-
2
-
-
0000396062
-
Natural gradient works efficiently in learning
-
S. Amari, "Natural Gradient Works Efficiently in Learning," Neural Computation, vol. 10, no. 2, pp. 251-276, 1998. (Pubitemid 128463152)
-
(1998)
Neural Computation
, vol.10
, Issue.2
, pp. 251-276
-
-
Amari, S.-I.1
-
3
-
-
84871604261
-
Structured sparsity through convex optimization
-
F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, "Structured Sparsity through Convex Optimization," Statistical Science, vol. 27, pp. 450-468, 2012.
-
(2012)
Statistical Science
, vol.27
, pp. 450-468
-
-
Bach, F.1
Jenatton, R.2
Mairal, J.3
Obozinski, G.4
-
6
-
-
0026586030
-
A self-organizing neural network that discovers surfaces in random-dot stereograms
-
S. Becker and G. Hinton, "A Self-Organizing Neural Network That Discovers Surfaces in Random-Dot Stereograms," Nature, vol. 355, pp. 161-163, 1992.
-
(1992)
Nature
, vol.355
, pp. 161-163
-
-
Becker, S.1
Hinton, G.2
-
7
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
DOI 10.1162/089976603321780317
-
M. Belkin and P. Niyogi, "Laplacian Eigenmaps for Dimensionality Reduction and Data Representation," Neural Computation, vol. 15, no. 6, pp. 1373-1396, 2003. (Pubitemid 37049796)
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
8
-
-
0030832881
-
The 'independent components' of natural scenes are edge filters
-
DOI 10.1016/S0042-6989(97)00121-1, PII S0042698997001211
-
A. Bell and T.J. Sejnowski, "The Independent Components of Natural Scenes Are Edge Filters," Vision Research, vol. 37, pp. 3327-3338, 1997. (Pubitemid 27493806)
-
(1997)
Vision Research
, vol.37
, Issue.23
, pp. 3327-3338
-
-
Bell, A.J.1
Sejnowski, T.J.2
-
9
-
-
0001232592
-
A connectionist approach to speech recognition
-
Y. Bengio, "A Connectionist Approach to Speech Recognition," Int'l J. Pattern Recognition and Artificial Intelligence, vol. 7, no. 4, pp. 647-668, 1993.
-
(1993)
Int'l J. Pattern Recognition and Artificial Intelligence
, vol.7
, Issue.4
, pp. 647-668
-
-
Bengio, Y.1
-
10
-
-
79959407847
-
Neural net language models
-
Y. Bengio, "Neural Net Language Models," Scholarpedia, vol. 3, no. 1, 2008.
-
(2008)
Scholarpedia
, vol.3
, Issue.1
-
-
Bengio, Y.1
-
11
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, "Learning Deep Architectures for AI," Foundations and Trends in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.
-
(2009)
Foundations and Trends in Machine Learning
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
12
-
-
84904548965
-
Deep learning of representations for unsupervised and transfer learning
-
Y. Bengio, "Deep Learning of Representations for Unsupervised and Transfer Learning," JMLR Workshops and Conf. Proc., vol. 27, pp. 17-36, 2012.
-
(2012)
JMLR Workshops and Conf. Proc
, vol.27
, pp. 17-36
-
-
Bengio, Y.1
-
13
-
-
84872560515
-
Practical recommendations for gradient-based training of deep architectures
-
K.-R. Mü ller, G. Montavon, and G.B. Orr, eds Springer
-
Y. Bengio, "Practical Recommendations for Gradient-Based Training of Deep Architectures," Neural Networks: Tricks of the Trade, K.-R. Mü ller, G. Montavon, and G.B. Orr, eds., Springer 2013.
-
(2013)
Neural Networks: Tricks of the Trade
-
-
Bengio, Y.1
-
14
-
-
67651049775
-
Justifying and generalizing contrastive divergence
-
Y. Bengio and O. Delalleau, "Justifying and Generalizing Contrastive Divergence," Neural Computation, vol. 21, no. 6, pp. 1601-1621, 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.6
, pp. 1601-1621
-
-
Bengio, Y.1
Delalleau, O.2
-
16
-
-
34547975052
-
Scaling learning algorithms towards AI
-
L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, eds MIT Press
-
Y. Bengio and Y. LeCun, "Scaling Learning Algorithms Towards AI," Large Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, eds., MIT Press, 2007.
-
(2007)
Large Scale Kernel Machines
-
-
Bengio, Y.1
Lecun, Y.2
-
18
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Mar
-
Y. Bengio, P. Simard, and P. Frasconi, "Learning Long-Term Dependencies with Gradient Descent Is Difficult," IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 157-166, Mar. 1994.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
19
-
-
0142166851
-
A neural probabilistic language model
-
Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, "A Neural Probabilistic Language Model," J. Machine Learning Research, vol. 3, pp. 137-1155, 2003.
-
(2003)
J. Machine Learning Research
, vol.3
, pp. 137-1155
-
-
Bengio, Y.1
Ducharme, R.2
Vincent, P.3
Jauvin, C.4
-
20
-
-
4344635655
-
Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering
-
Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M. Ouimet, "Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering," Proc. Neural Information and Processing Systems, 2003.
-
(2003)
Proc. Neural Information and Processing Systems
-
-
Bengio, Y.1
Paiement, J.-F.2
Vincent, P.3
Delalleau, O.4
Le Roux, N.5
Ouimet, M.6
-
23
-
-
85150229208
-
Greedy layer-wise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy Layer-Wise Training of Deep Networks," Proc. Neural Information and Processing Systems, 2006.
-
(2006)
Proc. Neural Information and Processing Systems
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
24
-
-
71149116544
-
Curriculum learning
-
Y. Bengio, J. Louradour, R. Collobert, and J. Weston, "Curriculum Learning," Proc. Int'l Conf. Machine Learning, 2009.
-
(2009)
Proc. Int'l Conf. Machine Learning
-
-
Bengio, Y.1
Louradour, J.2
Collobert, R.3
Weston, J.4
-
25
-
-
78649265006
-
Decision trees do not generalize to new variations
-
Y. Bengio, O. Delalleau, and C. Simard, "Decision Trees Do Not Generalize to New Variations," Computational Intelligence, vol. 26, no. 4, pp. 449-467, 2010.
-
(2010)
Computational Intelligence
, vol.26
, Issue.4
, pp. 449-467
-
-
Bengio, Y.1
Delalleau, O.2
Simard, C.3
-
26
-
-
84872509374
-
-
Technical Report, arXiv 1207.0057
-
Y. Bengio, G. Alain, and S. Rifai, "Implicit Density Estimation by Local Moment Matching to Sample from Auto-Encoders," Technical Report, arXiv:1207.0057, 2012.
-
(2012)
Implicit Density Estimation by Local Moment Matching to Sample from Auto-Encoders
-
-
Bengio, Y.1
Alain, G.2
Rifai, S.3
-
27
-
-
84882266451
-
Better mixing via deep representations
-
Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai, "Better Mixing via Deep Representations," Proc. Int'l Conf. Machine Learning, 2013.
-
(2013)
Proc. Int'l Conf. Machine Learning
-
-
Bengio, Y.1
Mesnil, G.2
Dauphin, Y.3
Rifai, S.4
-
29
-
-
84857855190
-
Random search for hyper-parameter optimization
-
J. Bergstra and Y. Bengio, "Random Search for Hyper-Parameter Optimization," J. Machine Learning Research, vol. 13, pp. 281-305, 2012.
-
(2012)
J. Machine Learning Research
, vol.13
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
30
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, "Algorithms for Hyper-Parameter Optimization," Proc. Neural Information and Processing Systems, 2011.
-
(2011)
Proc. Neural Information and Processing Systems
-
-
Bergstra, J.1
Bardenet, R.2
Bengio, Y.3
Kégl, B.4
-
31
-
-
27244444336
-
Slow feature analysis yields a rich repertoire of complex cell properties
-
DOI 10.1167/5.6.9, 9
-
P. Berkes and L. Wiskott, "Slow Feature Analysis Yields a Rich Repertoire of Complex Cell Properties," J. Vision, vol. 5, no. 6, pp. 579-602, 2005. (Pubitemid 41519241)
-
(2005)
Journal of Vision
, vol.5
, Issue.6
, pp. 579-602
-
-
Berkes, P.1
Wiskott, L.2
-
32
-
-
0000582521
-
Statistical analysis of non-lattice data
-
J. Besag, "Statistical Analysis of Non-Lattice Data," The Statistician, vol. 24, no. 3, pp. 179-195, 1975.
-
(1975)
The Statistician
, vol.24
, Issue.3
, pp. 179-195
-
-
Besag, J.1
-
33
-
-
84879866425
-
Joint learning of words and meaning representations for open-text semantic parsing
-
A. Bordes, X. Glorot, J. Weston, and Y. Bengio, "Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing," Proc. Int'l Conf. Artificial Intelligence and Statistics, 2012.
-
(2012)
Proc. Int'l Conf. Artificial Intelligence and Statistics
-
-
Bordes, A.1
Glorot, X.2
Weston, J.3
Bengio, Y.4
-
34
-
-
84867129058
-
Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
-
N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, "Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription," Proc. Int'l Conf. Machine Learning, 2012.
-
(2012)
Proc. Int'l Conf. Machine Learning
-
-
Boulanger-Lewandowski, N.1
Bengio, Y.2
Vincent, P.3
-
36
-
-
84856649187
-
Ask the locals: Multi-way local pooling for image recognition
-
Y. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun, "Ask the Locals: Multi-Way Local Pooling for Image Recognition," Proc. IEEE Int'l Conf. Computer Vision, 2011.
-
(2011)
Proc. IEEE Int'l Conf. Computer Vision
-
-
Boureau, Y.1
Le Roux, N.2
Bach, F.3
Ponce, J.4
Lecun, Y.5
-
37
-
-
0024220237
-
Auto-association by multilayer perceptrons and singular value decomposition
-
H. Bourlard and Y. Kamp, "Auto-Association by Multilayer Perceptrons and Singular Value Decomposition," Biological Cybernetics, vol. 59, pp. 291-294, 1988.
-
(1988)
Biological Cybernetics
, vol.59
, pp. 291-294
-
-
Bourlard, H.1
Kamp, Y.2
-
39
-
-
79959650504
-
Quickly generating representative samples from an RBM-derived process
-
O. Breuleux, Y. Bengio, and P. Vincent, "Quickly Generating Representative Samples from an RBM-Derived Process," Neural Computation, vol. 23, no. 8, pp. 2053-2073, 2011.
-
(2011)
Neural Computation
, vol.23
, Issue.8
, pp. 2053-2073
-
-
Breuleux, O.1
Bengio, Y.2
Vincent, P.3
-
43
-
-
84867129067
-
Marginalized denoising autoencoders for domain adaptation
-
M. Chen, Z. Xu, K.Q. Winberger, and F. Sha, "Marginalized Denoising Autoencoders for Domain Adaptation," Proc. Int'l Conf. Machine Learning, 2012.
-
(2012)
Proc. Int'l Conf. Machine Learning
-
-
Chen, M.1
Xu, Z.2
Winberger, K.Q.3
Sha, F.4
-
45
-
-
80053444761
-
Enhanced gradient and adaptive learning rate for training restricted boltzmann machines
-
K. Cho, T. Raiko, and A. Ilin, "Enhanced Gradient and Adaptive Learning Rate for Training Restricted Boltzmann Machines," Proc. Int'l Conf. Machine Learning, pp. 105-112, 2011.
-
(2011)
Proc. Int'l Conf. Machine Learning
, pp. 105-112
-
-
Cho, K.1
Raiko, T.2
Ilin, A.3
-
46
-
-
84877733036
-
-
Technical Report, arXiv 1202.2745
-
D. Ciresan, U. Meier, and J. Schmidhuber, "Multi-Column Deep Neural Networks for Image Classification," Technical Report, arXiv:1202.2745, 2012.
-
(2012)
Multi-Column Deep Neural Networks for Image Classification
-
-
Ciresan, D.1
Meier, U.2
Schmidhuber, J.3
-
47
-
-
78649669320
-
Deep big simple neural nets for handwritten digit recognition
-
D.C. Ciresan, U. Meier, L.M. Gambardella, and J. Schmidhuber, "Deep Big Simple Neural Nets for Handwritten Digit Recognition," Neural Computation, vol. 22, pp. 1-14, 2010.
-
(2010)
Neural Computation
, vol.22
, pp. 1-14
-
-
Ciresan, D.C.1
Meier, U.2
Gambardella, L.M.3
Schmidhuber, J.4
-
48
-
-
80053442434
-
The importance of encoding versus training with sparse coding and vector quantization
-
A. Coates and A.Y. Ng, "The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization," Proc. Int'l Conf. Machine Learning, 2011.
-
(2011)
Proc. Int'l Conf. Machine Learning
-
-
Coates, A.1
Ng, A.Y.2
-
50
-
-
56449095373
-
A unified architecture for natural language processing: Deep neural networks with multitask learning
-
R. Collobert and J. Weston, "A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning," Proc. Int'l Conf. Machine Learning, 2008.
-
(2008)
Proc. Int'l Conf. Machine Learning
-
-
Collobert, R.1
Weston, J.2
-
51
-
-
80053558787
-
Natural language processing (almost) from scratch
-
R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, "Natural Language Processing (almost) from Scratch," J. Machine Learning Research, vol. 12, pp. 2493-2537, 2011.
-
(2011)
J. Machine Learning Research
, vol.12
, pp. 2493-2537
-
-
Collobert, R.1
Weston, J.2
Bottou, L.3
Karlen, M.4
Kavukcuoglu, K.5
Kuksa, P.6
-
54
-
-
85162069624
-
Phone recognition with the mean-covariance restricted boltzmann machine
-
G.E. Dahl, M. Ranzato, A. Mohamed, and G.E. Hinton, "Phone Recognition with the Mean-Covariance Restricted Boltzmann Machine," Proc. Neural Information and Processing Systems, 2010.
-
(2010)
Proc. Neural Information and Processing Systems
-
-
Dahl, G.E.1
Ranzato, M.2
Mohamed, A.3
Hinton, G.E.4
-
55
-
-
84055222005
-
Context-dependent pre-trained deep neural networks for large vocabulary speech recognition
-
Jan.
-
G.E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-Dependent Pre-Trained Deep Neural Networks for Large Vocabulary Speech Recognition," IEEE Trans. Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 33-42, Jan. 2012.
-
(2012)
IEEE Trans. Audio, Speech, and Language Processing
, vol.20
, Issue.1
, pp. 33-42
-
-
Dahl, G.E.1
Yu, D.2
Deng, L.3
Acero, A.4
-
56
-
-
79959842828
-
Binary coding of speech spectrograms using a deep auto-encoder
-
L. Deng, M. Seltzer, D. Yu, A. Acero, A. Mohamed, and G. Hinton, "Binary Coding of Speech Spectrograms Using a Deep Auto-Encoder," Proc. Ann. Conf. Int'l Speech Comm. Assoc., 2010.
-
(2010)
Proc. Ann. Conf. Int'l Speech Comm. Assoc
-
-
Deng, L.1
Seltzer, M.2
Yu, D.3
Acero, A.4
Mohamed, A.5
Hinton, G.6
-
57
-
-
70049107588
-
Empirical evaluation of convolutional rbms for vision
-
Dept. IRO, Univ. of Montréal
-
G. Desjardins and Y. Bengio, "Empirical Evaluation of Convolutional RBMs for Vision," Technical Report 1327, Dept. IRO, Univ. of Montréal, 2008.
-
(2008)
Technical Report 1327
-
-
Desjardins, G.1
Bengio, Y.2
-
58
-
-
84862293204
-
Tempered markov chain monte carlo for training of restricted boltzmann machine
-
G. Desjardins, A. Courville, Y. Bengio, P. Vincent, and O. Delalleau, "Tempered Markov Chain Monte Carlo for Training of Restricted Boltzmann Machine," Proc. Conf. Artificial Intelligence and Statistics, vol. 9, pp. 145-152, 2010.
-
(2010)
Proc. Conf. Artificial Intelligence and Statistics
, vol.9
, pp. 145-152
-
-
Desjardins, G.1
Courville, A.2
Bengio, Y.3
Vincent, P.4
Delalleau, O.5
-
60
-
-
85008344519
-
-
Technical Report, arXiv:1203.4416v1, Univ. of Montréal
-
G. Desjardins, A. Courville, and Y. Bengio, "On Training Deep Boltzmann Machines," Technical Report, arXiv:1203.4416v1, Univ. of Montréal, 2012.
-
(2012)
On Training Deep Boltzmann Machines
-
-
Desjardins, G.1
Courville, A.2
Bengio, Y.3
-
61
-
-
84856743552
-
How does the brain solve visual object recognition?
-
J. DiCarlo, D. Zoccolan, and N. Rust, "How Does the Brain Solve Visual Object Recognition?" Neuron, vol. 73, pp. 415-434, 2012.
-
(2012)
Neuron
, vol.73
, pp. 415-434
-
-
Dicarlo, J.1
Zoccolan, D.2
Rust, N.3
-
62
-
-
4143089050
-
Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data
-
Dept. of Statistics, Stanford Univ
-
D.L. Donoho and C. Grimes, "Hessian Eigenmaps: New Locally Linear Embedding Techniques for High-Dimensional Data," Technical Report 2003-08, Dept. of Statistics, Stanford Univ., 2003.
-
(2003)
Technical Report 2003-08
-
-
Donoho, D.L.1
Grimes, C.2
-
64
-
-
84872580046
-
Understanding representations learned in deep architectures
-
Univ. of Montréal/DIRO
-
D. Erhan, A. Courville, and Y. Bengio, "Understanding Representations Learned in Deep Architectures," Technical Report 1355, Univ. of Montréal/DIRO, 2010.
-
(2010)
Technical Report 1355
-
-
Erhan, D.1
Courville, A.2
Bengio, Y.3
-
65
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio, "Why Does Unsupervised Pre-Training Help Deep Learning?" J. Machine Learning Research, vol. 11, pp. 625-660, 2010.
-
(2010)
J. Machine Learning Research
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
66
-
-
56449085852
-
Unsupervised learning of distributions on binary vectors using two layer networks
-
Univ. of California, Santa Cruz
-
Y. Freund and D. Haussler, "Unsupervised Learning of Distributions on Binary Vectors Using Two Layer Networks," Technical Report UCSC-CRL-94-25, Univ. of California, Santa Cruz, 1994.
-
(1994)
Technical Report UCSC-CRL-94-25
-
-
Freund, Y.1
Haussler, D.2
-
67
-
-
0019152630
-
Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
K. Fukushima, "Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position," Biological Cybernetics, vol. 36, pp. 193-202, 1980. (Pubitemid 10080678)
-
(1980)
Biological Cybernetics
, vol.36
, Issue.4
, pp. 193-202
-
-
Fukushima, K.1
-
70
-
-
80053443013
-
Domain adaptation for large-scale sentiment classification: A deep learning approach
-
X. Glorot, A. Bordes, and Y. Bengio, "Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach," Proc. Int'l Conf. Machine Learning, 2011.
-
(2011)
Proc. Int'l Conf. Machine Learning
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
71
-
-
84860644702
-
Measuring invariances in deep networks
-
I. Goodfellow, Q. Le, A. Saxe, and A. Ng, "Measuring Invariances in Deep Networks," Proc. Neural Information and Processing System, pp. 646-654, 2009.
-
(2009)
Proc. Neural Information and Processing System
, pp. 646-654
-
-
Goodfellow, I.1
Le, Q.2
Saxe, A.3
Ng, A.4
-
77
-
-
79954564965
-
Should penalized least squares regression be interpreted as maximum a posteriori estimation?
-
May
-
R. Gribonval, "Should Penalized Least Squares Regression Be Interpreted as Maximum A Posteriori Estimation?" IEEE Trans. Signal Processing, vol. 59, no. 5, pp. 2405-2410, May 2011.
-
(2011)
IEEE Trans. Signal Processing
, vol.59
, Issue.5
, pp. 2405-2410
-
-
Gribonval, R.1
-
78
-
-
80053205731
-
Shift-invariant sparse coding for audio classification
-
R. Grosse, R. Raina, H. Kwong, and A.Y. Ng, "Shift-Invariant Sparse Coding for Audio Classification," Proc. Conf. Uncertainty in Artificial Intelligence, 2007.
-
(2007)
Proc. Conf. Uncertainty in Artificial Intelligence
-
-
Grosse, R.1
Raina, R.2
Kwong, H.3
Ng, A.Y.4
-
81
-
-
84864146684
-
Temporal pooling and multiscale learning for automatic annotation and ranking of music audio
-
P. Hamel, S. Lemieux, Y. Bengio, and D. Eck, "Temporal Pooling and Multiscale Learning for Automatic Annotation and Ranking of Music Audio," Proc. Int'l Conf. Music Information Retrieval, 2011.
-
(2011)
Proc. Int'l Conf. Music Information Retrieval
-
-
Hamel, P.1
Lemieux, S.2
Bengio, Y.3
Eck, D.4
-
83
-
-
0001295178
-
On the power of small-depth threshold circuits
-
J. Ha°stad and M. Goldmann, "On the Power of Small-Depth Threshold Circuits," Computational Complexity, vol. 1, pp. 113-129, 1991.
-
(1991)
Computational Complexity
, vol.1
, pp. 113-129
-
-
Hastad, J.1
Goldmann, M.2
-
84
-
-
84864122549
-
Unsupervised learning of sparse features for scalable audio classification
-
M. Henaff, K. Jarrett, K. Kavukcuoglu, and Y. LeCun, "Unsupervised Learning of Sparse Features for Scalable Audio Classification," Proc. Int'l Conf. Music Information Retrieva, 2011.
-
(2011)
Proc. Int'l Conf. Music Information Retrieva
-
-
Henaff, M.1
Jarrett, K.2
Kavukcuoglu, K.3
Lecun, Y.4
-
86
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition
-
Nov.
-
G. Hinton, L. Deng, G.E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, "Deep Neural Networks for Acoustic Modeling in Speech Recognition," IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, Nov. 2012.
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Dahl, G.E.3
Mohamed, A.4
Jaitly, N.5
Senior, A.6
Vanhoucke, V.7
Nguyen, P.8
Sainath, T.9
Kingsbury, B.10
-
89
-
-
0008602090
-
Training products of experts by minimizing contrastive divergence
-
Gatsby Unit, Univ. College London
-
G.E. Hinton, "Training Products of Experts by Minimizing Contrastive Divergence," Technical Report GCNU TR 2000-004, Gatsby Unit, Univ. College London, 2000.
-
(2000)
Technical Report GCNU TR 2000-004
-
-
Hinton, G.E.1
-
90
-
-
78650474133
-
A practical guide to training restricted boltzmann machines
-
Dept. of Computer Science, Univ. of Toronto
-
G.E. Hinton, "A Practical Guide to Training Restricted Boltzmann Machines," Technical Report UTML TR 2010-003, Dept. of Computer Science, Univ. of Toronto, 2010.
-
(2010)
Technical Report UTML TR 2010-003
-
-
Hinton, G.E.1
-
92
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
DOI 10.1126/science.1127647
-
G.E. Hinton and R. Salakhutdinov, "Reducing the Dimensionality of Data with Neural Networks," Science, vol. 313, no. 5786, pp. 504-507, 2006. (Pubitemid 44148451)
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
94
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
DOI 10.1162/neco.2006.18.7.1527
-
G.E. Hinton, S. Osindero, and Y. Teh, "A Fast Learning Algorithm for Deep Belief Nets," Neural Computation, vol. 18, pp. 1527-1554, 2006. (Pubitemid 44024729)
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
95
-
-
70449311374
-
Receptive fields of single neurons in the cat's striate cortex
-
D.H. Hubel and T.N. Wiesel, "Receptive Fields of Single Neurons in the Cat's Striate Cortex," J. Physiology, vol. 148, pp. 574-591, 1959.
-
(1959)
J. Physiology
, vol.148
, pp. 574-591
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
97
-
-
22044434800
-
Estimation of non-normalized statistical models using score matching
-
A. Hyvärinen, "Estimation of Non-Normalized Statistical Models Using Score Matching," J. Machine Learning Research, vol. 6, pp. 695-709, 2005.
-
(2005)
J. Machine Learning Research
, vol.6
, pp. 695-709
-
-
Hyvärinen, A.1
-
98
-
-
33750982683
-
Some extensions of score matching
-
DOI 10.1016/j.csda.2006.09.003, PII S0167947306003264
-
A. Hyvärinen, "Some Extensions of Score Matching," Computational Statistics and Data Analysis, vol. 51, pp. 2499-2512, 2007. (Pubitemid 44751259)
-
(2007)
Computational Statistics and Data Analysis
, vol.51
, Issue.5
, pp. 2499-2512
-
-
Hyvarinen, A.1
-
99
-
-
57349101724
-
Optimal approximation of signal priors
-
A. Hyvärinen, "Optimal Approximation of Signal Priors," Neural Computation, vol. 20, no. 12, pp. 3087-3110, 2008.
-
(2008)
Neural Computation
, vol.20
, Issue.12
, pp. 3087-3110
-
-
Hyvärinen, A.1
-
100
-
-
0034222304
-
Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces
-
A. Hyvärinen and P. Hoyer, "Emergence of Phase and Shift Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces," Neural Computation, vol. 12, no. 7, pp. 1705-1720, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.7
, pp. 1705-1720
-
-
Hyvärinen, A.1
Hoyer, P.2
-
102
-
-
0035409349
-
Topographic independent component analysis
-
DOI 10.1162/089976601750264992
-
A. Hyvärinen, P.O. Hoyer, and M. Inki, "Topographic Independent Component Analysis," Neural Computation, vol. 13, no. 7, pp. 1527-1558, 2001. (Pubitemid 33595031)
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1527-1558
-
-
Hyvarinen, A.1
Hoyer, P.O.2
Inki, M.3
-
104
-
-
58049158689
-
Echo state network
-
H. Jaeger, "Echo State Network," Scholarpedia, vol. 2, no. 9, p. 2330, 2007.
-
(2007)
Scholarpedia
, vol.2
, Issue.9
, pp. 2330
-
-
Jaeger, H.1
-
107
-
-
70049092408
-
-
Technical Report, arXiv 0904.3523
-
R. Jenatton, J.-Y. Audibert, and F. Bach, "Structured Variable Selection with Sparsity-Inducing Norms," Technical Report, arXiv:0904.3523, 2009.
-
(2009)
Structured Variable Selection with Sparsity-Inducing Norms
-
-
Jenatton, R.1
Audibert, J.-Y.2
Bach, F.3
-
108
-
-
0026191274
-
Blind separation of sources, part I. An adaptive algorithm based on neuromimetic architecture
-
DOI 10.1016/0165-1684(91)90079-X
-
C. Jutten and J. Herault, "Blind Separation of Sources, Part I: An Adaptive Algorithm Based on Neuromimetic Architecture," Signal Processing, vol. 24, pp. 1-10, 1991. (Pubitemid 21679270)
-
(1991)
Signal Processing
, vol.24
, Issue.1
, pp. 1-10
-
-
Jutten Christian1
Herault Jeanny2
-
109
-
-
70049083257
-
Fast inference in sparse coding algorithms with applications to object recognition
-
New York Univ
-
K. Kavukcuoglu, M. Ranzato, and Y. LeCun, "Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition," Technical Report CBLL-TR-2008-12-01, New York Univ., 2008.
-
(2008)
Technical Report CBLL-TR-2008-12-01
-
-
Kavukcuoglu, K.1
Ranzato, M.2
Lecun, Y.3
-
110
-
-
70450177775
-
Learning invariant features through topographic filter maps
-
K. Kavukcuoglu, M.-A. Ranzato, R. Fergus, and Y. LeCun, "Learning Invariant Features through Topographic Filter Maps," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009.
-
(2009)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
-
-
Kavukcuoglu, K.1
Ranzato, M.-A.2
Fergus, R.3
Lecun, Y.4
-
111
-
-
85162460675
-
Learning convolutional feature hierarchies for visual recognition
-
K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu, and Y. LeCun, "Learning Convolutional Feature Hierarchies for Visual Recognition," Proc. Neural Information and Processing Systems, 2010.
-
(2010)
Proc. Neural Information and Processing Systems
-
-
Kavukcuoglu, K.1
Sermanet, P.2
Boureau, Y.-L.3
Gregor, K.4
Mathieu, M.5
Lecun, Y.6
-
114
-
-
18244431804
-
How are complex cell properties adapted to the statistics of natural stimuli?
-
DOI 10.1152/jn.00149.2003
-
K.P. Körding, C. Kayser, W. Einhäuser, and P. Kö nig, "How Are Complex Cell Properties Adapted to the Statistics of Natural Stimuli?" J. Neurophysiology, vol. 91, pp. 206-212, 2004. (Pubitemid 38084365)
-
(2004)
Journal of Neurophysiology
, vol.91
, Issue.1
, pp. 206-212
-
-
Kording, K.P.1
Kayser, C.2
Einhauser, W.3
Konig, P.4
-
119
-
-
59449087310
-
Exploring strategies for training deep neural networks
-
H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, "Exploring Strategies for Training Deep Neural Networks," J. Machine Learning Research, vol. 10, pp. 1-40, 2009.
-
(2009)
J. Machine Learning Research
, vol.10
, pp. 1-40
-
-
Larochelle, H.1
Bengio, Y.2
Louradour, J.3
Lamblin, P.4
-
121
-
-
84869479578
-
Structured output layer neural network language models for speech recognition
-
Jan.
-
H.-S. Le, I. Oparin, A. Allauzen, J.-L. Gauvin, and F. Yvon, "Structured Output Layer Neural Network Language Models for Speech Recognition," IEEE Trans. Audio, Speech, and Language Processing, vol. 21, no. 1, pp. 197-206, Jan. 2013.
-
(2013)
IEEE Trans. Audio, Speech, and Language Processing
, vol.21
, Issue.1
, pp. 197-206
-
-
Le, H.-S.1
Oparin, I.2
Allauzen, A.3
Gauvin, J.-L.4
Yvon, F.5
-
122
-
-
85161972005
-
Tiled convolutional neural networks
-
Q. Le, J. Ngiam, Z. H. Chen, D.J. Chia, P.W. Koh, and A. Ng, "Tiled Convolutional Neural Networks," Proc. Neural Information and Processing Systems, 2010.
-
(2010)
Proc. Neural Information and Processing Systems
-
-
Le, Q.1
Ngiam, J.2
Chen, Z.H.3
Chia, D.J.4
Koh, P.W.5
Ng, A.6
-
123
-
-
80053437034
-
On optimization methods for deep learning
-
Q. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Ng, "On Optimization Methods for Deep Learning," Proc. Int'l Conf. Machine Learning, 2011.
-
(2011)
Proc. Int'l Conf. Machine Learning
-
-
Le, Q.1
Ngiam, J.2
Coates, A.3
Lahiri, A.4
Prochnow, B.5
Ng, A.6
-
124
-
-
85162310599
-
ICA with reconstruction cost for efficient overcomplete feature learning
-
Q.V. Le, A. Karpenko, J. Ngiam, and A.Y. Ng, "ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning," Proc. Neural Information and Processing Systems, 2011.
-
(2011)
Proc. Neural Information and Processing Systems
-
-
Le, Q.V.1
Karpenko, A.2
Ngiam, J.3
Ng, A.Y.4
-
125
-
-
80052874098
-
Learning hierarchical spatio-temporal features for action recognition with independent subspace analysis
-
Q.V. Le, W.Y. Zou, S.Y. Yeung, and A.Y. Ng, "Learning Hierarchical Spatio-Temporal Features for Action Recognition with Independent Subspace Analysis," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2011.
-
(2011)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
-
-
Le, Q.V.1
Zou, W.Y.2
Yeung, S.Y.3
Ng, A.Y.4
-
126
-
-
85162039703
-
Learning the 2-D topology of images
-
N. Le Roux, Y. Bengio, P. Lamblin, M. Joliveau, and B. Kegl, "Learning the 2-D Topology of Images," Proc. Neural Information and Processing Systems, 2007.
-
(2007)
Proc. Neural Information and Processing Systems
-
-
Le Roux, N.1
Bengio, Y.2
Lamblin, P.3
Joliveau, M.4
Kegl, B.5
-
128
-
-
0002824144
-
Learning processes in an asymmetric threshold network
-
Springer-Verlag
-
Y. LeCun, "Learning Processes in an Asymmetric Threshold Network," Disordered Systems and Biological Organization, pp. 233-240, Springer-Verlag, 1986.
-
(1986)
Disordered Systems and Biological Organization
, pp. 233-240
-
-
Lecun, Y.1
-
130
-
-
0002291365
-
Generalization and network design strategies
-
Elsevier
-
Y. LeCun, "Generalization and Network Design Strategies," Connectionism in Perspective, Elsevier, 1989.
-
(1989)
Connectionism in Perspective
-
-
Lecun, Y.1
-
131
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and L.D. Jackel, "Backpropagation Applied to Handwritten Zip Code Recognition," Neural Computation, vol. 1, pp. 541-551, 1989.
-
(1989)
Neural Computation
, vol.1
, pp. 541-551
-
-
Lecun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
132
-
-
0001857994
-
Efficient backprop
-
Springer
-
Y. LeCun, L. Bottou, G.B. Orr, and K. Mü ller, "Efficient Backprop," Neural Networks, Tricks of the Trade, Springer, 1998.
-
(1998)
Neural Networks, Tricks of the Trade
-
-
Lecun, Y.1
Bottou, L.2
Orr, G.B.3
Mü Ller, K.4
-
133
-
-
0032203257
-
Gradient based learning applied to document recognition
-
Nov
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient Based Learning Applied to Document Recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
135
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng, "Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations," Proc. Int'l Conf. Machine Learning, 2009.
-
(2009)
Proc. Int'l Conf. Machine Learning
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
136
-
-
84863380535
-
Unsupervised feature learning for audio classification using convolutional deep belief networks
-
H. Lee, P. Pham, Y. Largman, and A. Ng, "Unsupervised Feature Learning for Audio Classification Using Convolutional Deep Belief Networks," Proc. Neural Information and Processing System, 2009.
-
(2009)
Proc. Neural Information and Processing System
-
-
Lee, H.1
Pham, P.2
Largman, Y.3
Ng, A.4
-
137
-
-
85161977985
-
Deep coding network
-
Y. Lin, Z. Tong, S. Zhu, and K. Yu, "Deep Coding Network," Proc. Neural Information and Processing Systems, 2010.
-
(2010)
Proc. Neural Information and Processing Systems
-
-
Lin, Y.1
Tong, Z.2
Zhu, S.3
Yu, K.4
-
140
-
-
80053168693
-
Asymptotic efficiency of deterministic estimators for discrete energy-based models: Ratio matching and pseudolikelihood
-
B. Marlin and N. de Freitas, "Asymptotic Efficiency of Deterministic Estimators for Discrete Energy-Based Models: Ratio Matching and Pseudolikelihood," Proc. Conf. Uncertainty in Artificial Intelligence, 2011.
-
(2011)
Proc. Conf. Uncertainty in Artificial Intelligence
-
-
Marlin, B.1
De Freitas, N.2
-
141
-
-
80053455323
-
Inductive principles for restricted boltzmann machine learning
-
B. Marlin, K. Swersky, B. Chen, and N. de Freitas, "Inductive Principles for Restricted Boltzmann Machine Learning," Proc. Conf. Artificial Intelligence and Statistics, pp. 509-516, 2010.
-
(2010)
Proc. Conf. Artificial Intelligence and Statistics
, pp. 509-516
-
-
Marlin, B.1
Swersky, K.2
Chen, B.3
De Freitas, N.4
-
142
-
-
77956541496
-
Deep learning via hessian-free optimization
-
J. Martens, "Deep Learning via Hessian-Free Optimization," Proc. Int'l Conf. Machine Learning, pp. 735-742, 2010.
-
(2010)
Proc. Int'l Conf. Machine Learning
, pp. 735-742
-
-
Martens, J.1
-
144
-
-
77953520240
-
Learning to represent spatial transformations with factored higher-order boltzmann machines
-
R. Memisevic and G.E. Hinton, "Learning to Represent Spatial Transformations with Factored Higher-Order Boltzmann Machines," Neural Computation, vol. 22, no. 6, pp. 1473-1492, 2010.
-
(2010)
Neural Computation
, vol.22
, Issue.6
, pp. 1473-1492
-
-
Memisevic, R.1
Hinton, G.E.2
-
145
-
-
84872561833
-
Unsupervised and transfer learning challenge: A deep learning approach
-
G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. Goodfellow, E. Lavoie, X. Muller, G. Desjardins, D. Warde-Farley, P. Vincent, A. Courville, and J. Bergstra, "Unsupervised and Transfer Learning Challenge: A Deep Learning Approach," Proc. Unsupervised and Transfer Learning Challenge and Workshop, vol. 7, 2011.
-
(2011)
Proc. Unsupervised and Transfer Learning Challenge and Workshop
, vol.7
-
-
Mesnil, G.1
Dauphin, Y.2
Glorot, X.3
Rifai, S.4
Bengio, Y.5
Goodfellow, I.6
Lavoie, E.7
Muller, X.8
Desjardins, G.9
Warde-Farley, D.10
Vincent, P.11
Courville, A.12
Bergstra, J.13
-
146
-
-
84865803833
-
Empirical evaluation and combination of advanced language modeling techniques
-
T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and J. Cernocky, "Empirical Evaluation and Combination of Advanced Language Modeling Techniques," Proc. Ann. Conf. Int'l Speech Comm. Assoc., 2011.
-
(2011)
Proc. Ann. Conf. Int'l Speech Comm. Assoc
-
-
Mikolov, T.1
Deoras, A.2
Kombrink, S.3
Burget, L.4
Cernocky, J.5
-
148
-
-
84055211743
-
Acoustic modeling using deep belief networks
-
Jan.
-
A. Mohamed, G. Dahl, and G. Hinton, "Acoustic Modeling Using Deep Belief Networks," IEEE Trans. Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 14-22, Jan. 2012.
-
(2012)
IEEE Trans. Audio, Speech, and Language Processing
, vol.20
, Issue.1
, pp. 14-22
-
-
Mohamed, A.1
Dahl, G.2
Hinton, G.3
-
152
-
-
44049116681
-
Connectionist learning of belief networks
-
R.M. Neal, "Connectionist Learning of Belief Networks," Artificial Intelligence, vol. 56, pp. 71-113, 1992.
-
(1992)
Artificial Intelligence
, vol.56
, pp. 71-113
-
-
Neal, R.M.1
-
153
-
-
0004087397
-
Probabilistic inference using markov chain monte-carlo methods
-
Dept. of Computer Science, Univ. of Toronto
-
R.M. Neal, "Probabilistic Inference Using Markov Chain Monte-Carlo Methods," Technical Report CRG-TR-93-1, Dept. of Computer Science, Univ. of Toronto, 1993.
-
(1993)
Technical Report CRG-TR-93-1
-
-
Neal, R.M.1
-
154
-
-
80053445973
-
Learning deep energy models
-
J. Ngiam, Z. Chen, P. Koh, and A. Ng, "Learning Deep Energy Models," Proc. Int'l Conf. Machine Learning, 2011.
-
(2011)
Proc. Int'l Conf. Machine Learning
-
-
Ngiam, J.1
Chen, Z.2
Koh, P.3
Ng, A.4
-
155
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
DOI 10.1038/381607a0
-
B.A. Olshausen and D.J. Field, "Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images," Nature, vol. 381, pp. 607-609, 1996. (Pubitemid 26177476)
-
(1996)
Nature
, vol.381
, Issue.6583
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.J.2
-
159
-
-
34547971961
-
Self-taught learning: Transfer learning from unlabeled data
-
R. Raina, A. Battle, H. Lee, B. Packer, and A.Y. Ng, "Self-Taught Learning: Transfer Learning from Unlabeled Data," Proc. Int'l Conf. Machine Learning, 2007.
-
(2007)
Proc. Int'l Conf. Machine Learning
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Packer, B.4
Ng, A.Y.5
-
161
-
-
85112276587
-
Efficient learning of sparse representations with an energy-based model
-
M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun, "Efficient Learning of Sparse Representations with an Energy-Based Model," Proc. Neural Information and Processing Systems, 2006.
-
(2006)
Proc. Neural Information and Processing Systems
-
-
Ranzato, M.1
Poultney, C.2
Chopra, S.3
Lecun, Y.4
-
163
-
-
84862277721
-
Factored 3-way restricted boltzmann machines for modeling natural images
-
M. Ranzato, A. Krizhevsky, and G. Hinton, "Factored 3-Way Restricted Boltzmann Machines for Modeling Natural Images," Proc. Conf. Artificial Intelligence and Statistics, pp. 621-628, 2010.
-
(2010)
Proc. Conf. Artificial Intelligence and Statistics
, pp. 621-628
-
-
Ranzato, M.1
Krizhevsky, A.2
Hinton, G.3
-
165
-
-
80052877144
-
On deep generative models with applications to recognition
-
M. Ranzato, J. Susskind, V. Mnih, and G. Hinton, "On Deep Generative Models with Applications to Recognition," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2011.
-
(2011)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
-
-
Ranzato, M.1
Susskind, J.2
Mnih, V.3
Hinton, G.4
-
166
-
-
0033316361
-
Hierarchical models of object recognition in cortex
-
DOI 10.1038/14819
-
M. Riesenhuber and T. Poggio, "Hierarchical Models of Object Recognition in Cortex," Nature Neuroscience, vol. 2, pp. 1019-1025, 1999. (Pubitemid 30599567)
-
(1999)
Nature Neuroscience
, vol.2
, Issue.11
, pp. 1019-1025
-
-
Riesenhuber, M.1
Poggio, T.2
-
167
-
-
80053460450
-
Contractive auto-encoders: Explicit invariance during feature extraction
-
S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, "Contractive Auto-Encoders: Explicit Invariance during Feature Extraction," Proc. Int'l Conf. Machine Learning, 2011.
-
(2011)
Proc. Int'l Conf. Machine Learning
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
168
-
-
84887452249
-
Higher order contractive auto-encoder
-
S. Rifai, G. Mesnil, P. Vincent, X. Muller, Y. Bengio, Y. Dauphin, and X. Glorot, "Higher Order Contractive Auto-Encoder," Proc. European Conf. Machine Learning and Knowledge Discovery in Databases, 2011.
-
(2011)
Proc. European Conf. Machine Learning and Knowledge Discovery in Databases
-
-
Rifai, S.1
Mesnil, G.2
Vincent, P.3
Muller, X.4
Bengio, Y.5
Dauphin, Y.6
Glorot, X.7
-
169
-
-
85162427692
-
The manifold tangent classifier
-
S. Rifai, Y. Dauphin, P. Vincent, Y. Bengio, and X. Muller, "The Manifold Tangent Classifier," Proc. Neural Information and Processing Systems, 2011.
-
(2011)
Proc. Neural Information and Processing Systems
-
-
Rifai, S.1
Dauphin, Y.2
Vincent, P.3
Bengio, Y.4
Muller, X.5
-
170
-
-
84867136416
-
A generative process for sampling contractive auto-encoders
-
S. Rifai, Y. Bengio, Y. Dauphin, and P. Vincent, "A Generative Process for Sampling Contractive Auto-Encoders," Proc. Int'l Conf. Machine Learning, 2012.
-
(2012)
Proc. Int'l Conf. Machine Learning
-
-
Rifai, S.1
Bengio, Y.2
Dauphin, Y.3
Vincent, P.4
-
171
-
-
0001579675
-
EM algorithms for PCA and sensible PCA
-
California Inst. of Technology
-
S. Roweis, "EM Algorithms for PCA and Sensible PCA," CNS Technical Report CNS-TR-97-02, California Inst. of Technology, 1997.
-
(1997)
CNS Technical Report CNS-TR-97-02
-
-
Roweis, S.1
-
172
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
DOI 10.1126/science.290.5500.2323
-
S. Roweis and L.K. Saul, "Nonlinear Dimensionality Reduction by Locally Linear Embedding," Science, vol. 290, no. 5500, pp. 2323-2326, 2000. (Pubitemid 32041578)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
180
-
-
78149327745
-
Generative versus discriminative training of rbms for classification of fMRI images
-
T. Schmah, G.E. Hinton, R. Zemel, S.L. Small, and S. Strother, "Generative versus Discriminative Training of RBMs for Classification of fMRI Images," Proc. Neural Information and Processing Systems, pp. 1409-1416, 2008.
-
(2008)
Proc. Neural Information and Processing Systems
, pp. 1409-1416
-
-
Schmah, T.1
Hinton, G.E.2
Zemel, R.3
Small, S.L.4
Strother, S.5
-
181
-
-
0347243182
-
Nonlinear Component Analysis as a Kernel Eigenvalue Problem
-
B. Schölkopf, A. Smola, and K.-R. Müller, "Nonlinear Component Analysis as a Kernel Eigenvalue Problem," Neural Computation, vol. 10, pp. 1299-1319, 1998. (Pubitemid 128463674)
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Scholkopf, B.1
Smola, A.2
Muller, K.-R.3
-
182
-
-
85045980083
-
Large, pruned or continuous space language models on a GPU for statistical machine translation
-
H. Schwenk, A. Rousseau, and M. Attik, "Large, Pruned or Continuous Space Language Models on a GPU for Statistical Machine Translation," Proc. Workshop the Future of Language Modeling for HLT, 2012.
-
(2012)
Proc. Workshop the Future of Language Modeling for HLT
-
-
Schwenk, H.1
Rousseau, A.2
Attik, M.3
-
183
-
-
84865801985
-
Conversational speech transcription using context-dependent deep neural networks
-
F. Seide, G. Li, and D. Yu, "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks," Proc. Conf. Int'l Speech Comm. Assoc., pp. 437-440, 2011.
-
(2011)
Proc. Conf. Int'l Speech Comm. Assoc
, pp. 437-440
-
-
Seide, F.1
Li, G.2
Yu, D.3
-
185
-
-
33847380121
-
Robust object recognition with cortex-like mechanisms
-
DOI 10.1109/TPAMI.2007.56
-
T. Serre, L. Wolf, S. Bileschi, and M. Riesenhuber, "Robust Object Recognition with Cortex-Like Mechanisms," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 3, pp. 411-426, Mar. 2007. (Pubitemid 46336417)
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.3
, pp. 411-426
-
-
Serre, T.1
Wolf, L.2
Bileschi, S.3
Riesenhuber, M.4
Poggio, T.5
-
188
-
-
0001440803
-
Tangent prop-a formalism for specifying selected invariances in an adaptive network
-
P. Simard, B. Victorri, Y. LeCun, and J. Denker, "Tangent Prop-A Formalism for Specifying Selected Invariances in an Adaptive Network," Proc. Neural Information and Processing Systems, 1991.
-
(1991)
Proc. Neural Information and Processing Systems
-
-
Simard, P.1
Victorri, B.2
Lecun, Y.3
Denker, J.4
-
190
-
-
0000329993
-
Information processing in dynamical systems: Foundations of harmony theory
-
D.E. Rumelhart and J.L. McClelland, eds chapter 6 MIT Press
-
P. Smolensky, "Information Processing in Dynamical Systems: Foundations of Harmony Theory," Parallel Distributed Processing, D.E. Rumelhart and J.L. McClelland, eds., vol. 1, chapter 6, pp. 194-281, MIT Press, 1986.
-
(1986)
Parallel Distributed Processing
, vol.1
, pp. 194-281
-
-
Smolensky, P.1
-
192
-
-
85162476102
-
Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
-
R. Socher, E.H. Huang, J. Pennington, A.Y. Ng, and C.D. Manning, "Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection," Proc. Neural Information and Processing Systems, 2011.
-
(2011)
Proc. Neural Information and Processing Systems
-
-
Socher, R.1
Huang, E.H.2
Pennington, J.3
Ng, A.Y.4
Manning, C.D.5
-
193
-
-
80053261327
-
Semi-supervised recursive autoencoders for predicting sentiment distributions
-
R. Socher, J. Pennington, E.H. Huang, A.Y. Ng, and C.D. Manning, "Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions," Proc. Conf. Empirical Methods in Natural Language Processing, 2011.
-
(2011)
Proc. Conf. Empirical Methods in Natural Language Processing
-
-
Socher, R.1
Pennington, J.2
Huang, E.H.3
Ng, A.Y.4
Manning, C.D.5
-
195
-
-
84883148756
-
Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
-
V. Stoyanov, A. Ropson, and J. Eisner, "Empirical Risk Minimization of Graphical Model Parameters Given Approximate Inference, Decoding, and Model Structure," Proc. Conf. Artificial Intelligence and Statistics, 2011.
-
(2011)
Proc. Conf. Artificial Intelligence and Statistics
-
-
Stoyanov, V.1
Ropson, A.2
Eisner, J.3
-
200
-
-
80052409568
-
On score matching for energy based models: Generalizing autoencoders and simplifying deep learning
-
K. Swersky, M. Ranzato, D. Buchman, B. Marlin, and N. de Freitas, "On Score Matching for Energy Based Models: Generalizing Autoencoders and Simplifying Deep Learning," Proc. Int'l Conf. Machine Learning, 2011.
-
(2011)
Proc. Int'l Conf. Machine Learning
-
-
Swersky, K.1
Ranzato, M.2
Buchman, D.3
Marlin, B.4
De Freitas, N.5
-
201
-
-
71149118574
-
Factored conditional restricted boltzmann machines for modeling motion style
-
G. Taylor and G. Hinton, "Factored Conditional Restricted Boltzmann Machines for Modeling Motion Style," Proc. Int'l Conf. Machine Learning, 2009.
-
(2009)
Proc. Int'l Conf. Machine Learning
-
-
Taylor, G.1
Hinton, G.2
-
202
-
-
84867652321
-
Convolutional learning of spatio-temporal features
-
G. Taylor, R. Fergus, Y. LeCun, and C. Bregler, "Convolutional Learning of Spatio-Temporal Features," Proc. European Conf. Computer Vision, 2010.
-
(2010)
Proc. European Conf. Computer Vision
-
-
Taylor, G.1
Fergus, R.2
Lecun, Y.3
Bregler, C.4
-
203
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
DOI 10.1126/science.290.5500.2319
-
J. Tenenbaum, V. de Silva, and J.C. Langford, "A Global Geometric Framework for Nonlinear Dimensionality Reduction," Science, vol. 290, no. 5500, pp. 2319-2323, 2000. (Pubitemid 32041577)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
204
-
-
56449086223
-
Training restricted boltzmann machines using approximations to the likelihood gradient
-
T. Tieleman, "Training Restricted Boltzmann Machines Using Approximations to the Likelihood Gradient," Proc. Int'l Conf. Machine Learning, pp. 1064-1071, 2008.
-
(2008)
Proc. Int'l Conf. Machine Learning
, pp. 1064-1071
-
-
Tieleman, T.1
-
206
-
-
0038959172
-
Probabilistic principal components analysis
-
M.E. Tipping and C.M. Bishop, "Probabilistic Principal Components Analysis," J. Royal Statistical Soc. B, vol. 61, no. 3, pp. 611-622, 1999.
-
(1999)
J. Royal Statistical Soc. B
, vol.61
, Issue.3
, pp. 611-622
-
-
Tipping, M.E.1
Bishop, C.M.2
-
207
-
-
77649302828
-
Convolutional networks can learn to generate affinity graphs for image segmentation
-
S.C. Turaga, J.F. Murray, V. Jain, F. Roth, M. Helmstaedter, K. Briggman, W. Denk, and H.S. Seung, "Convolutional Networks Can Learn to Generate Affinity Graphs for Image Segmentation," Neural Computation, vol. 22, pp. 511-538, 2010.
-
(2010)
Neural Computation
, vol.22
, pp. 511-538
-
-
Turaga, S.C.1
Murray, J.F.2
Jain, V.3
Roth, F.4
Helmstaedter, M.5
Briggman, K.6
Denk, W.7
Seung, H.S.8
-
209
-
-
57249084011
-
Visualizing high-dimensional data using t-SNE
-
L. van der Maaten and G.E. Hinton, "Visualizing High-Dimensional Data Using t-SNE," J. Machine Learning Research, vol. 9, pp. 2579-2605, 2008.
-
(2008)
J. Machine Learning Research
, vol.9
, pp. 2579-2605
-
-
Maaten Der L.Van1
Hinton, G.E.2
-
210
-
-
79959575293
-
A connection between score matching and denoising autoencoders
-
P. Vincent, "A Connection between Score Matching and Denoising Autoencoders," Neural Computation, vol. 23, no. 7, pp. 1661-1674, 2011.
-
(2011)
Neural Computation
, vol.23
, Issue.7
, pp. 1661-1674
-
-
Vincent, P.1
-
212
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting and Composing Robust Features with Denoising Autoencoders," Proc. Int'l Conf. Machine Learning, 2008.
-
(2008)
Proc. Int'l Conf. Machine Learning
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
213
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion," J. Machine Learning Research, vol. 11, pp. 3371-3408, 2010.
-
(2010)
J. Machine Learning Research
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
218
-
-
77955654853
-
Large scale image annotation: Learning to rank with joint word-image embeddings
-
J. Weston, S. Bengio, and N. Usunier, "Large Scale Image Annotation: Learning to Rank with Joint Word-Image Embeddings," Machine Learning, vol. 81, no. 1, pp. 21-35, 2010.
-
(2010)
Machine Learning
, vol.81
, Issue.1
, pp. 21-35
-
-
Weston, J.1
Bengio, S.2
Usunier, N.3
-
219
-
-
0036546660
-
Slow feature analysis: Unsupervised learning of invariances
-
L. Wiskott and T. Sejnowski, "Slow Feature Analysis: Unsupervised Learning of Invariances," Neural Computation, vol. 14, no. 4, pp. 715-770, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.4
, pp. 715-770
-
-
Wiskott, L.1
Sejnowski, T.2
-
220
-
-
33644756784
-
On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates
-
L. Younes, "On the Convergence of Markovian Stochastic Algorithms with Rapidly Decreasing Ergodicity Rates," Stochastics and Stochastic Reports, vol. 65, no. 3, pp. 177-228, 1999.
-
(1999)
Stochastics and Stochastic Reports
, vol.65
, Issue.3
, pp. 177-228
-
-
Younes, L.1
-
221
-
-
78649308591
-
Sequential labeling using deep-structured conditional random fields
-
Dec.
-
D. Yu, S. Wang, and L. Deng, "Sequential Labeling Using Deep-Structured Conditional Random Fields," IEEE J. Selected Topics in Signal Processing, vol. 4, no. 6, pp. 965-973, Dec. 2010.
-
(2010)
IEEE J. Selected Topics in Signal Processing
, vol.4
, Issue.6
, pp. 965-973
-
-
Yu, D.1
Wang, S.2
Deng, L.3
-
226
-
-
77956001004
-
Deconvolutional networks
-
M. Zeiler, D. Krishnan, G. Taylor, and R. Fergus, "Deconvolutional Networks," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2010.
-
(2010)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
-
-
Zeiler, M.1
Krishnan, D.2
Taylor, G.3
Fergus, R.4
|