-
1
-
-
84867871457
-
Road scene segmentation from a single image
-
Springer-Verlag, Berlin, Heidelberg
-
Alvarez J.M., Gevers T., LeCun Y., Lopez A.M. Road scene segmentation from a single image. Proceedings of the 12th European Conference on Computer Vision - Volume Part VII 2012, 376-389. Springer-Verlag, Berlin, Heidelberg.
-
(2012)
Proceedings of the 12th European Conference on Computer Vision - Volume Part VII
, pp. 376-389
-
-
Alvarez, J.M.1
Gevers, T.2
LeCun, Y.3
Lopez, A.M.4
-
2
-
-
36949040564
-
Glioma dynamics and computational models: A review of segmentation, registration, and in silico growth algorithms and their clinical applications
-
Angelini E., Clatz O.E., Konukoglu E., Capelle L., Duffau H. Glioma dynamics and computational models: A review of segmentation, registration, and in silico growth algorithms and their clinical applications. Curr. Med. Imaging Rev. 2007, 3(4):262-276.
-
(2007)
Curr. Med. Imaging Rev.
, vol.3
, Issue.4
, pp. 262-276
-
-
Angelini, E.1
Clatz, O.E.2
Konukoglu, E.3
Capelle, L.4
Duffau, H.5
-
4
-
-
82255181699
-
Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization.
-
Bauer S., Nolte L.-P., Reyes M. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. MICCAI 2011, Vol. 6893:354-361.
-
(2011)
MICCAI
, vol.6893
, pp. 354-361
-
-
Bauer, S.1
Nolte, L.-P.2
Reyes, M.3
-
5
-
-
84879513272
-
A survey of mri-based medical image analysis for brain tumor studies
-
Bauer S., Wiest R., Nolte L., Reyes M. A survey of mri-based medical image analysis for brain tumor studies. Phys. Med. Biol. 2013, 58:97-129.
-
(2013)
Phys. Med. Biol.
, vol.58
, pp. 97-129
-
-
Bauer, S.1
Wiest, R.2
Nolte, L.3
Reyes, M.4
-
6
-
-
84872577736
-
Practical recommendations for gradient-based training of deep architectures
-
Springer
-
Bengio Y. Practical recommendations for gradient-based training of deep architectures. Neural Networks: Tricks of the Trade 2012, 437-478. Springer.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 437-478
-
-
Bengio, Y.1
-
9
-
-
0032034227
-
Automatic tumor segmentation using knowledge-based clustering
-
Clark M., Hall L., Goldgof D., Velthuizen R.P., Murtagh F., Silbiger M.L. Automatic tumor segmentation using knowledge-based clustering. IEEE Trans. Med. Imag. 1998, 17:187-201.
-
(1998)
IEEE Trans. Med. Imag.
, vol.17
, pp. 187-201
-
-
Clark, M.1
Hall, L.2
Goldgof, D.3
Velthuizen, R.P.4
Murtagh, F.5
Silbiger, M.L.6
-
10
-
-
50649093339
-
3D variational brain tumor segmentation using a high dimensional feature set
-
Cobzas D., Birkbeck N., Schmidt M., Jgersand M., Murtha A. 3D variational brain tumor segmentation using a high dimensional feature set. ICCV 2007, 1-8.
-
(2007)
ICCV
, pp. 1-8
-
-
Cobzas, D.1
Birkbeck, N.2
Schmidt, M.3
Jgersand, M.4
Murtha, A.5
-
11
-
-
85015703276
-
Brain tumor segmentation with deep neural networks
-
Davy A., Havaei M., Warde-Farley D., Biard A., Tran L., Jodoin P.-M., Courville A., Larochelle H., Pal C., Bengio Y. Brain tumor segmentation with deep neural networks. Proc. BRATS-MICCAI 2014.
-
(2014)
Proc. BRATS-MICCAI
-
-
Davy, A.1
Havaei, M.2
Warde-Farley, D.3
Biard, A.4
Tran, L.5
Jodoin, P.-M.6
Courville, A.7
Larochelle, H.8
Pal, C.9
Bengio, Y.10
-
12
-
-
84973446934
-
Fully automatic brain tumor segmentation from multiple mr sequences using hidden markov fields and variational em
-
Doyle S., Vasseur F., Dojat M., Forbes F. Fully automatic brain tumor segmentation from multiple mr sequences using hidden markov fields and variational em. Proc. BRATS-MICCAI 2013.
-
(2013)
Proc. BRATS-MICCAI
-
-
Doyle, S.1
Vasseur, F.2
Dojat, M.3
Forbes, F.4
-
13
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Farabet C., Couprie C., Najman L., LeCun Y. Learning hierarchical features for scene labeling. Pattern Anal. Mach. Intell. IEEE Trans. 2013, 35:1915-1929.
-
(2013)
Pattern Anal. Mach. Intell. IEEE Trans.
, vol.35
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
14
-
-
84973471101
-
-
Multimodal Brain Tumor Segmentation (BRATS 2013).
-
Farahani, K., Menze, B., Reyes, M., 2013. Multimodal Brain Tumor Segmentation (BRATS 2013).
-
(2013)
-
-
Farahani, K.1
Menze, B.2
Reyes, M.3
-
17
-
-
84973482694
-
Pylearn2: a machine learning research library
-
Goodfellow I.J., Warde-Farley D., Lamblin P., Dumoulin V., Mirza M., Pascanu R., Bergstra J., Bastien F., Bengio Y. Pylearn2: a machine learning research library. arXiv preprint arXiv:1308.4214 2013.
-
(2013)
arXiv preprint arXiv:1308.4214
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Lamblin, P.3
Dumoulin, V.4
Mirza, M.5
Pascanu, R.6
Bergstra, J.7
Bastien, F.8
Bengio, Y.9
-
19
-
-
84961579429
-
Extremely randomized trees based brain tumor segmentation
-
Gotz M., Weber C., Blocher J., Stieltjes B., Meinzer H.-P., Maier-Hein K. Extremely randomized trees based brain tumor segmentation. in Proceedings of BRATS Challenge - MICCAI 2014.
-
(2014)
in Proceedings of BRATS Challenge - MICCAI
-
-
Gotz, M.1
Weber, C.2
Blocher, J.3
Stieltjes, B.4
Meinzer, H.-P.5
Maier-Hein, K.6
-
20
-
-
84857934398
-
Tumor-cut: Segmentation of brain tumors on contrast enhanced mr images for radiosurgery applications
-
Hamamci A., Kucuk N., Karaman K., Engin K., Unal G. Tumor-cut: Segmentation of brain tumors on contrast enhanced mr images for radiosurgery applications. IEEE Trans. Med. Imag. 2012, 31:790-804.
-
(2012)
IEEE Trans. Med. Imag.
, vol.31
, pp. 790-804
-
-
Hamamci, A.1
Kucuk, N.2
Karaman, K.3
Engin, K.4
Unal, G.5
-
23
-
-
84973464200
-
Deep and wide multiscale recursive networks for robust image labeling
-
Huang G.B., Jain V. Deep and wide multiscale recursive networks for robust image labeling. arXiv preprint arXiv:1310.0354 2013.
-
(2013)
arXiv preprint arXiv:1310.0354
-
-
Huang, G.B.1
Jain, V.2
-
24
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
IEEE
-
Jarrett K., Kavukcuoglu K., Ranzato M., LeCun Y. What is the best multi-stage architecture for object recognition?. Computer Vision, 2009 IEEE 12th International Conference on 2009, 2146-2153. IEEE.
-
(2009)
Computer Vision, 2009 IEEE 12th International Conference on
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
25
-
-
62949196900
-
3D brain tumor segmentation in mri using fuzzy classification, symmetry analysis and spatially constrained deformable models
-
Khotanlou H., Colliot O., Atif J., Bloch I. 3D brain tumor segmentation in mri using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 2009, 160:1457-1473.
-
(2009)
Fuzzy Sets Syst.
, vol.160
, pp. 1457-1473
-
-
Khotanlou, H.1
Colliot, O.2
Atif, J.3
Bloch, I.4
-
26
-
-
85049321337
-
Ilastik for multi-modal brain tumor segmentation
-
Kleesiek J., Biller A., Urban G., Kothe U., Bendszus M., Hamprecht F.A. ilastik for multi-modal brain tumor segmentation. Proc. BRATS-MICCAI 2014.
-
(2014)
Proc. BRATS-MICCAI
-
-
Kleesiek, J.1
Biller, A.2
Urban, G.3
Kothe, U.4
Bendszus, M.5
Hamprecht, F.A.6
-
27
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky A., Sutskever I., Hinton G. ImageNet classification with deep convolutional neural networks. NIPS 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
29
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86:2278-2324.
-
(1998)
Proc. IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
30
-
-
33646709406
-
Segmenting brain tumor with conditional random fields and support vector machines
-
Lee C.-H., Schmidt M., Murtha A., Bistritz A., S J., Greiner R. Segmenting brain tumor with conditional random fields and support vector machines. in Proceedings of Workshop on Computer Vision for Biomedical Image Applications 2005.
-
(2005)
in Proceedings of Workshop on Computer Vision for Biomedical Image Applications
-
-
Lee, C.-H.1
Schmidt, M.2
Murtha, A.3
Bistritz, A.4
Greiner, R.5
-
34
-
-
84988909615
-
Joint tumor segmentation and dense deformable registration of brain mr images.
-
Parisot S., Duffau H., Chemouny S., Paragios N. Joint tumor segmentation and dense deformable registration of brain mr images. MICCAI 2012, Vol. 7511:651-658.
-
(2012)
MICCAI
, vol.7511
, pp. 651-658
-
-
Parisot, S.1
Duffau, H.2
Chemouny, S.3
Paragios, N.4
-
36
-
-
84865755344
-
3D variational brain tumor segmentation using dirichlet priors on a clustered feature set.
-
Popuri K., Cobzas D., Murtha A., Jgersand M. 3D variational brain tumor segmentation using dirichlet priors on a clustered feature set. Int. J. Comput. Assist. Radiol. Surg. 2012, 7:493-506.
-
(2012)
Int. J. Comput. Assist. Radiol. Surg.
, vol.7
, pp. 493-506
-
-
Popuri, K.1
Cobzas, D.2
Murtha, A.3
Jgersand, M.4
-
37
-
-
4444333897
-
A brain tumor segmentation framework based on outlier detection
-
Prastawa M., Bullit E., Ho S., Gerig G. A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 2004, 8:275-283.
-
(2004)
Med. Image Anal.
, vol.8
, pp. 275-283
-
-
Prastawa, M.1
Bullit, E.2
Ho, S.3
Gerig, G.4
-
41
-
-
33847273732
-
Segmenting brain tumors using alignment-based features
-
Schmidt M., Levner I., Greiner R., Murtha A., Bistritz A. Segmenting brain tumors using alignment-based features. Int. Conf on Machine Learning and Applications 2005, 6-pp.
-
(2005)
Int. Conf on Machine Learning and Applications
, pp. 6-pp
-
-
Schmidt, M.1
Levner, I.2
Greiner, R.3
Murtha, A.4
Bistritz, A.5
-
42
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15:1929-1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
44
-
-
84894615199
-
Hierarchical probabilistic gabor and mrf segmentation of brain tumours in mri volumes.
-
Subbanna N., Precup D., Collins L., Arbel T. Hierarchical probabilistic gabor and mrf segmentation of brain tumours in mri volumes. in Proceedings of MICCAI 2013, Vol. 8149:751-758.
-
(2013)
in Proceedings of MICCAI
, vol.8149
, pp. 751-758
-
-
Subbanna, N.1
Precup, D.2
Collins, L.3
Arbel, T.4
-
47
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
Springer
-
Zeiler M.D., Fergus R. Visualizing and understanding convolutional networks. Computer Vision-ECCV 2014 2014, 818-833. Springer.
-
(2014)
Computer Vision-ECCV 2014
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
48
-
-
84872979595
-
Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel mr
-
Springer
-
Zikic D., Glocker B., Konukoglu E., Criminisi A., Demiralp C., Shotton J., Thomas O., Das T., Jena R., Price S. Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel mr. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2012 2012, 369-376. Springer.
-
(2012)
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2012
, pp. 369-376
-
-
Zikic, D.1
Glocker, B.2
Konukoglu, E.3
Criminisi, A.4
Demiralp, C.5
Shotton, J.6
Thomas, O.7
Das, T.8
Jena, R.9
Price, S.10
|