-
1
-
-
70350215450
-
-
[Online]
-
Prostate Cancer [Online]. Available: http://www.cancer.org/acs/groups/cid/documents/webcontent/003134-pdf.pdf
-
Prostate Cancer
-
-
-
2
-
-
47949096177
-
MR-guided biopsy of the prostate: An overview of techniques and a systematic review
-
K. M. Pondman et al., "MR-guided biopsy of the prostate: An overview of techniques and a systematic review," Eur. Urol., vol. 54, pp. 517-527, 2008.
-
(2008)
Eur. Urol.
, vol.54
, pp. 517-527
-
-
Pondman, K.M.1
-
3
-
-
2642565161
-
The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy
-
H. Hricak et al., "The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy," Cancer, vol. 100, pp. 2655-2663, 2004.
-
(2004)
Cancer
, vol.100
, pp. 2655-2663
-
-
Hricak, H.1
-
4
-
-
84901279625
-
Automatic prostate MR image segmentation with sparse label propagation and domain-specific manifold regularization
-
J. Gee, S. Joshi, K. Pohl, W. Wells, and L. Zöllei, Eds. Berlin, Germany: Springer
-
S. Liao et al., "Automatic prostate MR image segmentation with sparse label propagation and domain-specific manifold regularization," in Inf. Process. Med. Imag., J. Gee, S. Joshi, K. Pohl, W. Wells, and L. Zöllei, Eds. Berlin, Germany: Springer, 2013, vol. 7917, pp. 511-523.
-
(2013)
Inf. Process. Med. Imag.
, vol.7917
, pp. 511-523
-
-
Liao, S.1
-
5
-
-
84929329453
-
Label image constrained multiatlas selection
-
Jun.
-
P. Yan, Y. Cao, Y. Yuan, B. Turkbey, and P. L. Choyke, "Label image constrained multiatlas selection," IEEE Trans. Cybern., vol. 45, no. 6, pp. 1158-1168, Jun. 2015.
-
(2015)
IEEE Trans. Cybern.
, vol.45
, Issue.6
, pp. 1158-1168
-
-
Yan, P.1
Cao, Y.2
Yuan, Y.3
Turkbey, B.4
Choyke, P.L.5
-
6
-
-
84873577820
-
Multi-atlas based image selection with label image constraint
-
Y. Cao, X. Li, and P. Yan, "Multi-atlas based image selection with label image constraint," in Proc. 11th Int. Conf. Mach. Learn. Appl., 2012, pp. 311-316.
-
(2012)
Proc. 11th Int. Conf. Mach. Learn. Appl.
, pp. 311-316
-
-
Cao, Y.1
Li, X.2
Yan, P.3
-
7
-
-
84963852753
-
Multi-atlas segmentation of the prostate: A zooming process with robust registration and atlas selection
-
Y. Ou, J. Doshi, G. Erus, and C. Davatzikos, "Multi-atlas segmentation of the prostate: A zooming process with robust registration and atlas selection," PROMISE12, 2012.
-
(2012)
PROMISE12
-
-
Ou, Y.1
Doshi, J.2
Erus, G.3
Davatzikos, C.4
-
8
-
-
84864599976
-
Multifeature landmark-free active appearance models: Application to prostate MRI segmentation
-
Aug.
-
R. Toth and A. Madabhushi, "Multifeature landmark-free active appearance models: Application to prostate MRI segmentation," IEEE Trans. Med. Imag., vol. 31, no. 8, pp. 1638-1650, Aug. 2012.
-
(2012)
IEEE Trans. Med. Imag.
, vol.31
, Issue.8
, pp. 1638-1650
-
-
Toth, R.1
Madabhushi, A.2
-
9
-
-
79955598452
-
Accurate prostate volume estimation using multifeature active shape models on T2-weighted MRI
-
R. Toth et al., "Accurate prostate volume estimation using multifeature active shape models on T2-weighted MRI," Acad. Radiol., vol. 18, pp. 745-754, 2011.
-
(2011)
Acad. Radiol.
, vol.18
, pp. 745-754
-
-
Toth, R.1
-
10
-
-
77957561551
-
A generative model for image segmentation based on label fusion
-
Oct.
-
M. R. Sabuncu, B. T. T. Yeo, K. Van Leemput, B. Fischl, and P. Golland, "A generative model for image segmentation based on label fusion," IEEE Trans. Med. Imag., vol. 29, no. 10, pp. 1714-1729, Oct. 2010.
-
(2010)
IEEE Trans. Med. Imag.
, vol.29
, Issue.10
, pp. 1714-1729
-
-
Sabuncu, M.R.1
Yeo, B.T.T.2
Van Leemput, K.3
Fischl, B.4
Golland, P.5
-
11
-
-
84903879262
-
Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics
-
Oct.
-
Y. Jin et al., "Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics," Neuro Image, vol. 100, pp. 75-90, Oct. 2014.
-
(2014)
Neuro Image
, vol.100
, pp. 75-90
-
-
Jin, Y.1
-
12
-
-
84938531558
-
Automated multi-atlas labeling of the fornix and its integrity in Alzheimer's disease
-
Y. Jin, Y. Shi, L. Zhan, and P. M. Thompson, "Automated multi-atlas labeling of the fornix and its integrity in Alzheimer's disease," in Proc. IEEE 12th Int. Symp. Biomed. Imag., 2015, pp. 140-143.
-
(2015)
Proc. IEEE 12th Int. Symp. Biomed. Imag.
, pp. 140-143
-
-
Jin, Y.1
Shi, Y.2
Zhan, L.3
Thompson, P.M.4
-
13
-
-
84956577012
-
Identification of infants at high-risk for autism spectrum disorder using multiparameter multiscale white matter connectivity networks
-
Y. Jin et al., "Identification of infants at high-risk for autism spectrum disorder using multiparameter multiscale white matter connectivity networks," Human Brain Map., vol. 36, pp. 4880-4896, 2015.
-
(2015)
Human Brain Map.
, vol.36
, pp. 4880-4896
-
-
Jin, Y.1
-
14
-
-
84872586285
-
Prostate segmentation in MR images using discriminant boundary features
-
Feb.
-
M. Yang, X. Li, B. Turkbey, P. L. Choyke, and P. Yan, "Prostate segmentation in MR images using discriminant boundary features," IEEE Trans. Biomed. Eng., vol. 60, no. 2, pp. 479-488, Feb. 2013.
-
(2013)
IEEE Trans. Biomed. Eng.
, vol.60
, Issue.2
, pp. 479-488
-
-
Yang, M.1
Li, X.2
Turkbey, B.3
Choyke, P.L.4
Yan, P.5
-
15
-
-
78649658695
-
Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE)
-
Dec.
-
T. R. Langerak et al., "Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (SIMPLE)," IEEE Trans. Med. Imag., vol. 29, no. 12, pp. 2000-2008, Dec. 2010.
-
(2010)
IEEE Trans. Med. Imag.
, vol.29
, Issue.12
, pp. 2000-2008
-
-
Langerak, T.R.1
-
16
-
-
84867057676
-
Patient specific prostate segmentation in 3-D magnetic resonance images
-
Oct.
-
S. S. Chandra et al., "Patient specific prostate segmentation in 3-D magnetic resonance images," IEEE Trans. Med. Imag., vol. 31, no. 10, pp. 1955-1964, Oct. 2012.
-
(2012)
IEEE Trans. Med. Imag.
, vol.31
, Issue.10
, pp. 1955-1964
-
-
Chandra, S.S.1
-
17
-
-
79952158160
-
Boundary detection in medical images using edge following algorithm based on intensity gradient and texture gradient features
-
Mar.
-
K. Somkantha, N. Theera-Umpon, and S. Auephanwiriyakul, "Boundary detection in medical images using edge following algorithm based on intensity gradient and texture gradient features," IEEE Trans. Biomed. Eng.., vol. 58, no. 3, pp. 567-573, Mar. 2011.
-
(2011)
IEEE Trans. Biomed. Eng..
, vol.58
, Issue.3
, pp. 567-573
-
-
Somkantha, K.1
Theera-Umpon, N.2
Auephanwiriyakul, S.3
-
20
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, pp. 91-110, 2004.
-
(2004)
Int. J. Comput. Vis.
, vol.60
, pp. 91-110
-
-
Lowe, D.1
-
21
-
-
0029669420
-
A comparative study of texture measures with classification based on featured distributions
-
T. Ojala, M. Pietikäinen, and D. Harwood, "A comparative study of texture measures with classification based on featured distributions," Pattern Recognit., vol. 29, pp. 51-59, 1996.
-
(1996)
Pattern Recognit
, vol.29
, pp. 51-59
-
-
Ojala, T.1
Pietikäinen, M.2
Harwood, D.3
-
22
-
-
84873314950
-
Sparse patch-based label propagation for accurate prostate localization in CT images
-
Feb.
-
S. Liao, Y. Gao, J. Lian, and D. Shen, "Sparse patch-based label propagation for accurate prostate localization in CT images," IEEE Trans. Med. Imag., vol. 32, no. 2, pp. 419-434, Feb. 2013.
-
(2013)
IEEE Trans. Med. Imag.
, vol.32
, Issue.2
, pp. 419-434
-
-
Liao, S.1
Gao, Y.2
Lian, J.3
Shen, D.4
-
23
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Aug.
-
Y. Bengio, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
-
24
-
-
84858761801
-
Supervised dictionary learning
-
J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, "Supervised dictionary learning," Adv. Neural Inf. Process, Syst., 2009.
-
(2009)
Adv. Neural Inf. Process, Syst.
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
Zisserman, A.5
-
25
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Aug.
-
C. Farabet, C. Couprie, L. Najman, and Y. LeCun, "Learning hierarchical features for scene labeling," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1915-1929, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
26
-
-
84857295176
-
The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods
-
Mar.
-
G. Carneiro, J. C. Nascimento, and A. Freitas, "The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods," IEEE Trans. Image Process., vol. 21, no. 3, pp. 968-982, Mar. 2012.
-
(2012)
IEEE Trans. Image Process
, vol.21
, Issue.3
, pp. 968-982
-
-
Carneiro, G.1
Nascimento, J.C.2
Freitas, A.3
-
27
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," J. Mach. Learn. Res., vol. 11, pp. 3371-3408, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
28
-
-
84867136939
-
Scene parsing with multiscale feature learning, purity trees, and optimal covers
-
C. Farabet, C. Couprie, L. Najman, and Y. Lecun, "Scene parsing with multiscale feature learning, purity trees, and optimal covers," in Proc. 29th Int. Conf. Mach. Learn., 2012, pp. 575-582.
-
(2012)
Proc. 29th Int. Conf. Mach. Learn.
, pp. 575-582
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
Lecun, Y.4
-
29
-
-
84879853539
-
Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
-
Aug.
-
S. Hoo-Chang, M. R. Orton, D. J. Collins, S. J. Doran, and M. O. Leach, "Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1930-1943, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1930-1943
-
-
Hoo-Chang, S.1
Orton, M.R.2
Collins, D.J.3
Doran, S.J.4
Leach, M.O.5
-
30
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting and composing robust features with denoising autoencoders," in Proc. 25th Int. Conf. Mach. Learn., 2008, pp. 1096-1103.
-
(2008)
Proc. 25th Int. Conf. Mach. Learn.
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
31
-
-
84864073449
-
Greedy layerwise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layerwise training of deep networks," Adv. Neural Inf. Process. Syst. 19, pp. 153-160, 2006.
-
(2006)
Adv. Neural Inf. Process. Syst.
, vol.19
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
32
-
-
84904548965
-
Deep learning of representations for unsupervised and transfer learning
-
Y. Bengio, "Deep learning of representations for unsupervised and transfer learning," in Workshop Unsupervised Transfer Learn., 2012.
-
(2012)
Workshop Unsupervised Transfer Learn
-
-
Bengio, Y.1
-
34
-
-
84885898432
-
Deep learning-based feature representation for AD/MCI classification
-
K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab, Eds. Berlin, Germany: Springer
-
H.-I. Suk and D. Shen, "Deep learning-based feature representation for AD/MCI classification," in Medical Image Computing and Comput.- Assisted Intervention-MICCAI 2013, K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab, Eds. Berlin, Germany: Springer, 2013, vol. 8150, pp. 583-590.
-
(2013)
Medical Image Computing and Comput.- Assisted Intervention-MICCAI 2013
, vol.8150
, pp. 583-590
-
-
Suk, H.-I.1
Shen, D.2
-
35
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
Montreal, QC, Canada
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," presented at the Proc. 26th Annu. Int. Conf. Mach. Learn., Montreal, QC, Canada, 2009.
-
(2009)
Presented at the Proc. 26th Annu. Int. Conf. Mach. Learn.
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
36
-
-
58849141777
-
Active scheduling of organ detection and segmentation in whole-body medical images
-
D. Metaxas, L. Axel, G. Fichtinger, and G. Székely, Eds. Berlin, Germany: Springer
-
Y. Zhan, X. Zhou, Z. Peng, and A. Krishnan, "Active scheduling of organ detection and segmentation in whole-body medical images," in Medical Image Computing and Comput.-Assisted Intervention-MICCAI 2008, D. Metaxas, L. Axel, G. Fichtinger, and G. Székely, Eds. Berlin, Germany: Springer, 2008, vol. 5241, pp. 313-321.
-
(2008)
Medical Image Computing and Comput.-Assisted Intervention-MICCAI 2008
, vol.5241
, pp. 313-321
-
-
Zhan, Y.1
Zhou, X.2
Peng, Z.3
Krishnan, A.4
-
37
-
-
77952741598
-
Fast free-form deformation using graphics processing units
-
Jun.
-
M. Modat et al., "Fast free-form deformation using graphics processing units," Comput. Methods Progr. Biomed., vol. 98, pp. 278-284, Jun. 2010.
-
(2010)
Comput. Methods Progr. Biomed.
, vol.98
, pp. 278-284
-
-
Modat, M.1
-
38
-
-
84878630983
-
STEPS: Similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation
-
M. J. Cardoso et al., "STEPS: Similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation," Med. Image Anal., vol. 17, pp. 671-684, 2013.
-
(2013)
Med. Image Anal.
, vol.17
, pp. 671-684
-
-
Cardoso, M.J.1
-
39
-
-
1942438249
-
Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation
-
Jul.
-
S. K. Warfield, K. H. Zou, and W. M. Wells, "Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation," IEEE Trans. Med. Imag., vol. 23, no. 7, pp. 903-921, Jul. 2004.
-
(2004)
IEEE Trans. Med. Imag.
, vol.23
, Issue.7
, pp. 903-921
-
-
Warfield, S.K.1
Zou, K.H.2
Wells, W.M.3
-
40
-
-
84883291089
-
Non-local statistical label fusion for multi-atlas segmentation
-
A. J. Asman and B. A. Landman, "Non-local statistical label fusion for multi-atlas segmentation," Med. Image Anal., vol. 17, pp. 194-208, 2013.
-
(2013)
Med. Image Anal.
, vol.17
, pp. 194-208
-
-
Asman, A.J.1
Landman, B.A.2
-
41
-
-
84897572852
-
An automatic multi-atlas segmentation of the prostate in transrectal ultrasound images using pairwise atlas shape similarity
-
K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab, Eds. Berlin, Germany: Springer
-
S. Nouranian, "An automatic multi-atlas segmentation of the prostate in transrectal ultrasound images using pairwise atlas shape similarity," in Medical Image Computing and Comput.-Assisted Intervention-MICCAI 2013, K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab, Eds. Berlin, Germany: Springer, 2013, vol. 8150, pp. 173-180.
-
(2013)
Medical Image Computing and Comput.-Assisted Intervention-MICCAI 2013
, vol.8150
, pp. 173-180
-
-
Nouranian, S.1
-
42
-
-
0035248865
-
Active contours without edges
-
T. F. Chan and L. A. Vese, "Active contours without edges," IEEE Trans. Image Process., vol. 10, pp. 266-277, 2001.
-
(2001)
IEEE Trans. Image Process
, vol.10
, pp. 266-277
-
-
Chan, T.F.1
Vese, L.A.2
-
43
-
-
84880956855
-
Automatic hippocampus segmentation of 7.0 tesla MR images by combining multiple atlases and auto-context models
-
M. Kim et al., "Automatic hippocampus segmentation of 7.0 Tesla MR images by combining multiple atlases and auto-context models," Neuro Image, vol. 83, pp. 335-345, 2013.
-
(2013)
Neuro Image
, vol.83
, pp. 335-345
-
-
Kim, M.1
-
44
-
-
0029182228
-
Active shape models-their training and application
-
T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, "Active shape models-their training and application," Comput. Vis. Image Understand., vol. 61, pp. 38-59, 1995.
-
(1995)
Comput. Vis. Image Understand.
, vol.61
, pp. 38-59
-
-
Cootes, T.F.1
Taylor, C.J.2
Cooper, D.H.3
Graham, J.4
-
45
-
-
84866450569
-
Deformable segmentation via sparse representation and dictionary learning
-
S. Zhang, Y. Zhan, and D. N. Metaxas, "Deformable segmentation via sparse representation and dictionary learning," Med. Image Anal., vol. 16, pp. 1385-1396, 2012.
-
(2012)
Med. Image Anal.
, vol.16
, pp. 1385-1396
-
-
Zhang, S.1
Zhan, Y.2
Metaxas, D.N.3
-
46
-
-
0031987382
-
A nonparametric method for automatic correction of intensity nonuniformity in MRI data
-
Feb.
-
J. G. Sled, A. P. Zijdenbos, and A. C. Evans, "A nonparametric method for automatic correction of intensity nonuniformity in MRI data," IEEE Trans. Med. Imag., vol. 17, no. 1, pp. 87-97, Feb. 1998.
-
(1998)
IEEE Trans. Med. Imag.
, vol.17
, Issue.1
, pp. 87-97
-
-
Sled, J.G.1
Zijdenbos, A.P.2
Evans, A.C.3
-
47
-
-
84867319406
-
Prostate segmentation by sparse representation based classification
-
Y. Gao, S. Liao, and D. Shen, "Prostate segmentation by sparse representation based classification," Med. Phys., vol. 39, pp. 6372-6387, 2012.
-
(2012)
Med. Phys.
, vol.39
, pp. 6372-6387
-
-
Gao, Y.1
Liao, S.2
Shen, D.3
-
48
-
-
84963887853
-
-
[Online]
-
[Online]. Available: https://github.com/rasmusbergpalm/DeepLearn-Toolbox.
-
-
-
-
49
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Sci., vol. 313, pp. 504-507, 2006.
-
(2006)
Sci.
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
50
-
-
0024700097
-
A theory for multiresolution signal decomposition: The wavelet representation
-
Jul.
-
S. G. Mallat, "A theory for multiresolution signal decomposition: The wavelet representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674-693, Jul. 1989.
-
(1989)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.11
, Issue.7
, pp. 674-693
-
-
Mallat, S.G.1
-
51
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, pp. 1527-1554, 2006.
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
52
-
-
77956031473
-
A survey on transfer learning
-
Oct.
-
P. S. Jialin and Y. Qiang, "A survey on transfer learning," IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Jialin, P.S.1
Qiang, Y.2
-
53
-
-
84929483880
-
Transfer learning improves supervised image segmentation across imaging protocols
-
May
-
A. van Opbroek, M. A. Ikram, M. W. Vernooij, and M. de Bruijne, "Transfer learning improves supervised image segmentation across imaging protocols," IEEE Trans. Med. Imag., vol. 34, no. 5, pp. 1018-1030, May 2015.
-
(2015)
IEEE Trans. Med. Imag.
, vol.34
, Issue.5
, pp. 1018-1030
-
-
Van Opbroek, A.1
Ikram, M.A.2
Vernooij, M.W.3
De Bruijne, M.4
-
54
-
-
84926278297
-
Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data
-
T. Heimann, P. Mountney, M. John, and R. Ionasec, "Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data," Med. Image Anal., vol. 18, pp. 1320-1328, 2014.
-
(2014)
Med. Image Anal.
, vol.18
, pp. 1320-1328
-
-
Heimann, T.1
Mountney, P.2
John, M.3
Ionasec, R.4
-
55
-
-
84941217025
-
Transfer learning method using multi-prediction deep boltzmann machines for a small scale dataset
-
Y. Sawada and K. Kozuka, "Transfer learning method using multi-prediction deep Boltzmann machines for a small scale dataset," in Proc. 14th IAPR Int. Conf. Mach. Vis. Appl., 2015, pp. 110-113.
-
(2015)
Proc. 14th IAPR Int. Conf. Mach. Vis. Appl.
, pp. 110-113
-
-
Sawada, Y.1
Kozuka, K.2
-
56
-
-
85028209417
-
Facilitating image search with a scalable and compact semantic mapping
-
Aug.
-
M. Wang et al., "Facilitating image search with a scalable and compact semantic mapping," IEEE Trans. Cybern., vol. 45, no. 8, pp. 1561-1574, Aug. 2015.
-
(2015)
IEEE Trans. Cybern.
, vol.45
, Issue.8
, pp. 1561-1574
-
-
Wang, M.1
|