-
1
-
-
84961647384
-
GLISTRboost: Combining multimodal MRI segmentation, registration, and biophysical tumour growth modelling with gradient boosting machines for glioma segmentation
-
Springer
-
Bakas, S., Zeng, K., Sotiras, A., Rathore, S., Akbari, H., Gaonkar, B., Rozycki, M., Pati, S., Davatzikos, C., GLISTRboost: Combining multimodal MRI segmentation, registration, and biophysical tumour growth modelling with gradient boosting machines for glioma segmentation. International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 2015, Springer, 144–155.
-
(2015)
International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
, pp. 144-155
-
-
Bakas, S.1
Zeng, K.2
Sotiras, A.3
Rathore, S.4
Akbari, H.5
Gaonkar, B.6
Rozycki, M.7
Pati, S.8
Davatzikos, C.9
-
2
-
-
84897544737
-
Theano: new features and speed improvements
-
Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A., Bouchard, N., Bengio, Y., Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.
-
(2012)
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.J.5
Bergeron, A.6
Bouchard, N.7
Bengio, Y.8
-
4
-
-
84951792755
-
Deep convolutional encoder networks for multiple sclerosis lesion segmentation
-
Springer
-
Brosch, T., Yoo, Y., Tang, L.Y., Li, D.K., Traboulsee, A., Tam, R., Deep convolutional encoder networks for multiple sclerosis lesion segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, 2015, Springer, 3–11.
-
(2015)
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015
, pp. 3-11
-
-
Brosch, T.1
Yoo, Y.2
Tang, L.Y.3
Li, D.K.4
Traboulsee, A.5
Tam, R.6
-
5
-
-
84942569101
-
Template-based multimodal joint generative model of brain data
-
Springer
-
Cardoso, M.J., Sudre, C.H., Modat, M., Ourselin, S., Template-based multimodal joint generative model of brain data. Information Processing in Medical Imaging, 2015, Springer, 17–29.
-
(2015)
Information Processing in Medical Imaging
, pp. 17-29
-
-
Cardoso, M.J.1
Sudre, C.H.2
Modat, M.3
Ourselin, S.4
-
6
-
-
84883412731
-
Beyond the lesion: neuroimaging foundations for post-stroke recovery
-
Carey, L.M., Seitz, R.J., Parsons, M., Levi, C., Farquharson, S., Tournier, J.-D., Palmer, S., Connelly, A., Beyond the lesion: neuroimaging foundations for post-stroke recovery. Future Neurol 8:5 (2013), 507–527.
-
(2013)
Future Neurol
, vol.8
, Issue.5
, pp. 507-527
-
-
Carey, L.M.1
Seitz, R.J.2
Parsons, M.3
Levi, C.4
Farquharson, S.5
Tournier, J.-D.6
Palmer, S.7
Connelly, A.8
-
7
-
-
84956678436
-
Semantic image segmentation with deep convolutional nets and fully connected CRFs
-
arXiv preprint arXiv
-
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L., 2014. Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv: 1412.7062.
-
(2014)
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
8
-
-
84965107578
-
The loss surfaces of multilayer networks
-
Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B., LeCun, Y., The loss surfaces of multilayer networks. AISTATS, 2015.
-
(2015)
AISTATS
-
-
Choromanska, A.1
Henaff, M.2
Mathieu, M.3
Arous, G.B.4
LeCun, Y.5
-
9
-
-
84877789057
-
Deep neural networks segment neuronal membranes in electron microscopy images
-
Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J., Deep neural networks segment neuronal membranes in electron microscopy images. Advances in neural information processing systems, 2012, 2843–2851.
-
(2012)
Advances in neural information processing systems
, pp. 2843-2851
-
-
Ciresan, D.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
10
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
Springer
-
Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J., Mitosis detection in breast cancer histology images with deep neural networks. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013, 2013, Springer, 411–418.
-
(2013)
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013
, pp. 411-418
-
-
Cireşan, D.C.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
11
-
-
59649115401
-
Cerebral atrophy after traumatic white matter injury: correlation with acute neuroimaging and outcome
-
Ding, K., de la Plata, C.M., Wang, J.Y., Mumphrey, M., Moore, C., Harper, C., Madden, C.J., McColl, R., Whittemore, A., Devous, M.D., et al. Cerebral atrophy after traumatic white matter injury: correlation with acute neuroimaging and outcome. J. Neurotrauma 25:12 (2008), 1433–1440.
-
(2008)
J. Neurotrauma
, vol.25
, Issue.12
, pp. 1433-1440
-
-
Ding, K.1
de la Plata, C.M.2
Wang, J.Y.3
Mumphrey, M.4
Moore, C.5
Harper, C.6
Madden, C.J.7
McColl, R.8
Whittemore, A.9
Devous, M.D.10
-
12
-
-
84929299697
-
Fully automatic brain tumour segmentation from multiple MR sequences using hidden markov fields and variational EM
-
Doyle, S., Vasseur, F., Dojat, M., Forbes, F., Fully automatic brain tumour segmentation from multiple MR sequences using hidden markov fields and variational EM. Procs. NCI-MICCAI BRATS, 2013, 18–22.
-
(2013)
Procs. NCI-MICCAI BRATS
, pp. 18-22
-
-
Doyle, S.1
Vasseur, F.2
Dojat, M.3
Forbes, F.4
-
13
-
-
84951863634
-
A cross saliency approach to asymmetry-based tumour detection
-
Springer
-
Erihov, M., Alpert, S., Kisilev, P., Hashoul, S., A cross saliency approach to asymmetry-based tumour detection. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, 2015, Springer, 636–643.
-
(2015)
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015
, pp. 636-643
-
-
Erihov, M.1
Alpert, S.2
Kisilev, P.3
Hashoul, S.4
-
14
-
-
84961636964
-
Segmentation of ischemic stroke lesions in multi-spectral MR images using weighting suppressed FCM and three phase level set
-
Springer
-
Feng, C., Zhao, D., Huang, M., Segmentation of ischemic stroke lesions in multi-spectral MR images using weighting suppressed FCM and three phase level set. International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 2015, Springer, 233–245.
-
(2015)
International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
, pp. 233-245
-
-
Feng, C.1
Zhao, D.2
Huang, M.3
-
15
-
-
84965138919
-
Dropout as a bayesian approximation: representing model uncertainty in deep learning
-
arXiv preprint arXiv
-
Gal, Y., Ghahramani, Z., 2015. Dropout as a bayesian approximation: representing model uncertainty in deep learning. arXiv preprint arXiv: 1506.02142.
-
(2015)
-
-
Gal, Y.1
Ghahramani, Z.2
-
16
-
-
79958012408
-
Spatial decision forests for MS lesion segmentation in multi-channel MR images
-
Springer
-
Geremia, E., Menze, B.H., Clatz, O., Konukoglu, E., Criminisi, A., Ayache, N., Spatial decision forests for MS lesion segmentation in multi-channel MR images. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010, 2010, Springer, 111–118.
-
(2010)
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010
, pp. 111-118
-
-
Geremia, E.1
Menze, B.H.2
Clatz, O.3
Konukoglu, E.4
Criminisi, A.5
Ayache, N.6
-
18
-
-
80053532781
-
Joint segmentation and deformable registration of brain scans guided by a tumour growth model
-
Springer
-
Gooya, A., Pohl, K.M., Bilello, M., Biros, G., Davatzikos, C., Joint segmentation and deformable registration of brain scans guided by a tumour growth model. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011, 2011, Springer, 532–540.
-
(2011)
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011
, pp. 532-540
-
-
Gooya, A.1
Pohl, K.M.2
Bilello, M.3
Biros, G.4
Davatzikos, C.5
-
19
-
-
84883849495
-
Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults
-
Springer
-
Grabner, G., Janke, A.L., Budge, M.M., Smith, D., Pruessner, J., Collins, D.L., Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006, 2006, Springer, 58–66.
-
(2006)
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006
, pp. 58-66
-
-
Grabner, G.1
Janke, A.L.2
Budge, M.M.3
Smith, D.4
Pruessner, J.5
Collins, D.L.6
-
20
-
-
84961584027
-
ISLES (SISS) challenge 2015: segmentation of stroke lesions using spatial normalization, Random Forest classification and contextual clustering
-
Springer
-
Halme, H.-L., Korvenoja, A., Salli, E., ISLES (SISS) challenge 2015: segmentation of stroke lesions using spatial normalization, Random Forest classification and contextual clustering. International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 2015, Springer, 211–221.
-
(2015)
International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
, pp. 211-221
-
-
Halme, H.-L.1
Korvenoja, A.2
Salli, E.3
-
21
-
-
84952669511
-
Brain tumour segmentation with deep neural networks
-
arXiv preprint arXiv:
-
Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., Larochelle, H., 2015. Brain tumour segmentation with deep neural networks. arXiv preprint arXiv: 1505.03540.
-
(2015)
-
-
Havaei, M.1
Davy, A.2
Warde-Farley, D.3
Biard, A.4
Courville, A.5
Bengio, Y.6
Pal, C.7
Jodoin, P.-M.8
Larochelle, H.9
-
22
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
He, K., Zhang, X., Ren, S., Sun, J., Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Proceedings of the IEEE International Conference on Computer Vision, 2015, 1026–1034.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
23
-
-
84867720412
-
Improving neural networks by preventing co-adaptation of feature detectors
-
arXiv preprint arXiv:
-
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. R., 2012. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv: 1207.0580.
-
(2012)
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
24
-
-
80052301716
-
Robust brain extraction across datasets and comparison with publicly available methods
-
Iglesias, J.E., Liu, C.-Y., Thompson, P.M., Tu, Z., Robust brain extraction across datasets and comparison with publicly available methods. Med. Imaging IEEE Trans. 30:9 (2011), 1617–1634.
-
(2011)
Med. Imaging IEEE Trans.
, vol.30
, Issue.9
, pp. 1617-1634
-
-
Iglesias, J.E.1
Liu, C.-Y.2
Thompson, P.M.3
Tu, Z.4
-
25
-
-
74149094288
-
Brain tissue volumes in relation to cognitive function and risk of dementia
-
Ikram, M.A., Vrooman, H.A., Vernooij, M.W., den Heijer, T., Hofman, A., Niessen, W.J., van der Lugt, A., Koudstaal, P.J., Breteler, M.M., Brain tissue volumes in relation to cognitive function and risk of dementia. Neurobiol. Aging 31:3 (2010), 378–386.
-
(2010)
Neurobiol. Aging
, vol.31
, Issue.3
, pp. 378-386
-
-
Ikram, M.A.1
Vrooman, H.A.2
Vernooij, M.W.3
den Heijer, T.4
Hofman, A.5
Niessen, W.J.6
van der Lugt, A.7
Koudstaal, P.J.8
Breteler, M.M.9
-
26
-
-
84964923476
-
Batch normalization: accelerating deep network training by reducing internal covariate shift
-
arXiv preprint arXiv:
-
Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv: 1502.03167.
-
(2015)
-
-
Ioffe, S.1
Szegedy, C.2
-
27
-
-
84871958636
-
Neuroimaging of structural pathology and connectomics in traumatic brain injury: toward personalized outcome prediction
-
Irimia, A., Wang, B., Aylward, S.R., Prastawa, M.W., Pace, D.F., Gerig, G., Hovda, D.A., Kikinis, R., Vespa, P.M., Van Horn, J.D., Neuroimaging of structural pathology and connectomics in traumatic brain injury: toward personalized outcome prediction. NeuroImage: Clinical 1:1 (2012), 1–17.
-
(2012)
NeuroImage: Clinical
, vol.1
, Issue.1
, pp. 1-17
-
-
Irimia, A.1
Wang, B.2
Aylward, S.R.3
Prastawa, M.W.4
Pace, D.F.5
Gerig, G.6
Hovda, D.A.7
Kikinis, R.8
Vespa, P.M.9
Van Horn, J.D.10
-
28
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
IEEE
-
Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y., What is the best multi-stage architecture for object recognition?. Computer Vision, 2009 IEEE 12th International Conference on, 2009, IEEE, 2146–2153.
-
(2009)
Computer Vision, 2009 IEEE 12th International Conference on
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
29
-
-
84984812599
-
Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI
-
Kamnitsas, K., Chen, L., Ledig, C., Rueckert, D., Glocker, B., 2015. Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI. in proc of ISLES-MICCAI.
-
(2015)
proc of ISLES-MICCAI
-
-
Kamnitsas, K.1
Chen, L.2
Ledig, C.3
Rueckert, D.4
Glocker, B.5
-
30
-
-
34547497820
-
Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study
-
Kappos, L., Freedman, M.S., Polman, C.H., Edan, G., Hartung, H.-P., Miller, D.H., Montalbán, X., Barkhof, F., Radü, E.-W., Bauer, L., et al. Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet 370:9585 (2007), 389–397.
-
(2007)
Lancet
, vol.370
, Issue.9585
, pp. 389-397
-
-
Kappos, L.1
Freedman, M.S.2
Polman, C.H.3
Edan, G.4
Hartung, H.-P.5
Miller, D.H.6
Montalbán, X.7
Barkhof, F.8
Radü, E.-W.9
Bauer, L.10
-
31
-
-
85162351107
-
Efficient inference in fully connected CRFs with gaussian edge potentials
-
Krähenbühl, P., Koltun, V., Efficient inference in fully connected CRFs with gaussian edge potentials. Adv. Neural Inf. Process. Syst 24 (2011), 109–117.
-
(2011)
Adv. Neural Inf. Process. Syst
, vol.24
, pp. 109-117
-
-
Krähenbühl, P.1
Koltun, V.2
-
32
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2012, 1097–1105.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
33
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1998), 2278–2324.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
34
-
-
84922448678
-
Robust whole-brain segmentation: application to traumatic brain injury
-
Ledig, C., Heckemann, R.A., Hammers, A., Lopez, J.C., Newcombe, V.F., Makropoulos, A., Lötjönen, J., Menon, D.K., Rueckert, D., Robust whole-brain segmentation: application to traumatic brain injury. Med. Image Anal. 21:1 (2015), 40–58.
-
(2015)
Med. Image Anal.
, vol.21
, Issue.1
, pp. 40-58
-
-
Ledig, C.1
Heckemann, R.A.2
Hammers, A.3
Lopez, J.C.4
Newcombe, V.F.5
Makropoulos, A.6
Lötjönen, J.7
Menon, D.K.8
Rueckert, D.9
-
35
-
-
13844311004
-
Neuropsychological outcome and community re-integration following traumatic brain injury: the impact of frontal and non-frontal lesions
-
Lehtonen, S., Stringer, A.Y., Millis, S., Boake, C., Englander, J., Hart, T., High, W., Macciocchi, S., Meythaler, J., Novack, T., et al. Neuropsychological outcome and community re-integration following traumatic brain injury: the impact of frontal and non-frontal lesions. Brain Inj. 19:4 (2005), 239–256.
-
(2005)
Brain Inj.
, vol.19
, Issue.4
, pp. 239-256
-
-
Lehtonen, S.1
Stringer, A.Y.2
Millis, S.3
Boake, C.4
Englander, J.5
Hart, T.6
High, W.7
Macciocchi, S.8
Meythaler, J.9
Novack, T.10
-
36
-
-
84906979740
-
Deep learning based imaging data completion for improved brain disease diagnosis
-
Springer
-
Li, R., Zhang, W., Suk, H.-I., Wang, L., Li, J., Shen, D., Ji, S., Deep learning based imaging data completion for improved brain disease diagnosis. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014, 2014, Springer, 305–312.
-
(2014)
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014
, pp. 305-312
-
-
Li, R.1
Zhang, W.2
Suk, H.-I.3
Wang, L.4
Li, J.5
Shen, D.6
Ji, S.7
-
37
-
-
84906980773
-
Low-rank to the rescue – atlas-based analyses in the presence of pathologies
-
Springer
-
Liu, X., Niethammer, M., Kwitt, R., McCormick, M., Aylward, S., Low-rank to the rescue – atlas-based analyses in the presence of pathologies. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014, 2014, Springer, 97–104.
-
(2014)
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014
, pp. 97-104
-
-
Liu, X.1
Niethammer, M.2
Kwitt, R.3
McCormick, M.4
Aylward, S.5
-
38
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
Long, J., Shelhamer, E., Darrell, T., Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 3431–3440.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
39
-
-
84947921127
-
An ensemble of 2D convolutional neural networks for tumor segmentation
-
Springer
-
Lyksborg, M., Puonti, O., Agn, M., Larsen, R., An ensemble of 2D convolutional neural networks for tumor segmentation. Image Analysis, 2015, Springer, 201–211.
-
(2015)
Image Analysis
, pp. 201-211
-
-
Lyksborg, M.1
Puonti, O.2
Agn, M.3
Larsen, R.4
-
40
-
-
84925936260
-
Collaborative european neurotrauma effectiveness research in traumatic brain injury (CENTER-TBI): a prospective longitudinal observational study
-
Maas, A.I., Menon, D.K., Steyerberg, E.W., Citerio, G., Lecky, F., Manley, G.T., Hill, S., Legrand, V., Sorgner, A., Participants, C.-T., Investigators, et al. Collaborative european neurotrauma effectiveness research in traumatic brain injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery 76:1 (2015), 67–80.
-
(2015)
Neurosurgery
, vol.76
, Issue.1
, pp. 67-80
-
-
Maas, A.I.1
Menon, D.K.2
Steyerberg, E.W.3
Citerio, G.4
Lecky, F.5
Manley, G.T.6
Hill, S.7
Legrand, V.8
Sorgner, A.9
Participants, C.-T.10
Investigators11
-
41
-
-
84979950799
-
ISLES 2015 – A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
-
Maier, O., Menze, B.H., et al. ISLES 2015 – A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35 (2017), 250–269.
-
(2017)
Med. Image Anal.
, vol.35
, pp. 250-269
-
-
Maier, O.1
Menze, B.H.2
-
42
-
-
84949210409
-
The multimodal brain tumor image segmentation benchmark (BRATS)
-
Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al. The multimodal brain tumor image segmentation benchmark (BRATS). Med. Imaging IEEE Trans. 34:10 (2015), 1993–2024.
-
(2015)
Med. Imaging IEEE Trans.
, vol.34
, Issue.10
, pp. 1993-2024
-
-
Menze, B.H.1
Jakab, A.2
Bauer, S.3
Kalpathy-Cramer, J.4
Farahani, K.5
Kirby, J.6
Burren, Y.7
Porz, N.8
Slotboom, J.9
Wiest, R.10
-
43
-
-
84902963261
-
Lesion segmentation from multimodal MRI using random forest following ischemic stroke
-
Mitra, J., Bourgeat, P., Fripp, J., Ghose, S., Rose, S., Salvado, O., Connelly, A., Campbell, B., Palmer, S., Sharma, G., et al. Lesion segmentation from multimodal MRI using random forest following ischemic stroke. Neuroimage 98 (2014), 324–335.
-
(2014)
Neuroimage
, vol.98
, pp. 324-335
-
-
Mitra, J.1
Bourgeat, P.2
Fripp, J.3
Ghose, S.4
Rose, S.5
Salvado, O.6
Connelly, A.7
Campbell, B.8
Palmer, S.9
Sharma, G.10
-
44
-
-
84869239701
-
A longitudinal MRI study of traumatic axonal injury in patients with moderate and severe traumatic brain injury
-
jnnp–2012
-
Moen, K.G., Skandsen, T., Folvik, M., Brezova, V., Kvistad, K.A., Rydland, J., Manley, G.T., Vik, A., A longitudinal MRI study of traumatic axonal injury in patients with moderate and severe traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 83 (2012), 1193–1200 jnnp–2012.
-
(2012)
J. Neurol. Neurosurg. Psychiatry
, vol.83
, pp. 1193-1200
-
-
Moen, K.G.1
Skandsen, T.2
Folvik, M.3
Brezova, V.4
Kvistad, K.A.5
Rydland, J.6
Manley, G.T.7
Vik, A.8
-
45
-
-
84973879016
-
Learning deconvolution network for semantic segmentation
-
Noh, H., Hong, S., Han, B., Learning deconvolution network for semantic segmentation. Proceedings of the IEEE International Conference on Computer Vision, 2015, 1520–1528.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 1520-1528
-
-
Noh, H.1
Hong, S.2
Han, B.3
-
46
-
-
84988909615
-
Joint tumor segmentation and dense deformable registration of brain MR images
-
Springer
-
Parisot, S., Duffau, H., Chemouny, S., Paragios, N., Joint tumor segmentation and dense deformable registration of brain MR images. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012, 2012, Springer, 651–658.
-
(2012)
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012
, pp. 651-658
-
-
Parisot, S.1
Duffau, H.2
Chemouny, S.3
Paragios, N.4
-
47
-
-
84961642255
-
Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI
-
Springer
-
Pereira, S., Pinto, A., Alves, V., Silva, C.A., Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI. International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 2015, Springer, 131–143.
-
(2015)
International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
, pp. 131-143
-
-
Pereira, S.1
Pinto, A.2
Alves, V.3
Silva, C.A.4
-
48
-
-
84885933775
-
Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network
-
Springer
-
Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M., Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013, 2013, Springer, 246–253.
-
(2013)
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013
, pp. 246-253
-
-
Prasoon, A.1
Petersen, K.2
Igel, C.3
Lauze, F.4
Dam, E.5
Nielsen, M.6
-
49
-
-
4444333897
-
A brain tumor segmentation framework based on outlier detection
-
Prastawa, M., Bullitt, E., Ho, S., Gerig, G., A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8:3 (2004), 275–283.
-
(2004)
Med. Image Anal.
, vol.8
, Issue.3
, pp. 275-283
-
-
Prastawa, M.1
Bullitt, E.2
Ho, S.3
Gerig, G.4
-
50
-
-
84922452524
-
Contusion segmentation from subjects with traumatic brain injury: a random forest framework
-
IEEE
-
Rao, A., Ledig, C., Newcombe, V., Menon, D., Rueckert, D., Contusion segmentation from subjects with traumatic brain injury: a random forest framework. Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on, 2014, IEEE, 333–336.
-
(2014)
Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on
, pp. 333-336
-
-
Rao, A.1
Ledig, C.2
Newcombe, V.3
Menon, D.4
Rueckert, D.5
-
51
-
-
84951834022
-
U-Net: Convolutional networks for biomedical image segmentation
-
Springer
-
Ronneberger, O., Fischer, P., Brox, T., U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, 2015, Springer, 234–241.
-
(2015)
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
52
-
-
84909644435
-
A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations
-
Springer
-
Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M., A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014, 2014, Springer, 520–527.
-
(2014)
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014
, pp. 520-527
-
-
Roth, H.R.1
Lu, L.2
Seff, A.3
Cherry, K.M.4
Hoffman, J.5
Wang, S.6
Liu, J.7
Turkbey, E.8
Summers, R.M.9
-
53
-
-
49049089951
-
MR in the diagnosis and monitoring of multiple sclerosis: an overview
-
Rovira, À., León, A., MR in the diagnosis and monitoring of multiple sclerosis: an overview. Eur. J. Radiol. 67:3 (2008), 409–414.
-
(2008)
Eur. J. Radiol.
, vol.67
, Issue.3
, pp. 409-414
-
-
Rovira, À.1
León, A.2
-
54
-
-
84855223725
-
An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis
-
Schmidt, P., Gaser, C., Arsic, M., Buck, D., Förschler, A., Berthele, A., Hoshi, M., Ilg, R., Schmid, V.J., Zimmer, C., et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 59:4 (2012), 3774–3783.
-
(2012)
Neuroimage
, vol.59
, Issue.4
, pp. 3774-3783
-
-
Schmidt, P.1
Gaser, C.2
Arsic, M.3
Buck, D.4
Förschler, A.5
Berthele, A.6
Hoshi, M.7
Ilg, R.8
Schmid, V.J.9
Zimmer, C.10
-
55
-
-
85083951635
-
Overfeat: Integrated recognition, localization and detection using convolutional networks
-
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y., Overfeat: Integrated recognition, localization and detection using convolutional networks. International Conference on Learning Representations, 2014.
-
(2014)
International Conference on Learning Representations
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
56
-
-
80051988794
-
Default mode network functional and structural connectivity after traumatic brain injury
-
Sharp, D.J., Beckmann, C.F., Greenwood, R., Kinnunen, K.M., Bonnelle, V., De Boissezon, X., Powell, J.H., Counsell, S.J., Patel, M.C., Leech, R., Default mode network functional and structural connectivity after traumatic brain injury. Brain 134:8 (2011), 2233–2247.
-
(2011)
Brain
, vol.134
, Issue.8
, pp. 2233-2247
-
-
Sharp, D.J.1
Beckmann, C.F.2
Greenwood, R.3
Kinnunen, K.M.4
Bonnelle, V.5
De Boissezon, X.6
Powell, J.H.7
Counsell, S.J.8
Patel, M.C.9
Leech, R.10
-
57
-
-
84963949906
-
Mastering the game of Go with deep neural networks and tree search
-
Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. Mastering the game of Go with deep neural networks and tree search. Nature 529:7587 (2016), 484–489.
-
(2016)
Nature
, vol.529
, Issue.7587
, pp. 484-489
-
-
Silver, D.1
Huang, A.2
Maddison, C.J.3
Guez, A.4
Sifre, L.5
van den Driessche, G.6
Schrittwieser, J.7
Antonoglou, I.8
Panneershelvam, V.9
Lanctot, M.10
-
58
-
-
84925410541
-
Very deep convolutional networks for large-scale image recognition
-
arXiv preprint arXiv
-
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv: 1409.1556.
-
(2014)
-
-
Simonyan, K.1
Zisserman, A.2
-
59
-
-
84962006941
-
Striving for simplicity: the all convolutional net
-
arXiv preprint arXiv
-
Springenberg, J. T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for simplicity: the all convolutional net. arXiv preprint arXiv: 1412.6806.
-
(2014)
-
-
Springenberg, J.T.1
Dosovitskiy, A.2
Brox, T.3
Riedmiller, M.4
-
60
-
-
0032762144
-
An overlap invariant entropy measure of 3D medical image alignment
-
Studholme, C., Hill, D.L., Hawkes, D.J., An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 32:1 (1999), 71–86.
-
(1999)
Pattern Recognit.
, vol.32
, Issue.1
, pp. 71-86
-
-
Studholme, C.1
Hill, D.L.2
Hawkes, D.J.3
-
61
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
Sutskever, I., Martens, J., Dahl, G., Hinton, G., On the importance of initialization and momentum in deep learning. Proceedings of the 30th international conference on machine learning (ICML-13), 2013, 1139–1147.
-
(2013)
Proceedings of the 30th international conference on machine learning (ICML-13)
, pp. 1139-1147
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.3
Hinton, G.4
-
62
-
-
84943546021
-
Lecture 6.5-RMSprop: divide the gradient by a running average of its recent magnitude.
-
Tieleman, T., Hinton, G., Lecture 6.5-RMSprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn, 2012.
-
(2012)
COURSERA: Neural Netw. Mach. Learn
-
-
Tieleman, T.1
Hinton, G.2
-
63
-
-
84916606397
-
ANTs and Arboles
-
Tustison, N., Wintermark, M., Durst, C., Brian, A., ANTs and Arboles. in proc of BRATS-MICCAI, 2013.
-
(2013)
in proc of BRATS-MICCAI
-
-
Tustison, N.1
Wintermark, M.2
Durst, C.3
Brian, A.4
-
64
-
-
84959238201
-
Multi-modal brain tumor segmentation using deep convolutional neural networks
-
Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J., Multi-modal brain tumor segmentation using deep convolutional neural networks. in proc of BRATS-MICCAI, 2014.
-
(2014)
in proc of BRATS-MICCAI
-
-
Urban, G.1
Bendszus, M.2
Hamprecht, F.3
Kleesiek, J.4
-
65
-
-
0033201366
-
Automated model-based tissue classification of MR images of the brain
-
Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P., Automated model-based tissue classification of MR images of the brain. Med. Imaging IEEE Trans. 18:10 (1999), 897–908.
-
(1999)
Med. Imaging IEEE Trans.
, vol.18
, Issue.10
, pp. 897-908
-
-
Van Leemput, K.1
Maes, F.2
Vandermeulen, D.3
Suetens, P.4
-
66
-
-
78650127479
-
Assessing spatial relationships between axonal integrity, regional brain volumes, and neuropsychological outcomes after traumatic axonal injury
-
Warner, M.A., de la Plata, C.M., Spence, J., Wang, J.Y., Harper, C., Moore, C., Devous, M., Diaz-Arrastia, R., Assessing spatial relationships between axonal integrity, regional brain volumes, and neuropsychological outcomes after traumatic axonal injury. J. Neurotrauma 27:12 (2010), 2121–2130.
-
(2010)
J. Neurotrauma
, vol.27
, Issue.12
, pp. 2121-2130
-
-
Warner, M.A.1
de la Plata, C.M.2
Spence, J.3
Wang, J.Y.4
Harper, C.5
Moore, C.6
Devous, M.7
Diaz-Arrastia, R.8
-
67
-
-
84894620284
-
Multiple sclerosis lesion segmentation using dictionary learning and sparse coding
-
Springer
-
Weiss, N., Rueckert, D., Rao, A., Multiple sclerosis lesion segmentation using dictionary learning and sparse coding. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013, 2013, Springer, 735–742.
-
(2013)
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013
, pp. 735-742
-
-
Weiss, N.1
Rueckert, D.2
Rao, A.3
-
68
-
-
77951625266
-
Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group
-
Wen, P.Y., Macdonald, D.R., Reardon, D.A., Cloughesy, T.F., Sorensen, A.G., Galanis, E., DeGroot, J., Wick, W., Gilbert, M.R., Lassman, A.B., et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clinical Oncol. 28:11 (2010), 1963–1972.
-
(2010)
J. Clinical Oncol.
, vol.28
, Issue.11
, pp. 1963-1972
-
-
Wen, P.Y.1
Macdonald, D.R.2
Reardon, D.A.3
Cloughesy, T.F.4
Sorensen, A.G.5
Galanis, E.6
DeGroot, J.7
Wick, W.8
Gilbert, M.R.9
Lassman, A.B.10
-
69
-
-
84885767281
-
Modality propagation: Coherent synthesis of subject-specific scans with data-driven regularization
-
Springer
-
Ye, D.H., Zikic, D., Glocker, B., Criminisi, A., Konukoglu, E., Modality propagation: Coherent synthesis of subject-specific scans with data-driven regularization. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013, 2013, Springer, 606–613.
-
(2013)
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013
, pp. 606-613
-
-
Ye, D.H.1
Zikic, D.2
Glocker, B.3
Criminisi, A.4
Konukoglu, E.5
-
70
-
-
84858432452
-
Quantitative CT improves outcome prediction in acute traumatic brain injury
-
Yuh, E.L., Cooper, S.R., Ferguson, A.R., Manley, G.T., Quantitative CT improves outcome prediction in acute traumatic brain injury. J. Neurotrauma 29:5 (2012), 735–746.
-
(2012)
J. Neurotrauma
, vol.29
, Issue.5
, pp. 735-746
-
-
Yuh, E.L.1
Cooper, S.R.2
Ferguson, A.R.3
Manley, G.T.4
-
71
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P.H., Conditional random fields as recurrent neural networks. Proceedings of the IEEE International Conference on Computer Vision, 2015, 1529–1537.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 1529-1537
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.H.8
-
72
-
-
84872979595
-
Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR
-
Springer
-
Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J., Thomas, O., Das, T., Jena, R., Price, S., Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012, 2012, Springer, 369–376.
-
(2012)
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012
, pp. 369-376
-
-
Zikic, D.1
Glocker, B.2
Konukoglu, E.3
Criminisi, A.4
Demiralp, C.5
Shotton, J.6
Thomas, O.7
Das, T.8
Jena, R.9
Price, S.10
-
73
-
-
84961633985
-
Segmentation of brain tumor tissues with convolutional neural networks
-
Zikic, D., Ioannou, Y., Brown, M., Criminisi, A., 2014. Segmentation of brain tumor tissues with convolutional neural networks. in proc of BRATS-MICCAI.
-
(2014)
proc of BRATS-MICCAI
-
-
Zikic, D.1
Ioannou, Y.2
Brown, M.3
Criminisi, A.4
|