메뉴 건너뛰기




Volumn 62, Issue 11, 2015, Pages 2693-2701

Automatic feature learning to grade nuclear cataracts based on deep learning

Author keywords

Automatic Feature Learning; Cataract Grading; Deep Learning

Indexed keywords

DIAGNOSIS; ERRORS; IMAGE ACQUISITION; NEURAL NETWORKS;

EID: 84946714467     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2015.2444389     Document Type: Article
Times cited : (197)

References (38)
  • 2
    • 84946740417 scopus 로고    scopus 로고
    • Online Available
    • (2010). IAPB Report-State of theWorld Sight 2010. [Online]. Available: http://www.iapb.org/resource/iapb-report-state-world-sight-2010
    • (2010) IAPB Report-State of theWorld Sight 2010
  • 3
    • 0030895038 scopus 로고    scopus 로고
    • Prevalence of cataract in Australia: The bluemountains eye study
    • P. Mitchell., et al. Prevalence of cataract in Australia: the BlueMountains Eye Study. Ophthalmology., vol. 104, pp. 581-588, 1997.
    • (1997) Ophthalmology , vol.104 , pp. 581-588
    • Mitchell, P.1
  • 4
    • 1842425722 scopus 로고    scopus 로고
    • Prevalence of Cataract and Pseudophakia/Aphakia among Adults in the United States
    • The Eye Diseases Prevalence Research Group
    • The Eye Diseases Prevalence Research Group, Prevalence of Cataract and Pseudophakia/Aphakia among Adults in the United States, Archives Ophthalm., vol. 122, pp. 487-494, 2004.
    • (2004) Archives Ophthalm , vol.122 , pp. 487-494
  • 5
    • 84875895072 scopus 로고    scopus 로고
    • National Eye Institute of the National Institutes of Health
    • National Eye Institute of the National Institutes of Health, Cataract: What you should know, 2003.
    • (2003) Cataract: What You Should Know
  • 6
    • 0041356911 scopus 로고    scopus 로고
    • Risk factor for nuclear cortical and posterior subcapsular cataracts in the Chinese population of Singapore: The Tanjong Pagar survey
    • P. J. Foster., et al. Risk factor for nuclear, cortical and posterior subcapsular cataracts in the Chinese population of Singapore: the Tanjong Pagar survey. Brit. J. Ophthalm., vol. 87, pp. 1112-1120, 2003.
    • (2003) Brit. J. Ophthalm , vol.87 , pp. 1112-1120
    • Foster, P.J.1
  • 7
    • 33645287990 scopus 로고    scopus 로고
    • The epidemiology of age related eye diseases in Asia
    • T. Y. Wong., et al. The epidemiology of age related eye diseases in Asia. Brit. J. Ophthalm., vol. 90, pp. 506-511, 2006.
    • (2006) Brit. J. Ophthalm , vol.90 , pp. 506-511
    • Wong, T.Y.1
  • 8
    • 78349257051 scopus 로고    scopus 로고
    • Cataract morphology, classification, assessment and referral
    • K. Pesudovs., and D. B. Elliott, Cataract morphology, classification, assessment and referral. CE Optometry., vol. 4, pp. 55-60, 2001.
    • (2001) CE Optometry , vol.4 , pp. 55-60
    • Pesudovs, K.1    Elliott, D.B.2
  • 9
    • 13844267386 scopus 로고    scopus 로고
    • Age-related cataract
    • P. A. Asbell., et al. Age-related cataract. Lancet., vol. 365, no. 9459, pp. 599-609, 2005.
    • (2005) Lancet , vol.365 , Issue.9459 , pp. 599-609
    • Asbell, P.A.1
  • 10
    • 84863043909 scopus 로고    scopus 로고
    • Computer-Aided cataract detection using enhanced texture features on retro-illumination lens images
    • X. Gao., et al. Computer-Aided cataract detection using enhanced texture features on retro-illumination lens images. in Proc. 18th IEEE Int. Conf. Image Process., 2011, pp. 1565-1568.
    • (2011) Proc. 18th IEEE Int. Conf. Image Process , pp. 1565-1568
    • Gao, X.1
  • 11
    • 84875899601 scopus 로고    scopus 로고
    • Automatic grading of cortical and PSC cataracts using retro-illumination lens images
    • X. Gao., et al. Automatic grading of cortical and PSC cataracts using retro-illumination lens images. in Proc. 11th Asian Conf. Comput. Vision, 2012, pp. 256-267.
    • (2012) Proc. 11th Asian Conf. Comput. Vision , pp. 256-267
    • Gao, X.1
  • 12
    • 0027173798 scopus 로고
    • The lens opacities classification system III
    • L. T. Chylack., et al. The lens opacities classification system III. Archives Ophthalm., vol. 111, no. 6, pp. 831-836, 1993.
    • (1993) Archives Ophthalm , vol.111 , Issue.6 , pp. 831-836
    • Chylack, L.T.1
  • 13
    • 0025054487 scopus 로고
    • Assessment of cataracts from photographs in the Beaver Dam Eye Study
    • B. Klein., et al. Assessment of cataracts from photographs in the Beaver Dam Eye Study. Ophthalmology, 97, pp. 1428-1433, 1990.
    • (1990) Ophthalmology , vol.97 , pp. 1428-1433
    • Klein, B.1
  • 14
    • 0036107838 scopus 로고    scopus 로고
    • A simplied cataract grading system-The WHO Cataract Grading Group
    • B. Thylefors., et al. A simplied cataract grading system-The WHO Cataract Grading Group. Ophthalmic Epidemiol., vol. 9, no. 2, pp. 83-95, 2002.
    • (2002) Ophthalmic Epidemiol , vol.9 , Issue.2 , pp. 83-95
    • Thylefors, B.1
  • 15
    • 0345686515 scopus 로고    scopus 로고
    • An automatic system for classification of nuclear sclerosis from slit-lamp photographs
    • S. Fan., et al. An automatic system for classification of nuclear sclerosis from slit-lamp photographs. in Proc. Int. Conf. Med. Image Comput. Comput. Assisted Intervention, 2003., vol. 2878, pp. 592-601.
    • (2003) Proc. Int. Conf. Med. Image Comput. Comput. Assisted Intervention , vol.2878 , pp. 592-601
    • Fan, S.1
  • 16
    • 0031150156 scopus 로고    scopus 로고
    • New objective classification system for nuclear opacification
    • D. D. Duncan., et al. New objective classification system for nuclear opacification. J. Opt. Soc. Amer., 14, pp. 1197-1204, 1997.
    • (1997) J. Opt. Soc. Amer , vol.14 , pp. 1197-1204
    • Duncan, D.D.1
  • 17
    • 0027468035 scopus 로고
    • Quantitating nuclear opacification in color Scheimpflug photographs
    • P. M. Khu., and T. Kashiwagi, Quantitating nuclear opacification in color Scheimpflug photographs. Invest. Ophthalmol. Vis. Sci., 34, pp. 130-136, 1993.
    • (1993) Invest. Ophthalmol. Vis. Sci , vol.34 , pp. 130-136
    • Khu, P.M.1    Kashiwagi, T.2
  • 18
    • 77953758058 scopus 로고    scopus 로고
    • A computer-Aided diagnosis system of nuclear cataract
    • Jul
    • H. Li., et al. A computer-Aided diagnosis system of nuclear cataract. IEEE Trans. Biomed. Eng., vol. 57, no. 7, pp. 1690-1698, Jul. 2010.
    • (2010) IEEE Trans. Biomed. Eng , vol.57 , Issue.7 , pp. 1690-1698
    • Li, H.1
  • 19
    • 33847405306 scopus 로고    scopus 로고
    • Rationale and methodology for a population-based study of eye diseases in Malay people: The Singapore Malay eye study (simes
    • A. Foong., et al. Rationale and methodology for a population-based study of eye diseases in malay people: The Singapore Malay Eye Study (SiMES). Ophthalmic Epidemiol., vol. 14, pp. 25-35, 2007.
    • (2007) Ophthalmic Epidemiol , vol.14 , pp. 25-35
    • Foong, A.1
  • 20
    • 79960794916 scopus 로고    scopus 로고
    • Cataract prevalence varies substantially with assessment systems: Comparison of clinical and photographic grading in a population-based study
    • A. C. S. Tan., et al. Cataract prevalence varies substantially with assessment systems: comparison of clinical and photographic grading in a population-based study. Ophthalmic Epidemiol., vol. 18, no. 4, pp. 164-170, 2011.
    • (2011) Ophthalmic Epidemiol , vol.18 , Issue.4 , pp. 164-170
    • Tan, A.C.S.1
  • 21
    • 84874669710 scopus 로고    scopus 로고
    • Cataract conversion assessment using lens opacity classification system III and Wisconsin cataract grading system
    • W. L. Wong., et al. Cataract conversion assessment using lens opacity classification system III and Wisconsin cataract grading system. Investigative Ophthalm. Visual Sci., vol. 54, no. 1, pp. 280-287, 2013.
    • (2013) Investigative Ophthalm. Visual Sci , vol.54 , Issue.1 , pp. 280-287
    • Wong, W.L.1
  • 22
    • 78650873881 scopus 로고    scopus 로고
    • A computer assisted method for nuclear cataract grading from slit-lamp images using ranking
    • Jan
    • W. Huang., et al. A computer assisted method for nuclear cataract grading from slit-lamp images using ranking. IEEE Trans. Med. Imag., vol. 30, no. 1, pp. 94-107, Jan. 2011.
    • (2011) IEEE Trans. Med. Imag , vol.30 , Issue.1 , pp. 94-107
    • Huang, W.1
  • 23
    • 84946764597 scopus 로고    scopus 로고
    • Quantitative assessment of lens opacities with anterior segment optical coherence tomography
    • A. L. Wong., et al. Quantitative assessment of lens opacities with anterior segment optical coherence tomography. Brit. J. Ophthalm
    • Brit. J. Ophthalm
    • Wong, A.L.1
  • 24
    • 84946711848 scopus 로고    scopus 로고
    • System, method, and computer software code for grading cataract
    • D. R. Nixon, System, method, and computer software code for grading cataract. Patent 20 100 118 266, 2010.
    • (2010) Patent 20 , vol.100 , Issue.118 , pp. 266
    • Nixon, D.R.1
  • 25
    • 67949100445 scopus 로고    scopus 로고
    • Correlation of nuclear cataract lens density using scheimpflug images with lens opacities classification system III and visual function
    • D. S. Grewal., et al. Correlation of nuclear cataract lens density using scheimpflug images with lens opacities classification system III and visual function. Amer. Acad. Ophthalm., vol. 116, no. 8, pp. 1436-1443, 2009.
    • (2009) Amer. Acad. Ophthalm , vol.116 , Issue.8 , pp. 1436-1443
    • Grewal, D.S.1
  • 26
    • 84885902033 scopus 로고    scopus 로고
    • Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression
    • Y. Xu., et al. Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression. in Proc.Int. Conf. Med. Image Comput. Comput. Assisted Intervention, 2013., vol. 8150, pp. 468-475.
    • (2013) Proc.Int. Conf. Med. Image Comput. Comput. Assisted Intervention , vol.8150 , pp. 468-475
    • Xu, Y.1
  • 27
    • 84945951509 scopus 로고    scopus 로고
    • Automatic feature learning to grade nuclear cataracts based on deep learning
    • Part II, LNCS
    • X. Gao., et al. Automatic feature learning to grade nuclear cataracts based on deep learning. in Proc. Asian Conf. Comput. Vision, Part II, LNCS. 9004, 2015, pp. 632-642.
    • (2015) Proc. Asian Conf. Comput. Vision , vol.9004 , pp. 632-642
    • Gao, X.1
  • 28
    • 84877789646 scopus 로고    scopus 로고
    • Convolutional-recursive deep learning for 3D object classification
    • R. Socher., et al. Convolutional-recursive deep learning for 3D object classification. in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 665-673.
    • (2012) Proc. Adv. Neural Inf. Process. Syst , pp. 665-673
    • Socher, R.1
  • 30
    • 84884375038 scopus 로고    scopus 로고
    • White blood cell differential counts using convolutional neural networks for low resolution images
    • M. Habibzadeh., et al. White blood cell differential counts using convolutional neural networks for low resolution images. in Proc. Int. Conf. Med. Image Comput. Comput. Assisted Intervention, 2013, pp. 263-274.
    • (2013) Proc. Int. Conf. Med. Image Comput. Comput. Assisted Intervention , pp. 263-274
    • Habibzadeh, M.1
  • 31
    • 84892841517 scopus 로고    scopus 로고
    • Unsupervised Deep feature learning for deformable registration of MR brain images
    • G. Wu., et al. Unsupervised Deep feature learning for deformable registration of MR brain images. in Proc. Int. Conf. Med. Image Comput. Comput. Assisted Intervention, 2013, pp. 649-656, .
    • (2013) Proc. Int. Conf. Med. Image Comput. Comput. Assisted Intervention , pp. 649-656
    • Wu, G.1
  • 32
    • 84897576138 scopus 로고    scopus 로고
    • Representation learning: Aunified deep learning framework for automatic prostate MR segmentation
    • S. Liao., et al. Representation learning: Aunified deep learning framework for automatic prostate MR segmentation. in Proc. Int. Conf. Med. Image Comput. Comput. Assisted Intervention, 2013, pp. 254-261.
    • (2013) Proc. Int. Conf. Med. Image Comput. Comput. Assisted Intervention , pp. 254-261
    • Liao, S.1
  • 33
    • 84885933775 scopus 로고    scopus 로고
    • Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network
    • A. Prasoon., et al. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. in Proc. Int. Conf. Med. Image Comput. Comput. Assisted Intervention, 2013, pp. 246-253.
    • (2013) Proc. Int. Conf. Med. Image Comput. Comput. Assisted Intervention , pp. 246-253
    • Prasoon, A.1
  • 35
    • 80053438267 scopus 로고    scopus 로고
    • Parsing natural scenes and natural language with recursive neural networks
    • R. Socher., et al. Parsing natural scenes and natural language with recursive neural networks. in Proc. Int. Conf. Mach. Learning, 2011, pp. 129-136.
    • (2011) Proc. Int. Conf. Mach. Learning , pp. 129-136
    • Socher, R.1
  • 36
    • 84862283411 scopus 로고    scopus 로고
    • An analysis of single-layer networks in unsupervised feature learning
    • A. Coates., et al. An analysis of single-layer networks in unsupervised feature learning. in Proc. Int. Conf. Artif. Intell. Statist., 2011, pp. 215-223.
    • (2011) Proc. Int. Conf. Artif. Intell. Statist , pp. 215-223
    • Coates, A.1
  • 37
    • 84886472900 scopus 로고    scopus 로고
    • Integrating research, clinical practice and translation: The Singapore experience
    • J. Liu., et al. Integrating research, clinical practice and translation: The Singapore experience. in Proc. IEEE Eng. Med. Biol. Soc. Conf., 2013, pp. 7148-7151.
    • (2013) Proc.IEEE Eng. Med. Biol. Soc. Conf , pp. 7148-7151
    • Liu, J.1
  • 38
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C. Chang., and C. Lin, LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27, 2011.
    • (2011) ACM Trans. Intell. Syst. Technol , vol.2 , Issue.3 , pp. 1-27
    • Chang, C.1    Lin, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.