메뉴 건너뛰기




Volumn 35, Issue 8, 2013, Pages 1798-1828

Representation learning: A review and new perspectives

Author keywords

autoencoder; Boltzmann machine; Deep learning; feature learning; neural nets; representation learning; unsupervised learning

Indexed keywords

AUTO ENCODERS; BOLTZMANN MACHINES; DEEP LEARNING; FEATURE LEARNING; REPRESENTATION LEARNING;

EID: 84879854889     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2013.50     Document Type: Article
Times cited : (11732)

References (227)
  • 2
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • S. Amari, "Natural Gradient Works Efficiently in Learning," Neural Computation, vol. 10, no. 2, pp. 251-276, 1998. (Pubitemid 128463152)
    • (1998) Neural Computation , vol.10 , Issue.2 , pp. 251-276
    • Amari, S.-I.1
  • 6
    • 0026586030 scopus 로고
    • A self-organizing neural network that discovers surfaces in random-dot stereograms
    • S. Becker and G. Hinton, "A Self-Organizing Neural Network That Discovers Surfaces in Random-Dot Stereograms," Nature, vol. 355, pp. 161-163, 1992.
    • (1992) Nature , vol.355 , pp. 161-163
    • Becker, S.1    Hinton, G.2
  • 7
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • DOI 10.1162/089976603321780317
    • M. Belkin and P. Niyogi, "Laplacian Eigenmaps for Dimensionality Reduction and Data Representation," Neural Computation, vol. 15, no. 6, pp. 1373-1396, 2003. (Pubitemid 37049796)
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 8
    • 0030832881 scopus 로고    scopus 로고
    • The 'independent components' of natural scenes are edge filters
    • DOI 10.1016/S0042-6989(97)00121-1, PII S0042698997001211
    • A. Bell and T.J. Sejnowski, "The Independent Components of Natural Scenes Are Edge Filters," Vision Research, vol. 37, pp. 3327-3338, 1997. (Pubitemid 27493806)
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3327-3338
    • Bell, A.J.1    Sejnowski, T.J.2
  • 10
    • 79959407847 scopus 로고    scopus 로고
    • Neural net language models
    • Y. Bengio, "Neural Net Language Models," Scholarpedia, vol. 3, no. 1, 2008.
    • (2008) Scholarpedia , vol.3 , Issue.1
    • Bengio, Y.1
  • 12
    • 84904548965 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • Y. Bengio, "Deep Learning of Representations for Unsupervised and Transfer Learning," JMLR Workshops and Conf. Proc., vol. 27, pp. 17-36, 2012.
    • (2012) JMLR Workshops and Conf. Proc , vol.27 , pp. 17-36
    • Bengio, Y.1
  • 13
    • 84872560515 scopus 로고    scopus 로고
    • Practical recommendations for gradient-based training of deep architectures
    • K.-R. Mü ller, G. Montavon, and G.B. Orr, eds Springer
    • Y. Bengio, "Practical Recommendations for Gradient-Based Training of Deep Architectures," Neural Networks: Tricks of the Trade, K.-R. Mü ller, G. Montavon, and G.B. Orr, eds., Springer 2013.
    • (2013) Neural Networks: Tricks of the Trade
    • Bengio, Y.1
  • 14
    • 67651049775 scopus 로고    scopus 로고
    • Justifying and generalizing contrastive divergence
    • Y. Bengio and O. Delalleau, "Justifying and Generalizing Contrastive Divergence," Neural Computation, vol. 21, no. 6, pp. 1601-1621, 2009.
    • (2009) Neural Computation , vol.21 , Issue.6 , pp. 1601-1621
    • Bengio, Y.1    Delalleau, O.2
  • 16
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards AI
    • L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, eds MIT Press
    • Y. Bengio and Y. LeCun, "Scaling Learning Algorithms Towards AI," Large Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, eds., MIT Press, 2007.
    • (2007) Large Scale Kernel Machines
    • Bengio, Y.1    Lecun, Y.2
  • 18
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Mar
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning Long-Term Dependencies with Gradient Descent Is Difficult," IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 157-166, Mar. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 25
    • 78649265006 scopus 로고    scopus 로고
    • Decision trees do not generalize to new variations
    • Y. Bengio, O. Delalleau, and C. Simard, "Decision Trees Do Not Generalize to New Variations," Computational Intelligence, vol. 26, no. 4, pp. 449-467, 2010.
    • (2010) Computational Intelligence , vol.26 , Issue.4 , pp. 449-467
    • Bengio, Y.1    Delalleau, O.2    Simard, C.3
  • 29
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • J. Bergstra and Y. Bengio, "Random Search for Hyper-Parameter Optimization," J. Machine Learning Research, vol. 13, pp. 281-305, 2012.
    • (2012) J. Machine Learning Research , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 31
    • 27244444336 scopus 로고    scopus 로고
    • Slow feature analysis yields a rich repertoire of complex cell properties
    • DOI 10.1167/5.6.9, 9
    • P. Berkes and L. Wiskott, "Slow Feature Analysis Yields a Rich Repertoire of Complex Cell Properties," J. Vision, vol. 5, no. 6, pp. 579-602, 2005. (Pubitemid 41519241)
    • (2005) Journal of Vision , vol.5 , Issue.6 , pp. 579-602
    • Berkes, P.1    Wiskott, L.2
  • 32
    • 0000582521 scopus 로고
    • Statistical analysis of non-lattice data
    • J. Besag, "Statistical Analysis of Non-Lattice Data," The Statistician, vol. 24, no. 3, pp. 179-195, 1975.
    • (1975) The Statistician , vol.24 , Issue.3 , pp. 179-195
    • Besag, J.1
  • 34
    • 84867129058 scopus 로고    scopus 로고
    • Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
    • N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, "Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription," Proc. Int'l Conf. Machine Learning, 2012.
    • (2012) Proc. Int'l Conf. Machine Learning
    • Boulanger-Lewandowski, N.1    Bengio, Y.2    Vincent, P.3
  • 37
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • H. Bourlard and Y. Kamp, "Auto-Association by Multilayer Perceptrons and Singular Value Decomposition," Biological Cybernetics, vol. 59, pp. 291-294, 1988.
    • (1988) Biological Cybernetics , vol.59 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 39
    • 79959650504 scopus 로고    scopus 로고
    • Quickly generating representative samples from an RBM-derived process
    • O. Breuleux, Y. Bengio, and P. Vincent, "Quickly Generating Representative Samples from an RBM-Derived Process," Neural Computation, vol. 23, no. 8, pp. 2053-2073, 2011.
    • (2011) Neural Computation , vol.23 , Issue.8 , pp. 2053-2073
    • Breuleux, O.1    Bengio, Y.2    Vincent, P.3
  • 44
  • 45
    • 80053444761 scopus 로고    scopus 로고
    • Enhanced gradient and adaptive learning rate for training restricted boltzmann machines
    • K. Cho, T. Raiko, and A. Ilin, "Enhanced Gradient and Adaptive Learning Rate for Training Restricted Boltzmann Machines," Proc. Int'l Conf. Machine Learning, pp. 105-112, 2011.
    • (2011) Proc. Int'l Conf. Machine Learning , pp. 105-112
    • Cho, K.1    Raiko, T.2    Ilin, A.3
  • 48
    • 80053442434 scopus 로고    scopus 로고
    • The importance of encoding versus training with sparse coding and vector quantization
    • A. Coates and A.Y. Ng, "The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization," Proc. Int'l Conf. Machine Learning, 2011.
    • (2011) Proc. Int'l Conf. Machine Learning
    • Coates, A.1    Ng, A.Y.2
  • 50
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston, "A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning," Proc. Int'l Conf. Machine Learning, 2008.
    • (2008) Proc. Int'l Conf. Machine Learning
    • Collobert, R.1    Weston, J.2
  • 55
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large vocabulary speech recognition
    • Jan.
    • G.E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-Dependent Pre-Trained Deep Neural Networks for Large Vocabulary Speech Recognition," IEEE Trans. Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 33-42, Jan. 2012.
    • (2012) IEEE Trans. Audio, Speech, and Language Processing , vol.20 , Issue.1 , pp. 33-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 57
    • 70049107588 scopus 로고    scopus 로고
    • Empirical evaluation of convolutional rbms for vision
    • Dept. IRO, Univ. of Montréal
    • G. Desjardins and Y. Bengio, "Empirical Evaluation of Convolutional RBMs for Vision," Technical Report 1327, Dept. IRO, Univ. of Montréal, 2008.
    • (2008) Technical Report 1327
    • Desjardins, G.1    Bengio, Y.2
  • 61
    • 84856743552 scopus 로고    scopus 로고
    • How does the brain solve visual object recognition?
    • J. DiCarlo, D. Zoccolan, and N. Rust, "How Does the Brain Solve Visual Object Recognition?" Neuron, vol. 73, pp. 415-434, 2012.
    • (2012) Neuron , vol.73 , pp. 415-434
    • Dicarlo, J.1    Zoccolan, D.2    Rust, N.3
  • 62
    • 4143089050 scopus 로고    scopus 로고
    • Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data
    • Dept. of Statistics, Stanford Univ
    • D.L. Donoho and C. Grimes, "Hessian Eigenmaps: New Locally Linear Embedding Techniques for High-Dimensional Data," Technical Report 2003-08, Dept. of Statistics, Stanford Univ., 2003.
    • (2003) Technical Report 2003-08
    • Donoho, D.L.1    Grimes, C.2
  • 64
    • 84872580046 scopus 로고    scopus 로고
    • Understanding representations learned in deep architectures
    • Univ. of Montréal/DIRO
    • D. Erhan, A. Courville, and Y. Bengio, "Understanding Representations Learned in Deep Architectures," Technical Report 1355, Univ. of Montréal/DIRO, 2010.
    • (2010) Technical Report 1355
    • Erhan, D.1    Courville, A.2    Bengio, Y.3
  • 66
    • 56449085852 scopus 로고
    • Unsupervised learning of distributions on binary vectors using two layer networks
    • Univ. of California, Santa Cruz
    • Y. Freund and D. Haussler, "Unsupervised Learning of Distributions on Binary Vectors Using Two Layer Networks," Technical Report UCSC-CRL-94-25, Univ. of California, Santa Cruz, 1994.
    • (1994) Technical Report UCSC-CRL-94-25
    • Freund, Y.1    Haussler, D.2
  • 67
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima, "Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position," Biological Cybernetics, vol. 36, pp. 193-202, 1980. (Pubitemid 10080678)
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 70
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: A deep learning approach
    • X. Glorot, A. Bordes, and Y. Bengio, "Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach," Proc. Int'l Conf. Machine Learning, 2011.
    • (2011) Proc. Int'l Conf. Machine Learning
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 77
    • 79954564965 scopus 로고    scopus 로고
    • Should penalized least squares regression be interpreted as maximum a posteriori estimation?
    • May
    • R. Gribonval, "Should Penalized Least Squares Regression Be Interpreted as Maximum A Posteriori Estimation?" IEEE Trans. Signal Processing, vol. 59, no. 5, pp. 2405-2410, May 2011.
    • (2011) IEEE Trans. Signal Processing , vol.59 , Issue.5 , pp. 2405-2410
    • Gribonval, R.1
  • 83
    • 0001295178 scopus 로고
    • On the power of small-depth threshold circuits
    • J. Ha°stad and M. Goldmann, "On the Power of Small-Depth Threshold Circuits," Computational Complexity, vol. 1, pp. 113-129, 1991.
    • (1991) Computational Complexity , vol.1 , pp. 113-129
    • Hastad, J.1    Goldmann, M.2
  • 89
    • 0008602090 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Gatsby Unit, Univ. College London
    • G.E. Hinton, "Training Products of Experts by Minimizing Contrastive Divergence," Technical Report GCNU TR 2000-004, Gatsby Unit, Univ. College London, 2000.
    • (2000) Technical Report GCNU TR 2000-004
    • Hinton, G.E.1
  • 90
    • 78650474133 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines
    • Dept. of Computer Science, Univ. of Toronto
    • G.E. Hinton, "A Practical Guide to Training Restricted Boltzmann Machines," Technical Report UTML TR 2010-003, Dept. of Computer Science, Univ. of Toronto, 2010.
    • (2010) Technical Report UTML TR 2010-003
    • Hinton, G.E.1
  • 92
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • DOI 10.1126/science.1127647
    • G.E. Hinton and R. Salakhutdinov, "Reducing the Dimensionality of Data with Neural Networks," Science, vol. 313, no. 5786, pp. 504-507, 2006. (Pubitemid 44148451)
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 94
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • DOI 10.1162/neco.2006.18.7.1527
    • G.E. Hinton, S. Osindero, and Y. Teh, "A Fast Learning Algorithm for Deep Belief Nets," Neural Computation, vol. 18, pp. 1527-1554, 2006. (Pubitemid 44024729)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 95
    • 70449311374 scopus 로고
    • Receptive fields of single neurons in the cat's striate cortex
    • D.H. Hubel and T.N. Wiesel, "Receptive Fields of Single Neurons in the Cat's Striate Cortex," J. Physiology, vol. 148, pp. 574-591, 1959.
    • (1959) J. Physiology , vol.148 , pp. 574-591
    • Hubel, D.H.1    Wiesel, T.N.2
  • 97
    • 22044434800 scopus 로고    scopus 로고
    • Estimation of non-normalized statistical models using score matching
    • A. Hyvärinen, "Estimation of Non-Normalized Statistical Models Using Score Matching," J. Machine Learning Research, vol. 6, pp. 695-709, 2005.
    • (2005) J. Machine Learning Research , vol.6 , pp. 695-709
    • Hyvärinen, A.1
  • 98
    • 33750982683 scopus 로고    scopus 로고
    • Some extensions of score matching
    • DOI 10.1016/j.csda.2006.09.003, PII S0167947306003264
    • A. Hyvärinen, "Some Extensions of Score Matching," Computational Statistics and Data Analysis, vol. 51, pp. 2499-2512, 2007. (Pubitemid 44751259)
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.5 , pp. 2499-2512
    • Hyvarinen, A.1
  • 99
    • 57349101724 scopus 로고    scopus 로고
    • Optimal approximation of signal priors
    • A. Hyvärinen, "Optimal Approximation of Signal Priors," Neural Computation, vol. 20, no. 12, pp. 3087-3110, 2008.
    • (2008) Neural Computation , vol.20 , Issue.12 , pp. 3087-3110
    • Hyvärinen, A.1
  • 100
    • 0034222304 scopus 로고    scopus 로고
    • Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces
    • A. Hyvärinen and P. Hoyer, "Emergence of Phase and Shift Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces," Neural Computation, vol. 12, no. 7, pp. 1705-1720, 2000.
    • (2000) Neural Computation , vol.12 , Issue.7 , pp. 1705-1720
    • Hyvärinen, A.1    Hoyer, P.2
  • 102
    • 0035409349 scopus 로고    scopus 로고
    • Topographic independent component analysis
    • DOI 10.1162/089976601750264992
    • A. Hyvärinen, P.O. Hoyer, and M. Inki, "Topographic Independent Component Analysis," Neural Computation, vol. 13, no. 7, pp. 1527-1558, 2001. (Pubitemid 33595031)
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1527-1558
    • Hyvarinen, A.1    Hoyer, P.O.2    Inki, M.3
  • 104
    • 58049158689 scopus 로고    scopus 로고
    • Echo state network
    • H. Jaeger, "Echo State Network," Scholarpedia, vol. 2, no. 9, p. 2330, 2007.
    • (2007) Scholarpedia , vol.2 , Issue.9 , pp. 2330
    • Jaeger, H.1
  • 108
    • 0026191274 scopus 로고
    • Blind separation of sources, part I. An adaptive algorithm based on neuromimetic architecture
    • DOI 10.1016/0165-1684(91)90079-X
    • C. Jutten and J. Herault, "Blind Separation of Sources, Part I: An Adaptive Algorithm Based on Neuromimetic Architecture," Signal Processing, vol. 24, pp. 1-10, 1991. (Pubitemid 21679270)
    • (1991) Signal Processing , vol.24 , Issue.1 , pp. 1-10
    • Jutten Christian1    Herault Jeanny2
  • 109
    • 70049083257 scopus 로고    scopus 로고
    • Fast inference in sparse coding algorithms with applications to object recognition
    • New York Univ
    • K. Kavukcuoglu, M. Ranzato, and Y. LeCun, "Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition," Technical Report CBLL-TR-2008-12-01, New York Univ., 2008.
    • (2008) Technical Report CBLL-TR-2008-12-01
    • Kavukcuoglu, K.1    Ranzato, M.2    Lecun, Y.3
  • 114
    • 18244431804 scopus 로고    scopus 로고
    • How are complex cell properties adapted to the statistics of natural stimuli?
    • DOI 10.1152/jn.00149.2003
    • K.P. Körding, C. Kayser, W. Einhäuser, and P. Kö nig, "How Are Complex Cell Properties Adapted to the Statistics of Natural Stimuli?" J. Neurophysiology, vol. 91, pp. 206-212, 2004. (Pubitemid 38084365)
    • (2004) Journal of Neurophysiology , vol.91 , Issue.1 , pp. 206-212
    • Kording, K.P.1    Kayser, C.2    Einhauser, W.3    Konig, P.4
  • 128
    • 0002824144 scopus 로고
    • Learning processes in an asymmetric threshold network
    • Springer-Verlag
    • Y. LeCun, "Learning Processes in an Asymmetric Threshold Network," Disordered Systems and Biological Organization, pp. 233-240, Springer-Verlag, 1986.
    • (1986) Disordered Systems and Biological Organization , pp. 233-240
    • Lecun, Y.1
  • 130
    • 0002291365 scopus 로고
    • Generalization and network design strategies
    • Elsevier
    • Y. LeCun, "Generalization and Network Design Strategies," Connectionism in Perspective, Elsevier, 1989.
    • (1989) Connectionism in Perspective
    • Lecun, Y.1
  • 133
    • 0032203257 scopus 로고    scopus 로고
    • Gradient based learning applied to document recognition
    • Nov
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient Based Learning Applied to Document Recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 135
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng, "Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations," Proc. Int'l Conf. Machine Learning, 2009.
    • (2009) Proc. Int'l Conf. Machine Learning
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 136
  • 138
  • 140
    • 80053168693 scopus 로고    scopus 로고
    • Asymptotic efficiency of deterministic estimators for discrete energy-based models: Ratio matching and pseudolikelihood
    • B. Marlin and N. de Freitas, "Asymptotic Efficiency of Deterministic Estimators for Discrete Energy-Based Models: Ratio Matching and Pseudolikelihood," Proc. Conf. Uncertainty in Artificial Intelligence, 2011.
    • (2011) Proc. Conf. Uncertainty in Artificial Intelligence
    • Marlin, B.1    De Freitas, N.2
  • 142
    • 77956541496 scopus 로고    scopus 로고
    • Deep learning via hessian-free optimization
    • J. Martens, "Deep Learning via Hessian-Free Optimization," Proc. Int'l Conf. Machine Learning, pp. 735-742, 2010.
    • (2010) Proc. Int'l Conf. Machine Learning , pp. 735-742
    • Martens, J.1
  • 144
    • 77953520240 scopus 로고    scopus 로고
    • Learning to represent spatial transformations with factored higher-order boltzmann machines
    • R. Memisevic and G.E. Hinton, "Learning to Represent Spatial Transformations with Factored Higher-Order Boltzmann Machines," Neural Computation, vol. 22, no. 6, pp. 1473-1492, 2010.
    • (2010) Neural Computation , vol.22 , Issue.6 , pp. 1473-1492
    • Memisevic, R.1    Hinton, G.E.2
  • 152
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • R.M. Neal, "Connectionist Learning of Belief Networks," Artificial Intelligence, vol. 56, pp. 71-113, 1992.
    • (1992) Artificial Intelligence , vol.56 , pp. 71-113
    • Neal, R.M.1
  • 153
    • 0004087397 scopus 로고
    • Probabilistic inference using markov chain monte-carlo methods
    • Dept. of Computer Science, Univ. of Toronto
    • R.M. Neal, "Probabilistic Inference Using Markov Chain Monte-Carlo Methods," Technical Report CRG-TR-93-1, Dept. of Computer Science, Univ. of Toronto, 1993.
    • (1993) Technical Report CRG-TR-93-1
    • Neal, R.M.1
  • 155
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • DOI 10.1038/381607a0
    • B.A. Olshausen and D.J. Field, "Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images," Nature, vol. 381, pp. 607-609, 1996. (Pubitemid 26177476)
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 160
  • 166
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • DOI 10.1038/14819
    • M. Riesenhuber and T. Poggio, "Hierarchical Models of Object Recognition in Cortex," Nature Neuroscience, vol. 2, pp. 1019-1025, 1999. (Pubitemid 30599567)
    • (1999) Nature Neuroscience , vol.2 , Issue.11 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 171
    • 0001579675 scopus 로고    scopus 로고
    • EM algorithms for PCA and sensible PCA
    • California Inst. of Technology
    • S. Roweis, "EM Algorithms for PCA and Sensible PCA," CNS Technical Report CNS-TR-97-02, California Inst. of Technology, 1997.
    • (1997) CNS Technical Report CNS-TR-97-02
    • Roweis, S.1
  • 172
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S. Roweis and L.K. Saul, "Nonlinear Dimensionality Reduction by Locally Linear Embedding," Science, vol. 290, no. 5500, pp. 2323-2326, 2000. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 181
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • B. Schölkopf, A. Smola, and K.-R. Müller, "Nonlinear Component Analysis as a Kernel Eigenvalue Problem," Neural Computation, vol. 10, pp. 1299-1319, 1998. (Pubitemid 128463674)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 183
    • 84865801985 scopus 로고    scopus 로고
    • Conversational speech transcription using context-dependent deep neural networks
    • F. Seide, G. Li, and D. Yu, "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks," Proc. Conf. Int'l Speech Comm. Assoc., pp. 437-440, 2011.
    • (2011) Proc. Conf. Int'l Speech Comm. Assoc , pp. 437-440
    • Seide, F.1    Li, G.2    Yu, D.3
  • 190
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • D.E. Rumelhart and J.L. McClelland, eds chapter 6 MIT Press
    • P. Smolensky, "Information Processing in Dynamical Systems: Foundations of Harmony Theory," Parallel Distributed Processing, D.E. Rumelhart and J.L. McClelland, eds., vol. 1, chapter 6, pp. 194-281, MIT Press, 1986.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 195
    • 84883148756 scopus 로고    scopus 로고
    • Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
    • V. Stoyanov, A. Ropson, and J. Eisner, "Empirical Risk Minimization of Graphical Model Parameters Given Approximate Inference, Decoding, and Model Structure," Proc. Conf. Artificial Intelligence and Statistics, 2011.
    • (2011) Proc. Conf. Artificial Intelligence and Statistics
    • Stoyanov, V.1    Ropson, A.2    Eisner, J.3
  • 196
  • 201
    • 71149118574 scopus 로고    scopus 로고
    • Factored conditional restricted boltzmann machines for modeling motion style
    • G. Taylor and G. Hinton, "Factored Conditional Restricted Boltzmann Machines for Modeling Motion Style," Proc. Int'l Conf. Machine Learning, 2009.
    • (2009) Proc. Int'l Conf. Machine Learning
    • Taylor, G.1    Hinton, G.2
  • 203
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J. Tenenbaum, V. de Silva, and J.C. Langford, "A Global Geometric Framework for Nonlinear Dimensionality Reduction," Science, vol. 290, no. 5500, pp. 2319-2323, 2000. (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 204
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted boltzmann machines using approximations to the likelihood gradient
    • T. Tieleman, "Training Restricted Boltzmann Machines Using Approximations to the Likelihood Gradient," Proc. Int'l Conf. Machine Learning, pp. 1064-1071, 2008.
    • (2008) Proc. Int'l Conf. Machine Learning , pp. 1064-1071
    • Tieleman, T.1
  • 206
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal components analysis
    • M.E. Tipping and C.M. Bishop, "Probabilistic Principal Components Analysis," J. Royal Statistical Soc. B, vol. 61, no. 3, pp. 611-622, 1999.
    • (1999) J. Royal Statistical Soc. B , vol.61 , Issue.3 , pp. 611-622
    • Tipping, M.E.1    Bishop, C.M.2
  • 209
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing high-dimensional data using t-SNE
    • L. van der Maaten and G.E. Hinton, "Visualizing High-Dimensional Data Using t-SNE," J. Machine Learning Research, vol. 9, pp. 2579-2605, 2008.
    • (2008) J. Machine Learning Research , vol.9 , pp. 2579-2605
    • Maaten Der L.Van1    Hinton, G.E.2
  • 210
    • 79959575293 scopus 로고    scopus 로고
    • A connection between score matching and denoising autoencoders
    • P. Vincent, "A Connection between Score Matching and Denoising Autoencoders," Neural Computation, vol. 23, no. 7, pp. 1661-1674, 2011.
    • (2011) Neural Computation , vol.23 , Issue.7 , pp. 1661-1674
    • Vincent, P.1
  • 213
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion," J. Machine Learning Research, vol. 11, pp. 3371-3408, 2010.
    • (2010) J. Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 218
    • 77955654853 scopus 로고    scopus 로고
    • Large scale image annotation: Learning to rank with joint word-image embeddings
    • J. Weston, S. Bengio, and N. Usunier, "Large Scale Image Annotation: Learning to Rank with Joint Word-Image Embeddings," Machine Learning, vol. 81, no. 1, pp. 21-35, 2010.
    • (2010) Machine Learning , vol.81 , Issue.1 , pp. 21-35
    • Weston, J.1    Bengio, S.2    Usunier, N.3
  • 219
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • L. Wiskott and T. Sejnowski, "Slow Feature Analysis: Unsupervised Learning of Invariances," Neural Computation, vol. 14, no. 4, pp. 715-770, 2002.
    • (2002) Neural Computation , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.2
  • 220
    • 33644756784 scopus 로고    scopus 로고
    • On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates
    • L. Younes, "On the Convergence of Markovian Stochastic Algorithms with Rapidly Decreasing Ergodicity Rates," Stochastics and Stochastic Reports, vol. 65, no. 3, pp. 177-228, 1999.
    • (1999) Stochastics and Stochastic Reports , vol.65 , Issue.3 , pp. 177-228
    • Younes, L.1
  • 221
    • 78649308591 scopus 로고    scopus 로고
    • Sequential labeling using deep-structured conditional random fields
    • Dec.
    • D. Yu, S. Wang, and L. Deng, "Sequential Labeling Using Deep-Structured Conditional Random Fields," IEEE J. Selected Topics in Signal Processing, vol. 4, no. 6, pp. 965-973, Dec. 2010.
    • (2010) IEEE J. Selected Topics in Signal Processing , vol.4 , Issue.6 , pp. 965-973
    • Yu, D.1    Wang, S.2    Deng, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.