-
1
-
-
82455204779
-
Robust automatic knee MR slice positioning through redundant and hierarchical anatomy detection
-
Zhan, Y., Dewan, M., Harder, M., Krishnan, A., Zhou, X.S.: Robust automatic knee MR slice positioning through redundant and hierarchical anatomy detection. IEEE Trans. Medical Imaging 30(12), 2087–2100 (2010)
-
(2010)
IEEE Trans. Medical Imaging
, vol.30
, Issue.12
, pp. 2087-2100
-
-
Zhan, Y.1
Dewan, M.2
Harder, M.3
Krishnan, A.4
Zhou, X.S.5
-
2
-
-
84927915984
-
Reliable extraction of the mid-sagittal plane in 3D brain MRI via hierarchical landmark detection
-
Schwing, A.G., Zheng, Y.: Reliable extraction of the mid-sagittal plane in 3D brain MRI via hierarchical landmark detection. In: Proc. Int’l Sym. Biomedical Imaging, pp. 213–216 (2014)
-
(2014)
Proc. Int’l Sym. Biomedical Imaging
, pp. 213-216
-
-
Schwing, A.G.1
Zheng, Y.2
-
3
-
-
79955808695
-
Vascular landmark detection in 3D CT data
-
Liu, D., Zhou, S., Bernhardt, D., Comaniciu, D.: Vascular landmark detection in 3D CT data. In: Proc. of SPIE Medical Imaging, pp. 1–7 (2011)
-
(2011)
Proc. Of SPIE Medical Imaging
, pp. 1-7
-
-
Liu, D.1
Zhou, S.2
Bernhardt, D.3
Comaniciu, D.4
-
4
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research 11, 3371–3408 (2010)
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.A.5
-
5
-
-
84885933775
-
Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network
-
In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.), Springer, Heidelberg
-
Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013)
-
(2013)
MICCAI 2013, Part II. LNCS
, vol.8150
, pp. 246-253
-
-
Prasoon, A.1
Petersen, K.2
Igel, C.3
Lauze, F.4
Dam, E.5
Nielsen, M.6
-
6
-
-
84909644435
-
A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations
-
In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.), Springer, Heidelberg
-
Roth, H.R., et al.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 520–527. Springer, Heidelberg (2014)
-
(2014)
MICCAI 2014, Part I. LNCS
, vol.8673
, pp. 520-527
-
-
Roth, H.R.1
-
7
-
-
84887353151
-
Learning separable filters
-
Rigamonti, R., Sironi, A., Lepetit, V., Fua, P.: Learning separable filters. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 2754–2761 (2013)
-
(2013)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
, pp. 2754-2761
-
-
Rigamonti, R.1
Sironi, A.2
Lepetit, V.3
Fua, P.4
-
8
-
-
84937896655
-
Exploiting linear structure within convolutional networks for efficient evaluation
-
Denton, E., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within convolutional networks for efficient evaluation. In: Advances in Neural Information Processing Systems, pp. 1–11 (2014)
-
(2014)
Advances in Neural Information Processing Systems
, pp. 1-11
-
-
Denton, E.1
Zaremba, W.2
Bruna, J.3
Lecun, Y.4
Fergus, R.5
-
9
-
-
79951898361
-
A scalable optimization approach for fitting canonical tensor decompositions
-
Acar, E., Dunlavy, D.M., Kolda, T.G.: A scalable optimization approach for fitting canonical tensor decompositions. Journal of Chemometrics 25(2), 67–86 (2011)
-
(2011)
Journal of Chemometrics
, vol.25
, Issue.2
, pp. 67-86
-
-
Acar, E.1
Dunlavy, D.M.2
Kolda, T.G.3
-
10
-
-
33745897632
-
Probabilistic boosting-tree: Learning discriminative methods for classification, recognition, and clustering
-
Tu, Z.: Probabilistic boosting-tree: Learning discriminative methods for classification, recognition, and clustering. In: Proc. Int’l Conf. Computer Vision, pp. 1589–1596 (2005)
-
(2005)
Proc. Int’l Conf. Computer Vision
, pp. 1589-1596
-
-
Tu, Z.1
|