메뉴 건너뛰기




Volumn 30, Issue , 2016, Pages 108-119

A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI

Author keywords

Caridac MRI; Deep learning; Deformable models; LV segmentation; Machine learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; DEFORMATION; HEART; LEARNING SYSTEMS; MAGNETIC RESONANCE IMAGING;

EID: 84958955334     PISSN: 13618415     EISSN: 13618423     Source Type: Journal    
DOI: 10.1016/j.media.2016.01.005     Document Type: Article
Times cited : (549)

References (63)
  • 3
    • 84868364183 scopus 로고    scopus 로고
    • Autoencoders, unsupervised learning, and deep architectures.
    • Baldi P. Autoencoders, unsupervised learning, and deep architectures. ICML Unsuperv. Transf. Learn. 2012, 27:37-50.
    • (2012) ICML Unsuperv. Transf. Learn. , vol.27 , pp. 37-50
    • Baldi, P.1
  • 5
    • 72249120387 scopus 로고    scopus 로고
    • Embedding overlap priors in variational left ventricle tracking
    • Ben Ayed I., Li S., Ross I. Embedding overlap priors in variational left ventricle tracking. IEEE Trans. Med. Imaging 2009, 28(12):1902-1913.
    • (2009) IEEE Trans. Med. Imaging , vol.28 , Issue.12 , pp. 1902-1913
    • Ben Ayed, I.1    Li, S.2    Ross, I.3
  • 6
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009, 2(1):1-127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 8
    • 68849102377 scopus 로고    scopus 로고
    • Cardiac motion recovery and boundary conditions estimation by coupling an electromechanical model and cine-mri data
    • Billet F., Sermesant M., Delingette H., Ayache N. Cardiac motion recovery and boundary conditions estimation by coupling an electromechanical model and cine-mri data. Funct. Imaging Model. Heart 2009, 376-385.
    • (2009) Funct. Imaging Model. Heart , pp. 376-385
    • Billet, F.1    Sermesant, M.2    Delingette, H.3    Ayache, N.4
  • 9
    • 84908219488 scopus 로고
    • Statistical methods for assessing agreement between two methods of clinical measurement
    • Bland J.M., Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327(8476):307-310.
    • (1986) Lancet , vol.327 , Issue.8476 , pp. 307-310
    • Bland, J.M.1    Altman, D.2
  • 11
    • 84893176780 scopus 로고    scopus 로고
    • Nearly automated motion artifacts correction between multi breath-hold short-axis and long-axis cine cmr images
    • Carminati M.C., Maffessanti F., Caiani E.G. Nearly automated motion artifacts correction between multi breath-hold short-axis and long-axis cine cmr images. Comput. Biol. Med. 2014, 46:42-50.
    • (2014) Comput. Biol. Med. , vol.46 , pp. 42-50
    • Carminati, M.C.1    Maffessanti, F.2    Caiani, E.G.3
  • 12
    • 0035248865 scopus 로고    scopus 로고
    • Active contours without edges
    • Chan T., Vese L. Active contours without edges. IEEE Trans. Img. Proc. 2001, 10(2):266-277.
    • (2001) IEEE Trans. Img. Proc. , vol.10 , Issue.2 , pp. 266-277
    • Chan, T.1    Vese, L.2
  • 15
    • 67349140939 scopus 로고    scopus 로고
    • Performance measure characterization for evaluating neuroimage segmentation algorithms
    • Chang H.-H., Zhuang A.H., Valentino D.J., Chu W.-C. Performance measure characterization for evaluating neuroimage segmentation algorithms. Neuroimage 2009, 47(1):122-135.
    • (2009) Neuroimage , vol.47 , Issue.1 , pp. 122-135
    • Chang, H.-H.1    Zhuang, A.H.2    Valentino, D.J.3    Chu, W.-C.4
  • 18
    • 84882951381 scopus 로고    scopus 로고
    • Fully automated segmentation of the left ventricle applied to cine MR images: Description and results on a database of 45 subjects
    • Constantinides, C., Roullot, E., Lefort, M., Frouin, F., 2012. Fully automated segmentation of the left ventricle applied to cine MR images: Description and results on a database of 45 subjects. pp. 3207-3210.
    • (2012) , pp. 3207-3210
    • Constantinides, C.1    Roullot, E.2    Lefort, M.3    Frouin, F.4
  • 22
    • 84880856711 scopus 로고    scopus 로고
    • Left ventricular segmentation from MRI datasets with edge modelling conditional random fields
    • Dreijer J., Herbst B., du Preez J. Left ventricular segmentation from MRI datasets with edge modelling conditional random fields. BMC Med. Imaging 2013, 13(1). 10.1186/1471-2342-13-24.
    • (2013) BMC Med. Imaging , vol.13 , Issue.1
    • Dreijer, J.1    Herbst, B.2    du Preez, J.3
  • 23
    • 84883852822 scopus 로고    scopus 로고
    • Segmentation by retrieval with guided random walks: Application to left ventricle segmentation in MRI
    • Eslami A., Karamalis A., Katouzian A., Navab N. Segmentation by retrieval with guided random walks: Application to left ventricle segmentation in MRI. Med. Image Anal. 2013, 17(2):236-253.
    • (2013) Med. Image Anal. , vol.17 , Issue.2 , pp. 236-253
    • Eslami, A.1    Karamalis, A.2    Katouzian, A.3    Navab, N.4
  • 24
    • 0034744995 scopus 로고    scopus 로고
    • Three-dimensional modeling for functional analysis of cardiac images, a review
    • Frangi A.F., Niessen W., Viergever M. Three-dimensional modeling for functional analysis of cardiac images, a review. IEEE Trans. Med. Imag. 2001, 20(1):2-5.
    • (2001) IEEE Trans. Med. Imag. , vol.20 , Issue.1 , pp. 2-5
    • Frangi, A.F.1    Niessen, W.2    Viergever, M.3
  • 25
    • 79958769300 scopus 로고    scopus 로고
    • Spatial decision forests for ms lesion segmentation in multi-channel magnetic resonance images
    • Geremia E., Clatz O., Menze B.H., Konukoglu E., Criminisi A., Ayache N. Spatial decision forests for ms lesion segmentation in multi-channel magnetic resonance images. NeuroImage 2011, 57(2):378-390.
    • (2011) NeuroImage , vol.57 , Issue.2 , pp. 378-390
    • Geremia, E.1    Clatz, O.2    Menze, B.H.3    Konukoglu, E.4    Criminisi, A.5    Ayache, N.6
  • 26
    • 70349090032 scopus 로고    scopus 로고
    • Statistical shape models for 3d medical image segmentation: a review
    • Heimann T., Meinzer H.-P. Statistical shape models for 3d medical image segmentation: a review. Med. Image Anal. 2009, 13(4):543-563.
    • (2009) Med. Image Anal. , vol.13 , Issue.4 , pp. 543-563
    • Heimann, T.1    Meinzer, H.-P.2
  • 27
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G.E., Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313(5786):504-507. 10.1126/science.1127647.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 28
    • 84876140013 scopus 로고    scopus 로고
    • Hybrid segmentation of left ventricle in cardiac MRI using gaussian-mixture model and region restricted dynamic programming
    • Hu H., Liu H., Gao Z., Huang L. Hybrid segmentation of left ventricle in cardiac MRI using gaussian-mixture model and region restricted dynamic programming. Magn. Reson. Imaging 2013, 31(4):575-584.
    • (2013) Magn. Reson. Imaging , vol.31 , Issue.4 , pp. 575-584
    • Hu, H.1    Liu, H.2    Gao, Z.3    Huang, L.4
  • 30
    • 80053925455 scopus 로고    scopus 로고
    • An image-based comprehensive approach for automatic segmentation of left ventricle from cardiac short axis cine MR images
    • Huang S., Liu J., Lee L.C., Venkatesh S., Teo L., Au C., Nowinski W. An image-based comprehensive approach for automatic segmentation of left ventricle from cardiac short axis cine MR images. J. Digit. Imaging 2011, 24(4):598-608. 10.1007/s10278-010-9315-4.
    • (2011) J. Digit. Imaging , vol.24 , Issue.4 , pp. 598-608
    • Huang, S.1    Liu, J.2    Lee, L.C.3    Venkatesh, S.4    Teo, L.5    Au, C.6    Nowinski, W.7
  • 31
    • 84885815121 scopus 로고    scopus 로고
    • Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces
    • Jolly M. Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces. MIDAS J.-Cardiac MR Left Ventricle Segm. Chall. 2009, 4.
    • (2009) MIDAS J.-Cardiac MR Left Ventricle Segm. Chall. , vol.4
    • Jolly, M.1
  • 35
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. Imagenet classification with deep convolutional neural networks. pp. 1097-1105.
    • (2012) , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 36
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback S., Leibler R.A. On information and sufficiency. Ann. Math. Statist. 1951, 22(1):79-86. 10.1214/aoms/1177729694.
    • (1951) Ann. Math. Statist. , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 37
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun Y., Bengio Y., Hinton G. Deep learning. Nature 2015, 521(7553):436-444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 38
    • 77955998889 scopus 로고    scopus 로고
    • Convolutional networks and applications in vision
    • LeCun, Y., Kavukcuoglu, K., Farabet, C., 2010. Convolutional networks and applications in vision. pp. 253-256.
    • (2010) , pp. 253-256
    • LeCun, Y.1    Kavukcuoglu, K.2    Farabet, C.3
  • 39
    • 68849096223 scopus 로고    scopus 로고
    • Random forest classification for automatic delineation of myocardium in real-time 3d echocardiography
    • Lempitsky V., Verhoek M., Noble J.A., Blake A. Random forest classification for automatic delineation of myocardium in real-time 3d echocardiography. Funct. Imaging Model. Heart 2009, 447-456.
    • (2009) Funct. Imaging Model. Heart , pp. 447-456
    • Lempitsky, V.1    Verhoek, M.2    Noble, J.A.3    Blake, A.4
  • 40
    • 84925624610 scopus 로고    scopus 로고
    • Motion corrected lv quantification based on 3d modelling for improved functional assessment in cardiac MRI
    • Liew Y., McLaughlin R., Chan B., Aziz Y.A., Chee K., Ung N., Tan L., Lai K., Ng S., Lim E. Motion corrected lv quantification based on 3d modelling for improved functional assessment in cardiac MRI. Phys. Med. Biol. 2015, 60(7):2715.
    • (2015) Phys. Med. Biol. , vol.60 , Issue.7 , pp. 2715
    • Liew, Y.1    McLaughlin, R.2    Chan, B.3    Aziz, Y.A.4    Chee, K.5    Ung, N.6    Tan, L.7    Lai, K.8    Ng, S.9    Lim, E.10
  • 41
    • 4444315937 scopus 로고    scopus 로고
    • Cardiovascular magnetic resonance imaging: current and emerging applications
    • Lima J.C., Desai M.Y. Cardiovascular magnetic resonance imaging: current and emerging applications. J. Am. Coll. Cardiol. 2004, 44(1):1164-1171.
    • (2004) J. Am. Coll. Cardiol. , vol.44 , Issue.1 , pp. 1164-1171
    • Lima, J.C.1    Desai, M.Y.2
  • 42
    • 84860613919 scopus 로고    scopus 로고
    • Automatic left ventricle segmentation in cardiac MRI using topological stable-state thresholding and region restricted dynamic programming
    • Liu H., Hu H., Xu X., Song E. Automatic left ventricle segmentation in cardiac MRI using topological stable-state thresholding and region restricted dynamic programming. Academic Radiology 2012, 19(6):723-731.
    • (2012) Academic Radiology , vol.19 , Issue.6 , pp. 723-731
    • Liu, H.1    Hu, H.2    Xu, X.3    Song, E.4
  • 46
    • 84908212637 scopus 로고    scopus 로고
    • The deep learning tutorial
    • accessed July.
    • Ng, A., accessed July., 2015. The deep learning tutorial.
    • Ng, A.1
  • 47
    • 84911378353 scopus 로고    scopus 로고
    • Fully automated non-rigid segmentation with distance regularized level set evolution initialized and constrained by deep-structured inference
    • Ngo, T. A., Carneiro, G., 2014. Fully automated non-rigid segmentation with distance regularized level set evolution initialized and constrained by deep-structured inference. pp. 3118-3125.
    • (2014) , pp. 3118-3125
    • Ngo, T.A.1    Carneiro, G.2
  • 48
    • 79851510761 scopus 로고    scopus 로고
    • A review of segmentation methods in short axis cardiac MR images
    • Petitjean C., Dacher J.-N. A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 2011, 15(2):169-184.
    • (2011) Med. Image Anal. , vol.15 , Issue.2 , pp. 169-184
    • Petitjean, C.1    Dacher, J.-N.2
  • 50
  • 53
    • 77954819006 scopus 로고    scopus 로고
    • A dynamic elastic model for segmentation and tracking of the heart in MR image sequences
    • Schaerer J., Casta C., Pousin J., Clarysse P. A dynamic elastic model for segmentation and tracking of the heart in MR image sequences. Med. Image Anal. 2010, 14(6):738-749.
    • (2010) Med. Image Anal. , vol.14 , Issue.6 , pp. 738-749
    • Schaerer, J.1    Casta, C.2    Pousin, J.3    Clarysse, P.4
  • 57
    • 84885381579 scopus 로고    scopus 로고
    • A survey of shaped-based registration and segmentation techniques for cardiac images
    • Tavakoli V., Amini A.A. A survey of shaped-based registration and segmentation techniques for cardiac images. Comput. Vis. Image Underst. 2013, 117(9):966-989.
    • (2013) Comput. Vis. Image Underst. , vol.117 , Issue.9 , pp. 966-989
    • Tavakoli, V.1    Amini, A.A.2
  • 59
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent P., Larochelle H., Lajoie I., Bengio Y., Manzagol P.-A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11:3371-3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 61
    • 84969346231 scopus 로고    scopus 로고
    • Stack alignment transform for misalignment correction in cardiac mr cine series
    • Zakkaroff, C., Radjenovic, A., Greenwood, J., Magee, D., Stack alignment transform for misalignment correction in cardiac mr cine series.
    • Zakkaroff, C.1    Radjenovic, A.2    Greenwood, J.3    Magee, D.4
  • 62
    • 76249125450 scopus 로고    scopus 로고
    • 4-d cardiac MR image analysis: left and right ventricular morphology and function
    • Zhang H., Wahle A., Johnson R.K., Scholz T.D., Sonka M. 4-d cardiac MR image analysis: left and right ventricular morphology and function. IEEE Trans. Med. Img. 2010, 29(2):350-364.
    • (2010) IEEE Trans. Med. Img. , vol.29 , Issue.2 , pp. 350-364
    • Zhang, H.1    Wahle, A.2    Johnson, R.K.3    Scholz, T.D.4    Sonka, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.