메뉴 건너뛰기




Volumn 44, Issue 2, 2017, Pages 533-546

Using deep learning to segment breast and fibroglandular tissue in MRI volumes:

Author keywords

breast segmentation; deep learning; MRI

Indexed keywords

AUTOMATION; CORRELATION METHODS; DEEP LEARNING; IMAGE SEGMENTATION; MEDICAL IMAGING; TEMPLATE MATCHING; TISSUE;

EID: 85015580937     PISSN: 00942405     EISSN: 24734209     Source Type: Journal    
DOI: 10.1002/mp.12079     Document Type: Article
Times cited : (201)

References (36)
  • 1
    • 34247099319 scopus 로고    scopus 로고
    • Computer assistance for MR based diagnosis of breast cancer: Present and future challenges
    • Behrens S, Laue H, Althaus M, et al., Computer assistance for MR based diagnosis of breast cancer: present and future challenges. Comput Med Imaging Graph. 2007; 31: 236-247.
    • (2007) Comput Med Imaging Graph , vol.31 , pp. 236-247
    • Behrens, S.1    Laue, H.2    Althaus, M.3
  • 2
    • 62349103886 scopus 로고    scopus 로고
    • Breast tumor analysis in dynamic contrast enhanced MRI using texture features and wavelet transform
    • Yao J, Chen J, Chow C., Breast tumor analysis in dynamic contrast enhanced MRI using texture features and wavelet transform. IEEE J Sel Top Signal Process. 2009; 3: 94-100.
    • (2009) IEEE J Sel Top Signal Process , vol.3 , pp. 94-100
    • Yao, J.1    Chen, J.2    Chow, C.3
  • 3
    • 84920871126 scopus 로고    scopus 로고
    • Automated localization of breast cancer in DCE-MRI
    • Gubern-Mtrida A, Martf R, Melendez J, et al., Automated localization of breast cancer in DCE-MRI. Med Image Analy. 2015; 20: 265-274.
    • (2015) Med Image Analy , vol.20 , pp. 265-274
    • Gubern-Mtrida, A.1    Martf, R.2    Melendez, J.3
  • 4
    • 84988843521 scopus 로고    scopus 로고
    • A fully automated system for quantification of background parenchymal enhancement in breast DCE-MRI
    • International Society for Optics and Photonics
    • Dalmis MU, Gubern-Mtrida A, Borelli C, Vreemann S, Mann RM, Karsse-meijer N,. A fully automated system for quantification of background parenchymal enhancement in breast DCE-MRI. In: SPIE Medical Imaging. International Society for Optics and Photonics; 2016: 97850L-97850L.
    • (2016) SPIE Medical Imaging , pp. 97850L-97850L
    • Dalmis, M.U.1    Gubern-Mtrida, A.2    Borelli, C.3    Vreemann, S.4    Mann, R.M.5    Karsse-Meijer, N.6
  • 5
    • 56749179848 scopus 로고    scopus 로고
    • Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI
    • Nie K, Chen J-H, Chan S, et al., Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI. Med Phys. 2008; 35: 5253-5262.
    • (2008) Med Phys , vol.35 , pp. 5253-5262
    • Nie, K.1    Chen, J.-H.2    Chan, S.3
  • 6
    • 84890080605 scopus 로고    scopus 로고
    • Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy c-means method
    • Wu S, Weinstein SP, Conant EF, Kontos D., Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy c-means method. Med Phys. 2013; 40: 122302.
    • (2013) Med Phys , vol.40 , pp. 122302
    • Wu, S.1    Weinstein, S.P.2    Conant, E.F.3    Kontos, D.4
  • 7
    • 84898896785 scopus 로고    scopus 로고
    • MRI volumetric analysis of breast fibroglandular tissue to assess risk of the spared nipple in BRCA1 and BRCA2 mutation carriers
    • Baltzer HL, Alonzo-Proulx O, Mainprize JG, et al., MRI volumetric analysis of breast fibroglandular tissue to assess risk of the spared nipple in BRCA1 and BRCA2 mutation carriers. Ann Surg Oncol. 2014; 21: 1583-1588.
    • (2014) Ann Surg Oncol , vol.21 , pp. 1583-1588
    • Baltzer, H.L.1    Alonzo-Proulx, O.2    Mainprize, J.G.3
  • 8
    • 84912572522 scopus 로고    scopus 로고
    • A level set based framework for quantitative evaluation of breast tissue density from MRI data
    • Ivanovska T, Laqua R, Wang L, Liebscher V, Völzke H, Hegenscheid K., A level set based framework for quantitative evaluation of breast tissue density from MRI data. PloS One. 2014; 9: e112709.
    • (2014) PloS One , vol.9 , pp. e112709
    • Ivanovska, T.1    Laqua, R.2    Wang, L.3    Liebscher, V.4    Völzke, H.5    Hegenscheid, K.6
  • 10
    • 80755173295 scopus 로고    scopus 로고
    • Mammographic density and breast cancer risk: Current understanding and future prospects
    • Boyd NF, Martin LJ, Yaffe MJ, Minkin S., Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res. 2011; 13: 1.
    • (2011) Breast Cancer Res , vol.13 , pp. 1
    • Boyd, N.F.1    Martin, L.J.2    Yaffe, M.J.3    Minkin, S.4
  • 11
    • 33745683831 scopus 로고    scopus 로고
    • Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis
    • McCormack VA, dos Santos Silva I., Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006; 15: 1159-1169.
    • (2006) Cancer Epidemiol Biomarkers Prev , vol.15 , pp. 1159-1169
    • McCormack, V.A.1    Dos Santos Silva, I.2
  • 12
    • 40349102022 scopus 로고    scopus 로고
    • Mammographic density, breast cancer risk and risk prediction
    • Vachon CM, Van Gils CH, Sellers TA, et al., Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res. 2007; 9: 1.
    • (2007) Breast Cancer Res , vol.9 , pp. 1
    • Vachon, C.M.1    Van Gils, C.H.2    Sellers, T.A.3
  • 15
    • 0942265691 scopus 로고    scopus 로고
    • Statistical validation of image segmentation quality based on a spatial overlap index 1: Scientific reports
    • Zou KH, Warfield SK, Bharatha A, et al., Statistical validation of image segmentation quality based on a spatial overlap index 1: Scientific reports. Acad Radiol. 2004; 11: 178-189.
    • (2004) Acad Radiol , vol.11 , pp. 178-189
    • Zou, K.H.1    Warfield, S.K.2    Bharatha, A.3
  • 16
    • 35248901546 scopus 로고    scopus 로고
    • Automatic segmentation of relevant structures in DCE MR mammograms
    • International Society for Optics and Photonics
    • Koenig M, Laue H, Boehler T, Peitgen H-O,. Automatic segmentation of relevant structures in DCE MR mammograms. In: Medical Imaging. International Society for Optics and Photonics; 2007: 5141S-65141S.
    • (2007) Medical Imaging , pp. 5141S-65141S
    • Koenig, M.1    Laue, H.2    Boehler, T.3    Peitgen, H.-O.4
  • 17
    • 84981717331 scopus 로고    scopus 로고
    • Breast segmentation in MRI using Poisson surface reconstruction initialized with random forest edge detection
    • International Society for Optics and Photonics
    • Martel AL, Gallego-Ortiz C, Lu Y,. Breast segmentation in MRI using Poisson surface reconstruction initialized with random forest edge detection. In: SPIE Medical Imaging. International Society for Optics and Photonics; 2016: 97841B-97841B.
    • (2016) SPIE Medical Imaging , pp. 97841B-97841B
    • Martel, A.L.1    Gallego-Ortiz, C.2    Lu, Y.3
  • 18
    • 84867290696 scopus 로고    scopus 로고
    • Automatic atlas-based segmentation of the breast in MRI for 3D breast volume computation
    • Ortiz CG, Martel A., Automatic atlas-based segmentation of the breast in MRI for 3D breast volume computation. Med Phys. 2012; 39: 5835-5848.
    • (2012) Med Phys , vol.39 , pp. 5835-5848
    • Ortiz, C.G.1    Martel, A.2
  • 20
    • 84890089951 scopus 로고    scopus 로고
    • Template-based automatic breast segmentation on MRI by excluding the chest region
    • Lin M, Chen J-H, Wang X, Chan S, Chen S, Su M-Y., Template-based automatic breast segmentation on MRI by excluding the chest region. Med Phys. 2013; 40: 122301.
    • (2013) Med Phys , vol.40 , pp. 122301
    • Lin, M.1    Chen, J.-H.2    Wang, X.3    Chan, S.4    Chen, S.5    Su, M.-Y.6
  • 25
    • 84944768883 scopus 로고    scopus 로고
    • Towards accurate segmentation of fibroglandular tissue in breast MRI using fuzzy c-means and skin folds removal
    • Springer
    • Razavi M, Wang L, Gubern-Mtrida A, et al., Towards accurate segmentation of fibroglandular tissue in breast MRI using fuzzy c-means and skin folds removal. In: International Conference on Image Analysis and Processing. Springer; 2015: 528-536.
    • (2015) International Conference on Image Analysis and Processing , pp. 528-536
    • Razavi, M.1    Wang, L.2    Gubern-Mtrida, A.3
  • 28
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Glorot X, Bengio Y., Understanding the difficulty of training deep feedforward neural networks. Aistats. 2010; 9: 249-256.
    • (2010) Aistats , vol.9 , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 32
    • 0000957052 scopus 로고
    • Tests for comparing elements of a correlation matrix
    • Steiger JH., Tests for comparing elements of a correlation matrix. Psychological Bull. 1980; 87: 245.
    • (1980) Psychological Bull , vol.87 , pp. 245
    • Steiger, J.H.1
  • 34
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • Bergstra J, Bengio Y., Random search for hyper-parameter optimization. J Mach Learn Res. 2012; 13: 281-305.
    • (2012) J Mach Learn Res , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.