메뉴 건너뛰기




Volumn 191, Issue , 2016, Pages 214-223

A Deep Convolutional Neural Network for segmenting and classifying epithelial and stromal regions in histopathological images

Author keywords

Breast histopathology; Colorectal cancer; Deep Convolutional Neural Networks; Feature representation; Regions; The classification of epithelial and stromal

Indexed keywords

CONVOLUTION; DEEP NEURAL NETWORKS; DISEASES; EXTRACTION; FEATURE EXTRACTION; HISTOLOGY; IMAGE CLASSIFICATION; IMAGE SEGMENTATION; MACHINE LEARNING; MEDICAL IMAGING; TEXTURES; TUMORS;

EID: 84977845763     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2016.01.034     Document Type: Article
Times cited : (426)

References (35)
  • 2
    • 84894631546 scopus 로고    scopus 로고
    • Spatially aware cell clusters graphs: predicting outcome in HPV associated oropharyngeal tumors
    • S. Ali, et al., Spatially aware cell clusters graphs: predicting outcome in HPV associated oropharyngeal tumors, in: Medical Image Computing and Computer-Assisted Intervention, vol. 8149, 2013, pp. 412-519.
    • (2013) Medical Image Computing and Computer-Assisted Intervention , vol.8149 , pp. 412-519
    • Ali, S.1
  • 3
    • 84888117352 scopus 로고    scopus 로고
    • Classification and immunohistochemical scoring of breast tissue microarray spots
    • (October (10))
    • T. Amaral, S. McKenna, K. Robertson, A. Thompson, Classification and immunohistochemical scoring of breast tissue microarray spots, IEEE Trans. Biomed. Eng. 60 (October (10)) (2013) 2806-2814.
    • (2013) IEEE Trans. Biomed. Eng , vol.60 , pp. 2806-2814
    • Amaral, T.1    McKenna, S.2    Robertson, K.3    Thompson, A.4
  • 4
    • 81055146760 scopus 로고    scopus 로고
    • Systematic analysis of breast cancer morphology uncovers stromal features associated with survival
    • A.H. Beck, et al., Systematic analysis of breast cancer morphology uncovers stromal features associated with survival, Sci. Transl. Med. 3 (2011) 108ra113.
    • (2011) Sci. Transl. Med , vol.3
    • Beck, A.H.1
  • 6
    • 84925119127 scopus 로고    scopus 로고
    • Discrimination between tumour epithelium and stroma via perception-based features
    • F. Bianconi, A. Lvarez Larrn, A. Fernndez, Discrimination between tumour epithelium and stroma via perception-based features, Neurocomputing 154 (0) (2015) 119-126.
    • (2015) Neurocomputing , vol.154 , pp. 119-126
    • Bianconi, F.1    Lvarez Larrn, A.2    Fernndez, A.3
  • 7
    • 79955146676 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • 27, software
    • C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, ACM Trans. Intell. Syst. Technol. 2 (2011) 27:1-27:27, software available at URL .
    • (2011) ACM Trans. Intell. Syst. Technol , vol.2 , Issue.27 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2
  • 8
    • 84939942022 scopus 로고    scopus 로고
    • Stacked predictive sparse decomposition for classification of histology sections
    • H. Chang, Y. Zhou, A. Borowsky, K. Barner, P. Spellman, B. Parvin, Stacked predictive sparse decomposition for classification of histology sections, Int. J. Comput. Vis. 113 (1) (2015) 3-18, URL.
    • (2015) Int. J. Comput. Vis , vol.113 , Issue.1 , pp. 3-18
    • Chang, H.1    Zhou, Y.2    Borowsky, A.3    Barner, K.4    Spellman, P.5    Parvin, B.6
  • 10
    • 84885929616 scopus 로고    scopus 로고
    • A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
    • Springer, Nagoya, Japan
    • A. Cruz-Roa, et al., A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection, in: Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013), vol. 8150, Springer, Nagoya, Japan, 2013, pp. 403-410.
    • (2013) Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013) , vol.8150 , pp. 403-410
    • Cruz-Roa, A.1
  • 11
    • 0037899253 scopus 로고    scopus 로고
    • Role of tissue stroma in cancer cell invasion
    • O. De Wever, M. Mareel, Role of tissue stroma in cancer cell invasion, J. Pathol. 200 (4) (2003) 429-447.
    • (2003) J. Pathol , vol.200 , Issue.4 , pp. 429-447
    • De Wever, O.1    Mareel, M.2
  • 13
    • 81255159060 scopus 로고    scopus 로고
    • Segmentation of epithelium in H&E stained odontogenic cysts
    • M. Eramian, et al., Segmentation of epithelium in H&E stained odontogenic cysts, J. Microsc. 244 (3) (2011) 273-292.
    • (2011) J. Microsc , vol.244 , Issue.3 , pp. 273-292
    • Eramian, M.1
  • 14
    • 84885936958 scopus 로고    scopus 로고
    • Automated segmentation of stromal tissue in histology images using a voting Bayesian model
    • H. Hiary, et al., Automated segmentation of stromal tissue in histology images using a voting Bayesian model, Signal Image Video Process. 7 (6) (2013) 1229-1237, URL.
    • (2013) Signal Image Video Process , vol.7 , Issue.6 , pp. 1229-1237
    • Hiary, H.1
  • 16
    • 0019654284 scopus 로고
    • Cubic convolution interpolation for digital image processing
    • (December (6))
    • R. Keys, Cubic convolution interpolation for digital image processing, IEEE Trans. Acoust. Speech Signal Process. 29 (December (6)) (1981) 1153-1160.
    • (1981) IEEE Trans. Acoust. Speech Signal Process , vol.29 , pp. 1153-1160
    • Keys, R.1
  • 17
    • 82555198138 scopus 로고    scopus 로고
    • Automatic tumor-stroma separation influorescence TMAs enables the quantitative high-throughput analysis of multiple cancer biomarkers
    • (December (12))
    • B. Lahrmann, N. Halama, H.-P. Sinn, P. Schirmacher, D. Jaeger, N. Grabe, Automatic tumor-stroma separation influorescence TMAs enables the quantitative high-throughput analysis of multiple cancer biomarkers, PLoS One 6 (December (12)) (2011) e28048.
    • (2011) PLoS One , vol.6
    • Lahrmann, B.1    Halama, N.2    Sinn, H.-P.3    Schirmacher, P.4    Jaeger, D.5    Grabe, N.6
  • 19
    • 84857679040 scopus 로고    scopus 로고
    • Identification of tumor epithelium and stroma in tissue microarrays using texture analysis
    • N. Linder, et al., Identification of tumor epithelium and stroma in tissue microarrays using texture analysis, Diagn. Pathol. 7 (1) (2012) 22, URL.
    • (2012) Diagn. Pathol , vol.7 , Issue.1 , pp. 22
    • Linder, N.1
  • 22
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • (July (7))
    • T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell. 24 (July (7)) (2002) 971-987.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 26
    • 84951749617 scopus 로고    scopus 로고
    • Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders
    • N. Navab, J. Hornegger, W. Wells, A. Frangi (Eds.), Springer International Publishing, Munich, Germany
    • H. Su, F. Xing, X. Kong, Y. Xie, S. Zhang, L. Yang, Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders, in: N. Navab, J. Hornegger, W. Wells, A. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention: MICCAI 2015. Lecture Notes in Computer Science, vol. 9351, Springer International Publishing, Munich, Germany, 2015, pp. 383-390.
    • (2015) Medical Image Computing and Computer-Assisted Intervention: MICCAI 2015. Lecture Notes in Computer Science , vol.9351 , pp. 383-390
    • Su, H.1    Xing, F.2    Kong, X.3    Xie, Y.4    Zhang, S.5    Yang, L.6
  • 27
    • 84923019397 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features
    • H. Wang, et al., Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features, J. Med. Imaging 1 (3) (2014) 034003, URL.
    • (2014) J. Med. Imaging , vol.1 , Issue.3
    • Wang, H.1
  • 28
    • 84899441340 scopus 로고    scopus 로고
    • Monte carlo sure-based parameter selection for parallel magnetic resonance imaging reconstruction
    • D.S. Weller, S. Ramani, J.-F. Nielsen, J.A. Fessler, Monte carlo sure-based parameter selection for parallel magnetic resonance imaging reconstruction, Magn. Reson. Med. 71 (5) (2014) 1760-1770.
    • (2014) Magn. Reson. Med , vol.71 , Issue.5 , pp. 1760-1770
    • Weller, D.S.1    Ramani, S.2    Nielsen, J.-F.3    Fessler, J.A.4
  • 29
    • 84927942779 scopus 로고    scopus 로고
    • Stacked sparse autoencoder (SSAE) based framework for nuclei patch classification on breast cancer histopathology
    • IEEE, Beijing, China
    • J. Xu, L. Xiang, R. Hang, J. Wu, Stacked sparse autoencoder (SSAE) based framework for nuclei patch classification on breast cancer histopathology, in: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), IEEE, Beijing, China, 2014, pp. 999-1002.
    • (2014) 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI) , pp. 999-1002
    • Xu, J.1    Xiang, L.2    Hang, R.3    Wu, J.4
  • 30
    • 84959375736 scopus 로고    scopus 로고
    • Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
    • (January (1))
    • J. Xu, L. Xiang, Q. Liu, H. Gilmore, J. Wu, J. Tang, A. Madabhushi, Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images, IEEE Trans. Med. Imaging 35 (January (1)) (2016) 119-130.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 119-130
    • Xu, J.1    Xiang, L.2    Liu, Q.3    Gilmore, H.4    Wu, J.5    Tang, J.6    Madabhushi, A.7
  • 31
    • 84929497384 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorization (SNMF) based color unmixing for breast histopathological image analysis
    • sparsity Techniques in Medical Imaging
    • J. Xu, L. Xiang, G. Wang, S. Ganesan, M. Feldman, N.N. Shih, H. Gilmore, A. Madabhushi, Sparse non-negative matrix factorization (SNMF) based color unmixing for breast histopathological image analysis, Comput. Med. Imaging Graph. 46 (Part 1) (2015) 20-29, sparsity Techniques in Medical Imaging. URL .
    • (2015) Comput. Med. Imaging Graph , vol.46 , pp. 20-29
    • Xu, J.1    Xiang, L.2    Wang, G.3    Ganesan, S.4    Feldman, M.5    Shih, N.N.6    Gilmore, H.7    Madabhushi, A.8
  • 32
    • 84868034841 scopus 로고    scopus 로고
    • Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling
    • Y. Yuan, et al., Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling, Sci. Transl. Med. 4 (157) (2012) 157ra143.
    • (2012) Sci. Transl. Med , vol.4 , Issue.157
    • Yuan, Y.1
  • 33
    • 84922344423 scopus 로고    scopus 로고
    • Towards large-scale histopathological image analysis: hashing-based image retrieval
    • (February (2))
    • X. Zhang, W. Liu, M. Dundar, S. Badve, S. Zhang, Towards large-scale histopathological image analysis: hashing-based image retrieval, IEEE Trans. Med. Imaging 34 (February (2)) (2015) 496-506.
    • (2015) IEEE Trans. Med. Imaging , vol.34 , pp. 496-506
    • Zhang, X.1    Liu, W.2    Dundar, M.3    Badve, S.4    Zhang, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.