메뉴 건너뛰기




Volumn 9901 LNCS, Issue , 2016, Pages 212-220

3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN; BRAIN MAPPING; FORECASTING; FUNCTIONAL NEUROIMAGING; IMAGE RETRIEVAL; MAGNETIC LEVITATION VEHICLES; MAGNETIC RESONANCE; MAGNETIC RESONANCE IMAGING; MEDICAL IMAGING; NETWORK ARCHITECTURE; NEURAL NETWORKS; PATIENT TREATMENT; TENSORS; TUMORS;

EID: 84996490301     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46723-8_25     Document Type: Conference Paper
Times cited : (252)

References (11)
  • 1
    • 64649086978 scopus 로고    scopus 로고
    • Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: Ready for prime time in predicting short-term outcome and recurrent disease
    • Bisdas,S.,et al.: Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? Am. J. Neuroradiol. 30(4),681–688 (2009)
    • (2009) Am. J. Neuroradiol , vol.30 , Issue.4 , pp. 681-688
    • Bisdas, S.1
  • 2
    • 0035843243 scopus 로고    scopus 로고
    • Brain tumors
    • DeAngelis,L.M.: Brain tumors. N. Engl. J. Med. 344(2),114–123 (2001)
    • (2001) N. Engl. J. Med. , vol.344 , Issue.2 , pp. 114-123
    • Deangelis, L.M.1
  • 3
    • 50949133669 scopus 로고    scopus 로고
    • Liblinear: A library for large linear classification
    • Fan,R.-E.,et al.: Liblinear: a library for large linear classification. JMLR 9,1871–1874 (2008)
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.-E.1
  • 4
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Glorot,X.,Bengio,Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS,pp. 249–256 (2010)
    • (2010) AISTATS , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 5
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky,A.,Sutskever,I.,Hinton,G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS,pp. 1097–1105 (2012)
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 6
    • 0034871451 scopus 로고    scopus 로고
    • A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis,extent of resection,and survival
    • Lacroix,M.,et al.: A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis,extent of resection,and survival. J. Neurosurg. 95(2),190–198 (2001)
    • (2001) J. Neurosurg , vol.95 , Issue.2 , pp. 190-198
    • Lacroix, M.1
  • 7
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe,D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2),91–110 (2004)
    • (2004) Int. J. Comput. Vis , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 9
    • 33644847163 scopus 로고    scopus 로고
    • MR imaging correlates of survival in patients with high-grade gliomas
    • Pope,W.B.,et al.: MR imaging correlates of survival in patients with high-grade gliomas. Am. J. Neuroradiol. 26(10),2466–2474 (2005)
    • (2005) Am. J. Neuroradiol , vol.26 , Issue.10 , pp. 2466-2474
    • Pope, W.B.1
  • 10
    • 84877724347 scopus 로고    scopus 로고
    • Multimodal learning with deep boltzmann machines
    • Srivastava,N.,Salakhutdinov,R.R.: Multimodal learning with deep boltzmann machines. In: NIPS,pp. 2222–2230 (2012)
    • (2012) NIPS , pp. 2222-2230
    • Srivastava, N.1    Salakhutdinov, R.R.2
  • 11
    • 84862508110 scopus 로고    scopus 로고
    • Survival analysis of patients with high-grade gliomas based on data mining of imaging variables
    • Zacharaki,E.I.,et al.: Survival analysis of patients with high-grade gliomas based on data mining of imaging variables. Am. J. Neuroradiol. 33(6),1065–1071 (2012)
    • (2012) Am. J. Neuroradiol , vol.33 , Issue.6 , pp. 1065-1071
    • Zacharaki, E.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.