메뉴 건너뛰기




Volumn 35, Issue 4, 2016, Pages 1077-1089

Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching

Author keywords

Deformable model; MR prostate segmentation; sparse patch matching; stacked sparse auto encoder (SSAE)

Indexed keywords

DEFORMATION; DISEASES; IMAGE MATCHING; IMAGE SEGMENTATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; MAGNETIC RESONANCE IMAGING;

EID: 84963878431     PISSN: 02780062     EISSN: 1558254X     Source Type: Journal    
DOI: 10.1109/TMI.2015.2508280     Document Type: Article
Times cited : (240)

References (56)
  • 1
    • 70350215450 scopus 로고    scopus 로고
    • [Online]
    • Prostate Cancer [Online]. Available: http://www.cancer.org/acs/groups/cid/documents/webcontent/003134-pdf.pdf
    • Prostate Cancer
  • 2
    • 47949096177 scopus 로고    scopus 로고
    • MR-guided biopsy of the prostate: An overview of techniques and a systematic review
    • K. M. Pondman et al., "MR-guided biopsy of the prostate: An overview of techniques and a systematic review," Eur. Urol., vol. 54, pp. 517-527, 2008.
    • (2008) Eur. Urol. , vol.54 , pp. 517-527
    • Pondman, K.M.1
  • 3
    • 2642565161 scopus 로고    scopus 로고
    • The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy
    • H. Hricak et al., "The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy," Cancer, vol. 100, pp. 2655-2663, 2004.
    • (2004) Cancer , vol.100 , pp. 2655-2663
    • Hricak, H.1
  • 4
    • 84901279625 scopus 로고    scopus 로고
    • Automatic prostate MR image segmentation with sparse label propagation and domain-specific manifold regularization
    • J. Gee, S. Joshi, K. Pohl, W. Wells, and L. Zöllei, Eds. Berlin, Germany: Springer
    • S. Liao et al., "Automatic prostate MR image segmentation with sparse label propagation and domain-specific manifold regularization," in Inf. Process. Med. Imag., J. Gee, S. Joshi, K. Pohl, W. Wells, and L. Zöllei, Eds. Berlin, Germany: Springer, 2013, vol. 7917, pp. 511-523.
    • (2013) Inf. Process. Med. Imag. , vol.7917 , pp. 511-523
    • Liao, S.1
  • 5
    • 84929329453 scopus 로고    scopus 로고
    • Label image constrained multiatlas selection
    • Jun.
    • P. Yan, Y. Cao, Y. Yuan, B. Turkbey, and P. L. Choyke, "Label image constrained multiatlas selection," IEEE Trans. Cybern., vol. 45, no. 6, pp. 1158-1168, Jun. 2015.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.6 , pp. 1158-1168
    • Yan, P.1    Cao, Y.2    Yuan, Y.3    Turkbey, B.4    Choyke, P.L.5
  • 6
    • 84873577820 scopus 로고    scopus 로고
    • Multi-atlas based image selection with label image constraint
    • Y. Cao, X. Li, and P. Yan, "Multi-atlas based image selection with label image constraint," in Proc. 11th Int. Conf. Mach. Learn. Appl., 2012, pp. 311-316.
    • (2012) Proc. 11th Int. Conf. Mach. Learn. Appl. , pp. 311-316
    • Cao, Y.1    Li, X.2    Yan, P.3
  • 7
    • 84963852753 scopus 로고    scopus 로고
    • Multi-atlas segmentation of the prostate: A zooming process with robust registration and atlas selection
    • Y. Ou, J. Doshi, G. Erus, and C. Davatzikos, "Multi-atlas segmentation of the prostate: A zooming process with robust registration and atlas selection," PROMISE12, 2012.
    • (2012) PROMISE12
    • Ou, Y.1    Doshi, J.2    Erus, G.3    Davatzikos, C.4
  • 8
    • 84864599976 scopus 로고    scopus 로고
    • Multifeature landmark-free active appearance models: Application to prostate MRI segmentation
    • Aug.
    • R. Toth and A. Madabhushi, "Multifeature landmark-free active appearance models: Application to prostate MRI segmentation," IEEE Trans. Med. Imag., vol. 31, no. 8, pp. 1638-1650, Aug. 2012.
    • (2012) IEEE Trans. Med. Imag. , vol.31 , Issue.8 , pp. 1638-1650
    • Toth, R.1    Madabhushi, A.2
  • 9
    • 79955598452 scopus 로고    scopus 로고
    • Accurate prostate volume estimation using multifeature active shape models on T2-weighted MRI
    • R. Toth et al., "Accurate prostate volume estimation using multifeature active shape models on T2-weighted MRI," Acad. Radiol., vol. 18, pp. 745-754, 2011.
    • (2011) Acad. Radiol. , vol.18 , pp. 745-754
    • Toth, R.1
  • 10
    • 77957561551 scopus 로고    scopus 로고
    • A generative model for image segmentation based on label fusion
    • Oct.
    • M. R. Sabuncu, B. T. T. Yeo, K. Van Leemput, B. Fischl, and P. Golland, "A generative model for image segmentation based on label fusion," IEEE Trans. Med. Imag., vol. 29, no. 10, pp. 1714-1729, Oct. 2010.
    • (2010) IEEE Trans. Med. Imag. , vol.29 , Issue.10 , pp. 1714-1729
    • Sabuncu, M.R.1    Yeo, B.T.T.2    Van Leemput, K.3    Fischl, B.4    Golland, P.5
  • 11
    • 84903879262 scopus 로고    scopus 로고
    • Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics
    • Oct.
    • Y. Jin et al., "Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics," Neuro Image, vol. 100, pp. 75-90, Oct. 2014.
    • (2014) Neuro Image , vol.100 , pp. 75-90
    • Jin, Y.1
  • 12
    • 84938531558 scopus 로고    scopus 로고
    • Automated multi-atlas labeling of the fornix and its integrity in Alzheimer's disease
    • Y. Jin, Y. Shi, L. Zhan, and P. M. Thompson, "Automated multi-atlas labeling of the fornix and its integrity in Alzheimer's disease," in Proc. IEEE 12th Int. Symp. Biomed. Imag., 2015, pp. 140-143.
    • (2015) Proc. IEEE 12th Int. Symp. Biomed. Imag. , pp. 140-143
    • Jin, Y.1    Shi, Y.2    Zhan, L.3    Thompson, P.M.4
  • 13
    • 84956577012 scopus 로고    scopus 로고
    • Identification of infants at high-risk for autism spectrum disorder using multiparameter multiscale white matter connectivity networks
    • Y. Jin et al., "Identification of infants at high-risk for autism spectrum disorder using multiparameter multiscale white matter connectivity networks," Human Brain Map., vol. 36, pp. 4880-4896, 2015.
    • (2015) Human Brain Map. , vol.36 , pp. 4880-4896
    • Jin, Y.1
  • 14
    • 84872586285 scopus 로고    scopus 로고
    • Prostate segmentation in MR images using discriminant boundary features
    • Feb.
    • M. Yang, X. Li, B. Turkbey, P. L. Choyke, and P. Yan, "Prostate segmentation in MR images using discriminant boundary features," IEEE Trans. Biomed. Eng., vol. 60, no. 2, pp. 479-488, Feb. 2013.
    • (2013) IEEE Trans. Biomed. Eng. , vol.60 , Issue.2 , pp. 479-488
    • Yang, M.1    Li, X.2    Turkbey, B.3    Choyke, P.L.4    Yan, P.5
  • 15
    • 78649658695 scopus 로고    scopus 로고
    • Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE)
    • Dec.
    • T. R. Langerak et al., "Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE)," IEEE Trans. Med. Imag., vol. 29, no. 12, pp. 2000-2008, Dec. 2010.
    • (2010) IEEE Trans. Med. Imag. , vol.29 , Issue.12 , pp. 2000-2008
    • Langerak, T.R.1
  • 16
    • 84867057676 scopus 로고    scopus 로고
    • Patient specific prostate segmentation in 3-D magnetic resonance images
    • Oct.
    • S. S. Chandra et al., "Patient specific prostate segmentation in 3-D magnetic resonance images," IEEE Trans. Med. Imag., vol. 31, no. 10, pp. 1955-1964, Oct. 2012.
    • (2012) IEEE Trans. Med. Imag. , vol.31 , Issue.10 , pp. 1955-1964
    • Chandra, S.S.1
  • 17
    • 79952158160 scopus 로고    scopus 로고
    • Boundary detection in medical images using edge following algorithm based on intensity gradient and texture gradient features
    • Mar.
    • K. Somkantha, N. Theera-Umpon, and S. Auephanwiriyakul, "Boundary detection in medical images using edge following algorithm based on intensity gradient and texture gradient features," IEEE Trans. Biomed. Eng.., vol. 58, no. 3, pp. 567-573, Mar. 2011.
    • (2011) IEEE Trans. Biomed. Eng.. , vol.58 , Issue.3 , pp. 567-573
    • Somkantha, K.1    Theera-Umpon, N.2    Auephanwiriyakul, S.3
  • 20
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , pp. 91-110
    • Lowe, D.1
  • 21
    • 0029669420 scopus 로고    scopus 로고
    • A comparative study of texture measures with classification based on featured distributions
    • T. Ojala, M. Pietikäinen, and D. Harwood, "A comparative study of texture measures with classification based on featured distributions," Pattern Recognit., vol. 29, pp. 51-59, 1996.
    • (1996) Pattern Recognit , vol.29 , pp. 51-59
    • Ojala, T.1    Pietikäinen, M.2    Harwood, D.3
  • 22
    • 84873314950 scopus 로고    scopus 로고
    • Sparse patch-based label propagation for accurate prostate localization in CT images
    • Feb.
    • S. Liao, Y. Gao, J. Lian, and D. Shen, "Sparse patch-based label propagation for accurate prostate localization in CT images," IEEE Trans. Med. Imag., vol. 32, no. 2, pp. 419-434, Feb. 2013.
    • (2013) IEEE Trans. Med. Imag. , vol.32 , Issue.2 , pp. 419-434
    • Liao, S.1    Gao, Y.2    Lian, J.3    Shen, D.4
  • 23
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug.
    • Y. Bengio, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1
  • 26
    • 84857295176 scopus 로고    scopus 로고
    • The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods
    • Mar.
    • G. Carneiro, J. C. Nascimento, and A. Freitas, "The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods," IEEE Trans. Image Process., vol. 21, no. 3, pp. 968-982, Mar. 2012.
    • (2012) IEEE Trans. Image Process , vol.21 , Issue.3 , pp. 968-982
    • Carneiro, G.1    Nascimento, J.C.2    Freitas, A.3
  • 27
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," J. Mach. Learn. Res., vol. 11, pp. 3371-3408, 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 28
    • 84867136939 scopus 로고    scopus 로고
    • Scene parsing with multiscale feature learning, purity trees, and optimal covers
    • C. Farabet, C. Couprie, L. Najman, and Y. Lecun, "Scene parsing with multiscale feature learning, purity trees, and optimal covers," in Proc. 29th Int. Conf. Mach. Learn., 2012, pp. 575-582.
    • (2012) Proc. 29th Int. Conf. Mach. Learn. , pp. 575-582
    • Farabet, C.1    Couprie, C.2    Najman, L.3    Lecun, Y.4
  • 29
    • 84879853539 scopus 로고    scopus 로고
    • Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
    • Aug.
    • S. Hoo-Chang, M. R. Orton, D. J. Collins, S. J. Doran, and M. O. Leach, "Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1930-1943, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1930-1943
    • Hoo-Chang, S.1    Orton, M.R.2    Collins, D.J.3    Doran, S.J.4    Leach, M.O.5
  • 32
    • 84904548965 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • Y. Bengio, "Deep learning of representations for unsupervised and transfer learning," in Workshop Unsupervised Transfer Learn., 2012.
    • (2012) Workshop Unsupervised Transfer Learn
    • Bengio, Y.1
  • 34
    • 84885898432 scopus 로고    scopus 로고
    • Deep learning-based feature representation for AD/MCI classification
    • K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab, Eds. Berlin, Germany: Springer
    • H.-I. Suk and D. Shen, "Deep learning-based feature representation for AD/MCI classification," in Medical Image Computing and Comput.- Assisted Intervention-MICCAI 2013, K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab, Eds. Berlin, Germany: Springer, 2013, vol. 8150, pp. 583-590.
    • (2013) Medical Image Computing and Comput.- Assisted Intervention-MICCAI 2013 , vol.8150 , pp. 583-590
    • Suk, H.-I.1    Shen, D.2
  • 35
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Montreal, QC, Canada
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," presented at the Proc. 26th Annu. Int. Conf. Mach. Learn., Montreal, QC, Canada, 2009.
    • (2009) Presented at the Proc. 26th Annu. Int. Conf. Mach. Learn.
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 36
    • 58849141777 scopus 로고    scopus 로고
    • Active scheduling of organ detection and segmentation in whole-body medical images
    • D. Metaxas, L. Axel, G. Fichtinger, and G. Székely, Eds. Berlin, Germany: Springer
    • Y. Zhan, X. Zhou, Z. Peng, and A. Krishnan, "Active scheduling of organ detection and segmentation in whole-body medical images," in Medical Image Computing and Comput.-Assisted Intervention-MICCAI 2008, D. Metaxas, L. Axel, G. Fichtinger, and G. Székely, Eds. Berlin, Germany: Springer, 2008, vol. 5241, pp. 313-321.
    • (2008) Medical Image Computing and Comput.-Assisted Intervention-MICCAI 2008 , vol.5241 , pp. 313-321
    • Zhan, Y.1    Zhou, X.2    Peng, Z.3    Krishnan, A.4
  • 37
    • 77952741598 scopus 로고    scopus 로고
    • Fast free-form deformation using graphics processing units
    • Jun.
    • M. Modat et al., "Fast free-form deformation using graphics processing units," Comput. Methods Progr. Biomed., vol. 98, pp. 278-284, Jun. 2010.
    • (2010) Comput. Methods Progr. Biomed. , vol.98 , pp. 278-284
    • Modat, M.1
  • 38
    • 84878630983 scopus 로고    scopus 로고
    • STEPS: Similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation
    • M. J. Cardoso et al., "STEPS: Similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation," Med. Image Anal., vol. 17, pp. 671-684, 2013.
    • (2013) Med. Image Anal. , vol.17 , pp. 671-684
    • Cardoso, M.J.1
  • 39
    • 1942438249 scopus 로고    scopus 로고
    • Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation
    • Jul.
    • S. K. Warfield, K. H. Zou, and W. M. Wells, "Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation," IEEE Trans. Med. Imag., vol. 23, no. 7, pp. 903-921, Jul. 2004.
    • (2004) IEEE Trans. Med. Imag. , vol.23 , Issue.7 , pp. 903-921
    • Warfield, S.K.1    Zou, K.H.2    Wells, W.M.3
  • 40
    • 84883291089 scopus 로고    scopus 로고
    • Non-local statistical label fusion for multi-atlas segmentation
    • A. J. Asman and B. A. Landman, "Non-local statistical label fusion for multi-atlas segmentation," Med. Image Anal., vol. 17, pp. 194-208, 2013.
    • (2013) Med. Image Anal. , vol.17 , pp. 194-208
    • Asman, A.J.1    Landman, B.A.2
  • 41
    • 84897572852 scopus 로고    scopus 로고
    • An automatic multi-atlas segmentation of the prostate in transrectal ultrasound images using pairwise atlas shape similarity
    • K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab, Eds. Berlin, Germany: Springer
    • S. Nouranian, "An automatic multi-atlas segmentation of the prostate in transrectal ultrasound images using pairwise atlas shape similarity," in Medical Image Computing and Comput.-Assisted Intervention-MICCAI 2013, K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab, Eds. Berlin, Germany: Springer, 2013, vol. 8150, pp. 173-180.
    • (2013) Medical Image Computing and Comput.-Assisted Intervention-MICCAI 2013 , vol.8150 , pp. 173-180
    • Nouranian, S.1
  • 42
    • 0035248865 scopus 로고    scopus 로고
    • Active contours without edges
    • T. F. Chan and L. A. Vese, "Active contours without edges," IEEE Trans. Image Process., vol. 10, pp. 266-277, 2001.
    • (2001) IEEE Trans. Image Process , vol.10 , pp. 266-277
    • Chan, T.F.1    Vese, L.A.2
  • 43
    • 84880956855 scopus 로고    scopus 로고
    • Automatic hippocampus segmentation of 7.0 tesla MR images by combining multiple atlases and auto-context models
    • M. Kim et al., "Automatic hippocampus segmentation of 7.0 Tesla MR images by combining multiple atlases and auto-context models," Neuro Image, vol. 83, pp. 335-345, 2013.
    • (2013) Neuro Image , vol.83 , pp. 335-345
    • Kim, M.1
  • 45
    • 84866450569 scopus 로고    scopus 로고
    • Deformable segmentation via sparse representation and dictionary learning
    • S. Zhang, Y. Zhan, and D. N. Metaxas, "Deformable segmentation via sparse representation and dictionary learning," Med. Image Anal., vol. 16, pp. 1385-1396, 2012.
    • (2012) Med. Image Anal. , vol.16 , pp. 1385-1396
    • Zhang, S.1    Zhan, Y.2    Metaxas, D.N.3
  • 46
    • 0031987382 scopus 로고    scopus 로고
    • A nonparametric method for automatic correction of intensity nonuniformity in MRI data
    • Feb.
    • J. G. Sled, A. P. Zijdenbos, and A. C. Evans, "A nonparametric method for automatic correction of intensity nonuniformity in MRI data," IEEE Trans. Med. Imag., vol. 17, no. 1, pp. 87-97, Feb. 1998.
    • (1998) IEEE Trans. Med. Imag. , vol.17 , Issue.1 , pp. 87-97
    • Sled, J.G.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 47
    • 84867319406 scopus 로고    scopus 로고
    • Prostate segmentation by sparse representation based classification
    • Y. Gao, S. Liao, and D. Shen, "Prostate segmentation by sparse representation based classification," Med. Phys., vol. 39, pp. 6372-6387, 2012.
    • (2012) Med. Phys. , vol.39 , pp. 6372-6387
    • Gao, Y.1    Liao, S.2    Shen, D.3
  • 48
    • 84963887853 scopus 로고    scopus 로고
    • [Online]
    • [Online]. Available: https://github.com/rasmusbergpalm/DeepLearn-Toolbox.
  • 49
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Sci., vol. 313, pp. 504-507, 2006.
    • (2006) Sci. , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 50
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • Jul.
    • S. G. Mallat, "A theory for multiresolution signal decomposition: The wavelet representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674-693, Jul. 1989.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 51
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 52
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Oct.
    • P. S. Jialin and Y. Qiang, "A survey on transfer learning," IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Jialin, P.S.1    Qiang, Y.2
  • 53
    • 84929483880 scopus 로고    scopus 로고
    • Transfer learning improves supervised image segmentation across imaging protocols
    • May
    • A. van Opbroek, M. A. Ikram, M. W. Vernooij, and M. de Bruijne, "Transfer learning improves supervised image segmentation across imaging protocols," IEEE Trans. Med. Imag., vol. 34, no. 5, pp. 1018-1030, May 2015.
    • (2015) IEEE Trans. Med. Imag. , vol.34 , Issue.5 , pp. 1018-1030
    • Van Opbroek, A.1    Ikram, M.A.2    Vernooij, M.W.3    De Bruijne, M.4
  • 54
    • 84926278297 scopus 로고    scopus 로고
    • Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data
    • T. Heimann, P. Mountney, M. John, and R. Ionasec, "Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data," Med. Image Anal., vol. 18, pp. 1320-1328, 2014.
    • (2014) Med. Image Anal. , vol.18 , pp. 1320-1328
    • Heimann, T.1    Mountney, P.2    John, M.3    Ionasec, R.4
  • 55
    • 84941217025 scopus 로고    scopus 로고
    • Transfer learning method using multi-prediction deep boltzmann machines for a small scale dataset
    • Y. Sawada and K. Kozuka, "Transfer learning method using multi-prediction deep Boltzmann machines for a small scale dataset," in Proc. 14th IAPR Int. Conf. Mach. Vis. Appl., 2015, pp. 110-113.
    • (2015) Proc. 14th IAPR Int. Conf. Mach. Vis. Appl. , pp. 110-113
    • Sawada, Y.1    Kozuka, K.2
  • 56
    • 85028209417 scopus 로고    scopus 로고
    • Facilitating image search with a scalable and compact semantic mapping
    • Aug.
    • M. Wang et al., "Facilitating image search with a scalable and compact semantic mapping," IEEE Trans. Cybern., vol. 45, no. 8, pp. 1561-1574, Aug. 2015.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.8 , pp. 1561-1574
    • Wang, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.