418 scopus 로고    scopus 로고
    • Neuroimaging and other biomarkers for Alzheimer's disease: The changing landscape of early detection
    • S. L. Risacher and A. J. Saykin, "Neuroimaging and other biomarkers for Alzheimer's disease: The changing landscape of early detection, " Annu. Rev. Clin. Psychol., vol. 9, pp. 621-648, 2013.
    • (2013) Annu. Rev. Clin. Psychol. , vol.9 , pp. 621-648
    • Risacher, S.L.1    Saykin, A.J.2
  • 7
    • 84912558026 scopus 로고    scopus 로고
    • Biomarkers in dementia: Clinical utility and new directions
    • R. M. Ahmedet al., "Biomarkers in dementia: Clinical utility and new directions, " J. Neurol. Neurosurg. Psych., vol. 85, pp. 1426-1434, 2014.
    • (2014) J. Neurol. Neurosurg. Psych. , vol.85 , pp. 1426-1434
    • Ahmed, R.M.1
  • 8
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database
    • R. Cuingnetet al., "Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database, " NeuroImage, vol. 56, no. 2, pp. 766-781, 2011.
    • (2011) NeuroImage , vol.56 , Issue.2 , pp. 766-781
    • Cuingnet, R.1
  • 9
    • 84921491253 scopus 로고    scopus 로고
    • Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging
    • F. Falahati, E. Westman, and A. Simmons, "Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging, " J. Alzheimers Dis., vol. 41, no. 3, pp. 685-708, 2014.
    • (2014) J. Alzheimers Dis. , vol.41 , Issue.3 , pp. 685-708
    • Falahati, F.1    Westman, E.2    Simmons, A.3
  • 10
    • 84899902574 scopus 로고    scopus 로고
    • A review of feature reduction techniques in neuroimaging
    • B. Mwangi, T. S. Tian, and J. C. Soares, "A review of feature reduction techniques in neuroimaging, " Neuroinformatics, vol. 12, pp. 229-244, 2014.
    • (2014) Neuroinformatics , vol.12 , pp. 229-244
    • Mwangi, B.1    Tian, T.S.2    Soares, J.C.3
  • 11
    • 84908347504 scopus 로고    scopus 로고
    • General overview on the merits of multimodal neuroimaging data fusion
    • K. Uludag, and A. Roebroeck, "General overview on the merits of multimodal neuroimaging data fusion, " NeuroImage, vol. 102, pp. 3-10, 2014.
    • (2014) NeuroImage , vol.102 , pp. 3-10
    • Uludag, K.1    Roebroeck, A.2
  • 12
    • 85027875638 scopus 로고    scopus 로고
    • A review of heterogeneous data mining for brain disorder identification
    • B. K. Cao, X. N. Kong, and P. S. Yu, "A review of heterogeneous data mining for brain disorder identification, " Brain Informat., vol. 2, no. 4, pp. 253-264, 2015.
    • (2015) Brain Informat. , vol.2 , Issue.4 , pp. 253-264
    • Cao, B.K.1    Kong, X.N.2    Yu, P.S.3
  • 13
    • 79551576499 scopus 로고    scopus 로고
    • Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population
    • and ADNI
    • C. Hinrichs, V. Singh, G. F. Xu, S. C. Johnson, and ADNI, "Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population, " NeuroImage, vol. 55, no. 2, pp. 574-589, 2011.
    • (2011) NeuroImage , vol.55 , Issue.2 , pp. 574-589
    • Hinrichs, C.1    Singh, V.2    Xu, G.F.3    Johnson, S.C.4
  • 14
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • and ADNI
    • D. Q. Zhang, Y. P. Wang, L. P. Zhou, H. Yuan, D. G. Shen, and ADNI, "Multimodal classification of Alzheimer's disease and mild cognitive impairment, " NeuroImage, vol. 55, pp. 856-867, 2011.
    • (2011) NeuroImage , vol.55 , pp. 856-867
    • Zhang, D.Q.1    Wang, Y.P.2    Zhou, L.P.3    Yuan, H.4    Shen, D.G.5
  • 15
    • 84868215748 scopus 로고    scopus 로고
    • Random forest-based similarity measures for multi-modal classification of Alzheimer's disease
    • and ADNI
    • K. R. Gray, P. Aljabar, R. A. Heckemann, A. Hammers, D. Rueckert, and ADNI, "Random forest-based similarity measures for multi-modal classification of Alzheimer's disease, " NeuroImage, vol. 65, pp. 167-175, 2013.
    • (2013) NeuroImage , vol.65 , pp. 167-175
    • Gray, K.R.1    Aljabar, P.2    Heckemann, R.A.3    Hammers, A.4    Rueckert, D.5
  • 16
    • 84900841488 scopus 로고    scopus 로고
    • Multiple kernel learning in the primal for multi-modal Alzheimer's disease classification
    • May
    • F. Y. Liu, L. P. Zhou, C. H. Shen, and J. P. Yin, "Multiple kernel learning in the primal for multi-modal Alzheimer's disease classification, " IEEE J. Biomed. Health Informat., vol. 18, no. 3, pp. 984-990, May 2014.
    • (2014) IEEE J. Biomed. Health Informat. , vol.18 , Issue.3 , pp. 984-990
    • Liu, F.Y.1    Zhou, L.P.2    Shen, C.H.3    Yin, J.P.4
  • 17
    • 84928769522 scopus 로고    scopus 로고
    • Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM
    • M. Dyrba, M. Grothe, T. Kirste, and S. J. Teipel, "Multimodal analysis of functional and structural disconnection in Alzheimer's disease using multiple kernel SVM, " Hum. Brain Mapping, vol. 36, no. 6, pp. 2118-2131, 2015.
    • (2015) Hum. Brain Mapping , vol.36 , Issue.6 , pp. 2118-2131
    • Dyrba, M.1    Grothe, M.2    Kirste, T.3    Teipel, S.J.4
  • 18
    • 84922322664 scopus 로고    scopus 로고
    • Manifold regularized multitask feature learning for multimodality disease classification
    • and ADNI
    • B. Jie, D. Q. Zhang, B. Cheng, D. G. Shen, and ADNI, "Manifold regularized multitask feature learning for multimodality disease classification, " Hum. Brain Mapping, vol. 36, pp. 489-507, 2015.
    • (2015) Hum. Brain Mapping , vol.36 , pp. 489-507
    • Jie, B.1    Zhang, D.Q.2    Cheng, B.3    Shen, D.G.4
  • 19
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug.
    • Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 20
    • 84907019192 scopus 로고    scopus 로고
    • Hierarchical feature representation and multimodal fusion with deep learning for AD MCI diagnosis
    • Nov.
    • H. I. Suk, S. W. Lee, D. G. Shen, and ADNI, "Hierarchical feature representation and multimodal fusion with deep learning for AD MCI diagnosis, " NeuroImage, vol. 101, pp. 569-582, Nov. 2014.
    • (2014) NeuroImage , vol.101 , pp. 569-582
    • Suk, H.I.1    Lee, S.W.2    Shen, D.G.3
  • 21
    • 84862778147 scopus 로고    scopus 로고
    • Ensemble sparse classification of Alzheimer's disease
    • M. H. Liu, D. Q. Zhang, and D. G. Shen, "Ensemble sparse classification of Alzheimer's disease, " NeuroImage, vol. 60, pp. 1106-1116, 2012.
    • (2012) NeuroImage , vol.60 , pp. 1106-1116
    • Liu, M.H.1    Zhang, D.Q.2    Shen, D.G.3
  • 22
    • 84871988578 scopus 로고    scopus 로고
    • Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease
    • P. Coupé et al., "Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease, " NeuroImage, Clin., vol. 1, pp. 141-152, 2012.
    • (2012) NeuroImage, Clin. , vol.1 , pp. 141-152
    • Coupé, P.1
  • 24
    • 84938872693 scopus 로고    scopus 로고
    • Predicting Alzheimer's disease: A neuroimaging study with 3D convolutional neural networks
    • A. Payan and G. Montana, "Predicting Alzheimer's disease: A neuroimaging study with 3D convolutional neural networks, " in Proc. Int. Conf. Pattern Recog. Appl. Methods, 2015.
    • (2015) Proc. Int. Conf. Pattern Recog. Appl. Methods
    • Payan, A.1    Montana, G.2
  • 25
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets, " Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 26
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 27
    • 85032782045 scopus 로고    scopus 로고
    • Deep learning and its applications to signal and information processing
    • Jan.
    • D. Yu and L. Deng, "Deep learning and its applications to signal and information processing, " IEEE Signal Process. Mag., vol. 28, no. 1, pp. 145-154, Jan. 2011.
    • (2011) IEEE Signal Process. Mag. , vol.28 , Issue.1 , pp. 145-154
    • Yu, D.1    Deng, L.2
  • 28
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber, "Deep learning in neural networks: An overview, " Neural Netw., vol. 61, pp. 85-117, 2015.
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 29
    • 84857295176 scopus 로고    scopus 로고
    • The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods
    • Mar.
    • G. Carneiro, J. C. Nascimento, and A. Freitas, "The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods, " IEEE Trans. Image Process., vol. 12, no. 3, pp. 968-982, Mar. 2012.
    • (2012) IEEE Trans. Image Process. , vol.12 , Issue.3 , pp. 968-982
    • Carneiro, G.1    Nascimento, J.C.2    Freitas, A.3
  • 31
    • 84879853539 scopus 로고    scopus 로고
    • Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4Dpatient data
    • Aug.
    • H. C. Shin, M. R. Orton, D. J. Collins, S. J. Doran, and M. O. Leach, "Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4Dpatient data, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1930-1943, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1930-1943
    • Shin, H.C.1    Orton, M.R.2    Collins, D.J.3    Doran, S.J.4    Leach, M.O.5
  • 32
    • 84884546164 scopus 로고    scopus 로고
    • Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data
    • Nov.
    • G. Carneiro and J. C. Nascimento, "Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2592-2607, Nov. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.11 , pp. 2592-2607
    • Carneiro, G.1    Nascimento, J.C.2
  • 33
    • 85040360514 scopus 로고    scopus 로고
    • A new 2. 5D representation for lymph node detection using random sets of deep convolutional
    • H. Roth et al., "A new 2. 5D representation for lymph node detection using random sets of deep convolutional, " in Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv., 2014, pp. 520-527.
    • (2014) Proc. Int. Conf. Med. Image Comput. Comput. Assist. Interv. , pp. 520-527
    • Roth, H.1
  • 34
    • 84905900149 scopus 로고    scopus 로고
    • Deep learning for neuroimaging: A validation study
    • M. P. Sergey et al., "Deep learning for neuroimaging: A validation study, " Front. Neurosci., vol. 8, pp. 1-11, 2014.
    • (2014) Front. Neurosci. , vol.8 , pp. 1-11
    • Sergey, M.P.1
  • 35
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multimodality isointense infant brain image segmentation
    • W. L. Zhang et al., "Deep convolutional neural networks for multimodality isointense infant brain image segmentation, " NeuroImage, vol. 108, pp. 214-224, 2015.
    • (2015) NeuroImage , vol.108 , pp. 214-224
    • Zhang, W.L.1
  • 38
    • 84925851214 scopus 로고    scopus 로고
    • Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease
    • Apr.
    • S. Q. Liu et al., "Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease, " IEEE Trans. Biomed. Eng., vol. 62, no. 4, pp. 1132-1140, Apr. 2015.
    • (2015) IEEE Trans. Biomed. Eng. , vol.62 , Issue.4 , pp. 1132-1140
    • Liu, S.Q.1
  • 40
    • 84929692240 scopus 로고    scopus 로고
    • Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis
    • ADNI
    • H. I. Suk, S. W. Lee, D. Shen, and ADNI, "Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis, " Brain Struct. Funct., vol. 221, pp. 1-19, 2015.
    • (2015) Brain Struct. Funct. , vol.221 , pp. 1-19
    • Suk, H.I.1    Lee, S.W.2    Shen, D.3
  • 41
    • 84940975497 scopus 로고    scopus 로고
    • A robust deep model for improved classification of AD/MCI patients
    • Sep.
    • F. Li, L. Tran, K. H. Thung, S. W. Ji, D. G. Shen, and J. Li, "A robust deep model for improved classification of AD/MCI patients, " IEEE J. Biomed. Health Informat., vol. 19, no. 5, pp. 1610-1616, Sep. 2015.
    • (2015) IEEE J. Biomed. Health Informat. , vol.19 , Issue.5 , pp. 1610-1616
    • Li, F.1    Tran, L.2    Thung, K.H.3    Ji, S.W.4    Shen, D.G.5    Li, J.6
  • 42
    • 84998977762 scopus 로고    scopus 로고
    • Nonlinear feature transformation and deep fusion for Alzheimer's disease staging analysis
    • B. Shi, Y. Chen, P. Zhang, C. D. Smith, and J. Liu, "Nonlinear feature transformation and deep fusion for Alzheimer's disease staging analysis, " Pattern Recog., vol. 63, pp. 487-498, 2017.
    • (2017) Pattern Recog. , vol.63 , pp. 487-498
    • Shi, B.1    Chen, Y.2    Zhang, P.3    Smith, C.D.4    Liu, J.5
  • 45
    • 41949137974 scopus 로고    scopus 로고
    • The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
    • C. R. Jack et al., "The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods, " J. Magn. Reson. Imag., vol. 27, pp. 685-691, 2008.
    • (2008) J. Magn. Reson. Imag. , vol.27 , pp. 685-691
    • Jack, C.R.1
  • 46
    • 0031987382 scopus 로고    scopus 로고
    • A nonparametric method for automatic correction of intensity nonuniformity in MRI data
    • Feb.
    • J. G. Sled, A. P. Zijdenbos, and A. C. Evans, "A nonparametric method for automatic correction of intensity nonuniformity in MRI data, " IEEE Trans. Med. Imag., vol. 17, no. 1, pp. 87-97, Feb. 1998.
    • (1998) IEEE Trans. Med. Imag. , vol.17 , Issue.1 , pp. 87-97
    • Sled, J.G.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 48
    • 84896373761 scopus 로고    scopus 로고
    • Knowledge-guided robust MRI brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates
    • Y. P. Wang et al., "Knowledge-guided robust MRI brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates, " Plos One, vol. 9, p. e77810, 2014.
    • (2014) Plos One , vol.9 , pp. e77810
    • Wang, Y.P.1
  • 49
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm
    • Jan.
    • Y. Zhang, M. Brady, and S. Smith, "Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm, " IEEE Trans. Med. Imag., vol. 20, no. 1, pp. 45-57, Jan. 2001.
    • (2001) IEEE Trans. Med. Imag. , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 50
    • 0036880516 scopus 로고    scopus 로고
    • HAMMER: Hierarchical attribute matching mechanism for elastic registration
    • Nov.
    • D. G. Shen and C. Davatzikos, "HAMMER: Hierarchical attribute matching mechanism for elastic registration, " IEEE Trans. Med. Imag., vol. 21, no. 11, pp. 1421-1439, Nov. 2002.
    • (2002) IEEE Trans. Med. Imag. , vol.21 , Issue.11 , pp. 1421-1439
    • Shen, D.G.1    Davatzikos, C.2
  • 52
    • 84999007060 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease using nonlinear graph fusion
    • T. Tong, K. Gray, Q Gao, L. Chen, D. Rueckert, and ADNI, "Multimodal classification of Alzheimer's disease using nonlinear graph fusion, " Pattern Recog., vol. 63, pp. 171-181, 2017.
    • (2017) Pattern Recog. , vol.63 , pp. 171-181
    • Tong, T.1    Gray, K.2    Gao, Q.3    Chen, L.4    Rueckert, D.5
  • 54
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C. C. Chang and C. J. Lin, "LIBSVM: A library for support vector machines, " ACM Trans. Intell. Syst. Technol., vol. 2, pp. 1-39, 2001.
    • (2001) ACM Trans. Intell. Syst. Technol. , vol.2 , pp. 1-39
    • Chang, C.C.1    Lin, C.J.2
  • 55
    • 72049130805 scopus 로고    scopus 로고
    • Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
    • C. R. Jack et al., "Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade, " Lancet Neurol., vol. 9, pp. 119-128, 2010.
    • (2010) Lancet Neurol. , vol.9 , pp. 119-128
    • Jack, C.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.