메뉴 건너뛰기




Volumn 2015-July, Issue , 2015, Pages 286-289

Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans

Author keywords

computed tomography; convolutional neural networks; Nodule detection

Indexed keywords

COMPUTERIZED TOMOGRAPHY; CONVOLUTION; FEATURE EXTRACTION; MEDICAL IMAGING; OBJECT DETECTION; SUPPORT VECTOR MACHINES;

EID: 84943812643     PISSN: 19457928     EISSN: 19458452     Source Type: Conference Proceeding    
DOI: 10.1109/ISBI.2015.7163869     Document Type: Conference Paper
Times cited : (286)

References (11)
  • 1
    • 79961108629 scopus 로고    scopus 로고
    • Reduced lung-cancer mortality with low-dose computed tomographic screening
    • D. R. Aberle, A. M. Adams, C. D. Berg, et al., "Reduced lung-cancer mortality with low-dose computed tomographic screening," New England Journal of Medicine, vol. 365, pp. 395-409, 2011.
    • (2011) New England Journal of Medicine , vol.365 , pp. 395-409
    • Aberle, D.R.1    Adams, A.M.2    Berg, C.D.3
  • 2
    • 77954657504 scopus 로고    scopus 로고
    • Comparing and combining algorithms for computeraided detection of pulmonary nodules in computed tomography scans: The ANODE09 study
    • B. van Ginneken, S. G. Armato, B. de Hoop, et al., "Comparing and combining algorithms for computeraided detection of pulmonary nodules in computed tomography scans: the ANODE09 study," Medical Image Analysis, vol. 14, pp. 707-722, 2010.
    • (2010) Medical Image Analysis , vol.14 , pp. 707-722
    • Van Ginneken, B.1    Armato, S.G.2    De Hoop, B.3
  • 3
    • 81555205692 scopus 로고    scopus 로고
    • Computer-aided diagnosis: How to move from the laboratory to the clinic
    • B. van Ginneken, C. M. Schaefer-Prokop, and M. Prokop, "Computer-aided diagnosis: How to move from the laboratory to the clinic," Radiology, vol. 261, pp. 719-732, 2011.
    • (2011) Radiology , vol.261 , pp. 719-732
    • Van Ginneken, B.1    Schaefer-Prokop, C.M.2    Prokop, M.3
  • 4
    • 80053446757 scopus 로고    scopus 로고
    • An analysis of singlelayer networks in unsupervised feature learning
    • A. Coates, H. Lee, and A. Y. Ng, "An analysis of singlelayer networks in unsupervised feature learning," in AISTATS, 2011.
    • (2011) AISTATS
    • Coates, A.1    Lee, H.2    Ng, A.Y.3
  • 8
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in NIPS, 2012, pp. 1097-1105.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 10
    • 84909644435 scopus 로고    scopus 로고
    • A new 2. 5D representation for lymph node detection using random sets of deep convolutional neural network observations
    • H. R. Roth, L. Lu, A. Seff, et al., "A new 2. 5D representation for lymph node detection using random sets of deep convolutional neural network observations," in MICCAI, 2014, vol. 8673 of Lecture Notes in Computer Science, pp. 520-527.
    • (2014) MICCAI of Lecture Notes in Computer Science , vol.8673 , pp. 520-527
    • Roth, H.R.1    Lu, L.2    Seff, A.3
  • 11
    • 84944350160 scopus 로고    scopus 로고
    • Benchmarking computer-aided detection of pulmonary nodules on the recently completed publicly available LIDC/IDRI database
    • C. Jacobs, B. van Ginneken, S. Fromme, et al., "Benchmarking computer-aided detection of pulmonary nodules on the recently completed publicly available LIDC/IDRI database," in Annual Meeting of the Radiological Society of North America, 2013.
    • (2013) Annual Meeting of the Radiological Society of North America
    • Jacobs, C.1    Van Ginneken, B.2    Fromme, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.