-
1
-
-
84872579310
-
Learning to detect cells using non-overlapping extremal regions
-
Ayache,N.,Delingette,H.,Golland,P.,Mori,K. (eds.),Springer,Heidelberg
-
Arteta,C.,Lempitsky,V.,Noble,J.A.,Zisserman,A.: Learning to detect cells using non-overlapping extremal regions. In: Ayache,N.,Delingette,H.,Golland,P.,Mori,K. (eds.) MICCAI 2012. LNCS,vol. 7510,pp. 348–356. Springer,Heidelberg (2012). doi:10.1007/978-3-642-33415-3_43
-
(2012)
MICCAI 2012. LNCS
, vol.7510
, pp. 348-356
-
-
Arteta, C.1
Lempitsky, V.2
Noble, J.A.3
Zisserman, A.4
-
2
-
-
81055146760
-
Systematic analysis of breast cancer morphology uncovers stromal features associated with survival
-
Beck,A.H.,Sangoi,A.R.,Leung,S.,Marinelli,R.J.,Nielsen,T.O.,van de Vijver,M.J.,West,R.B.,van de Rijn,M.,Koller,D.: Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3,108ra113 (2011)
-
(2011)
Sci. Transl. Med
, vol.3
-
-
Beck, A.H.1
Sangoi, A.R.2
Leung, S.3
Marinelli, R.J.4
Nielsen, T.O.5
Van De Vijver, M.J.6
West, R.B.7
Van De Rijn, M.8
Koller, D.9
-
3
-
-
39449093646
-
Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models
-
Binder,H.,Schumacher,M.: Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models. BMC Bioinform. (2008)
-
(2008)
BMC Bioinform
-
-
Binder, H.1
Schumacher, M.2
-
4
-
-
57449111248
-
Random survival forests
-
Ishwaran,H.,Kogalur,U.B.,Blackstone,E.H.,Lauer,M.S.: Random survival forests. Ann. Appl. Stat. 2(3),841–860 (2008)
-
(2008)
Ann. Appl. Stat
, vol.2
, Issue.3
, pp. 841-860
-
-
Ishwaran, H.1
Kogalur, U.B.2
Blackstone, E.H.3
Lauer, M.S.4
-
5
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun,Y.,Bottou,L.,Bengio,Y.,Haffner,P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11),2278–2324 (1998)
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
7
-
-
84951857819
-
A novel cell detection method using deep convolutional neural network and maximum-weight independent set
-
Navab,N.,Hornegger,J.,Wells,W.M.,Frangi,A.F. (eds.),Springer,Heidelberg
-
Liu,F.,Yang,L.: A novel cell detection method using deep convolutional neural network and maximum-weight independent set. In: Navab,N.,Hornegger,J.,Wells,W.M.,Frangi,A.F. (eds.) MICCAI 2015. LNCS,vol. 9351,pp. 349–357. Springer,Heidelberg (2015). doi:10.1007/978-3-319-24574-4_42
-
(2015)
MICCAI 2015. LNCS
, vol.9351
, pp. 349-357
-
-
Liu, F.1
Yang, L.2
-
8
-
-
84955238166
-
An effective approach for robust lung cancer cell detection
-
Wu,G.,Coupé,P.,Zhan,Y.,Munsell,B.,Rueckert,D. (eds.),Springer,Heidelberg
-
Pan,H.,Xu,Z.,Huang,J.: An effective approach for robust lung cancer cell detection. In: Wu,G.,Coupé,P.,Zhan,Y.,Munsell,B.,Rueckert,D. (eds.) Patch- MI 2015. LNCS,vol. 9467,pp. 87–94. Springer,Heidelberg (2015). doi:10.1007/ 978-3-319-28194-0_11
-
(2015)
Patch- MI 2015. LNCS
, vol.9467
, pp. 87-94
-
-
Pan, H.1
Xu, Z.2
Huang, J.3
-
9
-
-
34948819236
-
Multifeature prostate cancer diagnosis and gleason grading of histological images
-
Tabesh,A.,Teverovskiy,M.,Pang,H.Y.,Kumar,V.P.,Verbel,D.,Kotsianti,A.,Saidi,O.: Multifeature prostate cancer diagnosis and gleason grading of histological images. IEEE Trans. Med. Imaging 26(10),1366–1378 (2007)
-
(2007)
IEEE Trans. Med. Imaging
, vol.26
, Issue.10
, pp. 1366-1378
-
-
Tabesh, A.1
Teverovskiy, M.2
Pang, H.Y.3
Kumar, V.P.4
Verbel, D.5
Kotsianti, A.6
Saidi, O.7
-
10
-
-
84922393939
-
Novel image markers for non-small cell lung cancer classification and survival prediction
-
Wang,H.,Xing,F.,Su,H.,Stromberg,A.,Yang,L.: Novel image markers for non-small cell lung cancer classification and survival prediction. BMC Bioinform. 15,310 (2014)
-
(2014)
BMC Bioinform
, vol.15
, pp. 310
-
-
Wang, H.1
Xing, F.2
Su, H.3
Stromberg, A.4
Yang, L.5
-
11
-
-
84955315620
-
Efficient lung cancer cell detection with deep convolution neural network
-
Wu,G.,Coupé,P.,Zhan,Y.,Munsell,B.,Rueckert,D. (eds.),Springer,Heidelberg
-
Xu,Z.,Huang,J.: Efficient lung cancer cell detection with deep convolution neural network. In: Wu,G.,Coupé,P.,Zhan,Y.,Munsell,B.,Rueckert,D. (eds.) Patch- MI 2015. LNCS,vol. 9467,pp. 79–86. Springer,Heidelberg (2015). doi:10.1007/ 978-3-319-28194-0_10
-
(2015)
Patch- MI 2015. LNCS
, vol.9467
, pp. 79-86
-
-
Xu, Z.1
Huang, J.2
-
12
-
-
84952050376
-
Computer-assisted diagnosis of lung cancer using quantitative topology features
-
Zhou,L.,Wang,L.,Wang,Q.,Shi,Y. (eds.),Springer,Heidelberg
-
Yao,J.,Ganti,D.,Luo,X.,Xiao,G.,Xie,Y.,Yan,S.,Huang,J.: Computer-assisted diagnosis of lung cancer using quantitative topology features. In: Zhou,L.,Wang,L.,Wang,Q.,Shi,Y. (eds.) MLMI 2015. LNCS,vol. 9352,pp. 288–295. Springer,Heidelberg (2015). doi:10.1007/978-3-319-24888-2_35
-
(2015)
MLMI 2015. LNCS
, vol.9352
, pp. 288-295
-
-
Yao, J.1
Ganti, D.2
Luo, X.3
Xiao, G.4
Xie, Y.5
Yan, S.6
Huang, J.7
-
13
-
-
84868034841
-
Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling
-
Yuan,Y.,Failmezger,H.,Rueda,O.M.,Ali,H.R.,Gräf,S.,Chin,S.F.,Schwarz,R.F.,Curtis,C.,Dunning,M.J.,Bardwell,H.,et al.: Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci. Transl. Med. 4(157),157ra143 (2012)
-
(2012)
Sci. Transl. Med
, vol.4
, Issue.157
-
-
Yuan, Y.1
Failmezger, H.2
Rueda, O.M.3
Ali, H.R.4
Gräf, S.5
Chin, S.F.6
Schwarz, R.F.7
Curtis, C.8
Dunning, M.J.9
Bardwell, H.10
-
14
-
-
84978437467
-
Lung cancer survival prediction from pathological images and genetic data - An integration study
-
April
-
Zhu,X.,Yao,J.,Luo,X.,Xiao,G.,Xie,Y.,Gazdar,A.,Huang,J.: Lung cancer survival prediction from pathological images and genetic data - an integration study. In: IEEE ISBI,pp. 1173–1176,April 2016
-
(2016)
IEEE ISBI
, pp. 1173-1176
-
-
Zhu, X.1
Yao, J.2
Luo, X.3
Xiao, G.4
Xie, Y.5
Gazdar, A.6
Huang, J.7
|