메뉴 건너뛰기




Volumn 52, Issue 5, 2017, Pages 281-287

Training and Validating a Deep Convolutional Neural Network for Computer-Aided Detection and Classification of Abnormalities on Frontal Chest Radiographs

Author keywords

cardiomegaly; machine learning; neural network; pleural effusion; pneumonia; pneumothorax; pulmonary edema; x ray

Indexed keywords

ACCURACY; ADULT; ARTICLE; ARTIFICIAL NEURAL NETWORK; CARDIOMEGALY; COMPUTER ASSISTED DIAGNOSIS; CONGENITAL MALFORMATION; DIAGNOSTIC IMAGING; EMERGENCY WARD; FEMALE; HOSPITAL PATIENT; HUMAN; LUNG EDEMA; MAJOR CLINICAL STUDY; MALE; MEDICAL RECORD REVIEW; MIDDLE AGED; OUTPATIENT; PLEURA EFFUSION; PNEUMOTHORAX; PREDICTIVE VALUE; PRIORITY JOURNAL; RADIOLOGIST; SENSITIVITY AND SPECIFICITY; THORAX RADIOGRAPHY; TRAINING; VALIDATION PROCESS; HEART; HEART DISEASE; LUNG; LUNG DISEASE; PROCEDURES; REPRODUCIBILITY; RETROSPECTIVE STUDY; VALIDATION STUDY;

EID: 85001976294     PISSN: 00209996     EISSN: 15360210     Source Type: Journal    
DOI: 10.1097/RLI.0000000000000341     Document Type: Article
Times cited : (243)

References (16)
  • 7
    • 84925235623 scopus 로고    scopus 로고
    • Automated classification of usual interstitial pneumonia using regional volumetric texture analysis in high-resolution computed tomography
    • Depeursinge A, Chin AS, Leung AN, et al. Automated classification of usual interstitial pneumonia using regional volumetric texture analysis in high-resolution computed tomography. Invest Radiol. 2015;50:261-267.
    • (2015) Invest Radiol. , vol.50 , pp. 261-267
    • Depeursinge, A.1    Chin, A.S.2    Leung, A.N.3
  • 8
    • 54249157409 scopus 로고    scopus 로고
    • Practical issues in calculating the sample size for prevalence studies
    • Naing L, Winn T, Rusli BN. Practical issues in calculating the sample size for prevalence studies. Med Stat Arch Orofacial Sci. 2006;1:9-14.
    • (2006) Med Stat Arch Orofacial Sci. , vol.1 , pp. 9-14
    • Naing, L.1    Winn, T.2    Rusli, B.N.3
  • 12
    • 84970846412 scopus 로고
    • Diagnostic tests 2: Predictive values
    • Altman DG, Bland JM. Diagnostic tests 2: predictive values. BMJ. 1994;309:102.
    • (1994) BMJ , vol.309 , pp. 102
    • Altman, D.G.1    Bland, J.M.2
  • 15
    • 85011668632 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2016; 1506.01497v3.
    • (2016) IEEE Trans Pattern Anal Mach Intell. , vol.1506 , pp. 01497v3
    • Ren, S.1    He, K.2    Girshick, R.3
  • 16
    • 84968542337 scopus 로고    scopus 로고
    • Automatic detection of cerebral microbleeds fromMR images via 3D convolutional neural networks
    • Dou Q, Chen H, Yu L, et al. Automatic detection of cerebral microbleeds fromMR images via 3D convolutional neural networks. IEEE Trans Med Imaging. 2016; 35:1182-1195.
    • (2016) IEEE Trans Med Imaging. , vol.35 , pp. 1182-1195
    • Dou, Q.1    Chen, H.2    Yu, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.