메뉴 건너뛰기




Volumn 36, Issue , 2017, Pages 61-78

Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation

Author keywords

3D convolutional neural network; Brain lesions; Deep learning; Fully connected CRF; Segmentation

Indexed keywords

BENCHMARKING; CLINICAL RESEARCH; CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; HOSPITAL DATA PROCESSING; IMAGE SEGMENTATION; MEDICAL IMAGING; NETWORK ARCHITECTURE; RANDOM PROCESSES;

EID: 84995784237     PISSN: 13618415     EISSN: 13618423     Source Type: Journal    
DOI: 10.1016/j.media.2016.10.004     Document Type: Article
Times cited : (3116)

References (73)
  • 7
    • 84956678436 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFs
    • arXiv preprint arXiv
    • Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L., 2014. Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv: 1412.7062.
    • (2014)
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 12
    • 84929299697 scopus 로고    scopus 로고
    • Fully automatic brain tumour segmentation from multiple MR sequences using hidden markov fields and variational EM
    • Doyle, S., Vasseur, F., Dojat, M., Forbes, F., Fully automatic brain tumour segmentation from multiple MR sequences using hidden markov fields and variational EM. Procs. NCI-MICCAI BRATS, 2013, 18–22.
    • (2013) Procs. NCI-MICCAI BRATS , pp. 18-22
    • Doyle, S.1    Vasseur, F.2    Dojat, M.3    Forbes, F.4
  • 15
    • 84965138919 scopus 로고    scopus 로고
    • Dropout as a bayesian approximation: representing model uncertainty in deep learning
    • arXiv preprint arXiv
    • Gal, Y., Ghahramani, Z., 2015. Dropout as a bayesian approximation: representing model uncertainty in deep learning. arXiv preprint arXiv: 1506.02142.
    • (2015)
    • Gal, Y.1    Ghahramani, Z.2
  • 23
    • 84867720412 scopus 로고    scopus 로고
    • Improving neural networks by preventing co-adaptation of feature detectors
    • arXiv preprint arXiv:
    • Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. R., 2012. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv: 1207.0580.
    • (2012)
    • Hinton, G.E.1    Srivastava, N.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.R.5
  • 24
    • 80052301716 scopus 로고    scopus 로고
    • Robust brain extraction across datasets and comparison with publicly available methods
    • Iglesias, J.E., Liu, C.-Y., Thompson, P.M., Tu, Z., Robust brain extraction across datasets and comparison with publicly available methods. Med. Imaging IEEE Trans. 30:9 (2011), 1617–1634.
    • (2011) Med. Imaging IEEE Trans. , vol.30 , Issue.9 , pp. 1617-1634
    • Iglesias, J.E.1    Liu, C.-Y.2    Thompson, P.M.3    Tu, Z.4
  • 26
    • 84964923476 scopus 로고    scopus 로고
    • Batch normalization: accelerating deep network training by reducing internal covariate shift
    • arXiv preprint arXiv:
    • Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv: 1502.03167.
    • (2015)
    • Ioffe, S.1    Szegedy, C.2
  • 30
    • 34547497820 scopus 로고    scopus 로고
    • Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study
    • Kappos, L., Freedman, M.S., Polman, C.H., Edan, G., Hartung, H.-P., Miller, D.H., Montalbán, X., Barkhof, F., Radü, E.-W., Bauer, L., et al. Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet 370:9585 (2007), 389–397.
    • (2007) Lancet , vol.370 , Issue.9585 , pp. 389-397
    • Kappos, L.1    Freedman, M.S.2    Polman, C.H.3    Edan, G.4    Hartung, H.-P.5    Miller, D.H.6    Montalbán, X.7    Barkhof, F.8    Radü, E.-W.9    Bauer, L.10
  • 31
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected CRFs with gaussian edge potentials
    • Krähenbühl, P., Koltun, V., Efficient inference in fully connected CRFs with gaussian edge potentials. Adv. Neural Inf. Process. Syst 24 (2011), 109–117.
    • (2011) Adv. Neural Inf. Process. Syst , vol.24 , pp. 109-117
    • Krähenbühl, P.1    Koltun, V.2
  • 33
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1998), 2278–2324.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 35
    • 13844311004 scopus 로고    scopus 로고
    • Neuropsychological outcome and community re-integration following traumatic brain injury: the impact of frontal and non-frontal lesions
    • Lehtonen, S., Stringer, A.Y., Millis, S., Boake, C., Englander, J., Hart, T., High, W., Macciocchi, S., Meythaler, J., Novack, T., et al. Neuropsychological outcome and community re-integration following traumatic brain injury: the impact of frontal and non-frontal lesions. Brain Inj. 19:4 (2005), 239–256.
    • (2005) Brain Inj. , vol.19 , Issue.4 , pp. 239-256
    • Lehtonen, S.1    Stringer, A.Y.2    Millis, S.3    Boake, C.4    Englander, J.5    Hart, T.6    High, W.7    Macciocchi, S.8    Meythaler, J.9    Novack, T.10
  • 39
    • 84947921127 scopus 로고    scopus 로고
    • An ensemble of 2D convolutional neural networks for tumor segmentation
    • Springer
    • Lyksborg, M., Puonti, O., Agn, M., Larsen, R., An ensemble of 2D convolutional neural networks for tumor segmentation. Image Analysis, 2015, Springer, 201–211.
    • (2015) Image Analysis , pp. 201-211
    • Lyksborg, M.1    Puonti, O.2    Agn, M.3    Larsen, R.4
  • 41
    • 84979950799 scopus 로고    scopus 로고
    • ISLES 2015 – A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
    • Maier, O., Menze, B.H., et al. ISLES 2015 – A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35 (2017), 250–269.
    • (2017) Med. Image Anal. , vol.35 , pp. 250-269
    • Maier, O.1    Menze, B.H.2
  • 49
    • 4444333897 scopus 로고    scopus 로고
    • A brain tumor segmentation framework based on outlier detection
    • Prastawa, M., Bullitt, E., Ho, S., Gerig, G., A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8:3 (2004), 275–283.
    • (2004) Med. Image Anal. , vol.8 , Issue.3 , pp. 275-283
    • Prastawa, M.1    Bullitt, E.2    Ho, S.3    Gerig, G.4
  • 53
    • 49049089951 scopus 로고    scopus 로고
    • MR in the diagnosis and monitoring of multiple sclerosis: an overview
    • Rovira, À., León, A., MR in the diagnosis and monitoring of multiple sclerosis: an overview. Eur. J. Radiol. 67:3 (2008), 409–414.
    • (2008) Eur. J. Radiol. , vol.67 , Issue.3 , pp. 409-414
    • Rovira, À.1    León, A.2
  • 58
    • 84925410541 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • arXiv preprint arXiv
    • Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv: 1409.1556.
    • (2014)
    • Simonyan, K.1    Zisserman, A.2
  • 59
    • 84962006941 scopus 로고    scopus 로고
    • Striving for simplicity: the all convolutional net
    • arXiv preprint arXiv
    • Springenberg, J. T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for simplicity: the all convolutional net. arXiv preprint arXiv: 1412.6806.
    • (2014)
    • Springenberg, J.T.1    Dosovitskiy, A.2    Brox, T.3    Riedmiller, M.4
  • 60
    • 0032762144 scopus 로고    scopus 로고
    • An overlap invariant entropy measure of 3D medical image alignment
    • Studholme, C., Hill, D.L., Hawkes, D.J., An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 32:1 (1999), 71–86.
    • (1999) Pattern Recognit. , vol.32 , Issue.1 , pp. 71-86
    • Studholme, C.1    Hill, D.L.2    Hawkes, D.J.3
  • 62
    • 84943546021 scopus 로고    scopus 로고
    • Lecture 6.5-RMSprop: divide the gradient by a running average of its recent magnitude.
    • Tieleman, T., Hinton, G., Lecture 6.5-RMSprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn, 2012.
    • (2012) COURSERA: Neural Netw. Mach. Learn
    • Tieleman, T.1    Hinton, G.2
  • 65
    • 0033201366 scopus 로고    scopus 로고
    • Automated model-based tissue classification of MR images of the brain
    • Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P., Automated model-based tissue classification of MR images of the brain. Med. Imaging IEEE Trans. 18:10 (1999), 897–908.
    • (1999) Med. Imaging IEEE Trans. , vol.18 , Issue.10 , pp. 897-908
    • Van Leemput, K.1    Maes, F.2    Vandermeulen, D.3    Suetens, P.4
  • 66
    • 78650127479 scopus 로고    scopus 로고
    • Assessing spatial relationships between axonal integrity, regional brain volumes, and neuropsychological outcomes after traumatic axonal injury
    • Warner, M.A., de la Plata, C.M., Spence, J., Wang, J.Y., Harper, C., Moore, C., Devous, M., Diaz-Arrastia, R., Assessing spatial relationships between axonal integrity, regional brain volumes, and neuropsychological outcomes after traumatic axonal injury. J. Neurotrauma 27:12 (2010), 2121–2130.
    • (2010) J. Neurotrauma , vol.27 , Issue.12 , pp. 2121-2130
    • Warner, M.A.1    de la Plata, C.M.2    Spence, J.3    Wang, J.Y.4    Harper, C.5    Moore, C.6    Devous, M.7    Diaz-Arrastia, R.8
  • 70
    • 84858432452 scopus 로고    scopus 로고
    • Quantitative CT improves outcome prediction in acute traumatic brain injury
    • Yuh, E.L., Cooper, S.R., Ferguson, A.R., Manley, G.T., Quantitative CT improves outcome prediction in acute traumatic brain injury. J. Neurotrauma 29:5 (2012), 735–746.
    • (2012) J. Neurotrauma , vol.29 , Issue.5 , pp. 735-746
    • Yuh, E.L.1    Cooper, S.R.2    Ferguson, A.R.3    Manley, G.T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.