메뉴 건너뛰기




Volumn 35, Issue , 2017, Pages 18-31

Brain tumor segmentation with Deep Neural Networks

Author keywords

Brain tumor segmentation; Cascaded convolutional neural networks; Convolutional neural networks; Deep neural networks

Indexed keywords

BRAIN; CONVOLUTION; MAGNETIC RESONANCE IMAGING; NETWORK ARCHITECTURE; NEURAL NETWORKS; STATISTICAL TESTS; TUMORS;

EID: 84973442994     PISSN: 13618415     EISSN: 13618423     Source Type: Journal    
DOI: 10.1016/j.media.2016.05.004     Document Type: Article
Times cited : (2778)

References (49)
  • 2
    • 36949040564 scopus 로고    scopus 로고
    • Glioma dynamics and computational models: A review of segmentation, registration, and in silico growth algorithms and their clinical applications
    • Angelini E., Clatz O.E., Konukoglu E., Capelle L., Duffau H. Glioma dynamics and computational models: A review of segmentation, registration, and in silico growth algorithms and their clinical applications. Curr. Med. Imaging Rev. 2007, 3(4):262-276.
    • (2007) Curr. Med. Imaging Rev. , vol.3 , Issue.4 , pp. 262-276
    • Angelini, E.1    Clatz, O.E.2    Konukoglu, E.3    Capelle, L.4    Duffau, H.5
  • 4
    • 82255181699 scopus 로고    scopus 로고
    • Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization.
    • Bauer S., Nolte L.-P., Reyes M. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. MICCAI 2011, Vol. 6893:354-361.
    • (2011) MICCAI , vol.6893 , pp. 354-361
    • Bauer, S.1    Nolte, L.-P.2    Reyes, M.3
  • 5
    • 84879513272 scopus 로고    scopus 로고
    • A survey of mri-based medical image analysis for brain tumor studies
    • Bauer S., Wiest R., Nolte L., Reyes M. A survey of mri-based medical image analysis for brain tumor studies. Phys. Med. Biol. 2013, 58:97-129.
    • (2013) Phys. Med. Biol. , vol.58 , pp. 97-129
    • Bauer, S.1    Wiest, R.2    Nolte, L.3    Reyes, M.4
  • 6
    • 84872577736 scopus 로고    scopus 로고
    • Practical recommendations for gradient-based training of deep architectures
    • Springer
    • Bengio Y. Practical recommendations for gradient-based training of deep architectures. Neural Networks: Tricks of the Trade 2012, 437-478. Springer.
    • (2012) Neural Networks: Tricks of the Trade , pp. 437-478
    • Bengio, Y.1
  • 10
    • 50649093339 scopus 로고    scopus 로고
    • 3D variational brain tumor segmentation using a high dimensional feature set
    • Cobzas D., Birkbeck N., Schmidt M., Jgersand M., Murtha A. 3D variational brain tumor segmentation using a high dimensional feature set. ICCV 2007, 1-8.
    • (2007) ICCV , pp. 1-8
    • Cobzas, D.1    Birkbeck, N.2    Schmidt, M.3    Jgersand, M.4    Murtha, A.5
  • 12
    • 84973446934 scopus 로고    scopus 로고
    • Fully automatic brain tumor segmentation from multiple mr sequences using hidden markov fields and variational em
    • Doyle S., Vasseur F., Dojat M., Forbes F. Fully automatic brain tumor segmentation from multiple mr sequences using hidden markov fields and variational em. Proc. BRATS-MICCAI 2013.
    • (2013) Proc. BRATS-MICCAI
    • Doyle, S.1    Vasseur, F.2    Dojat, M.3    Forbes, F.4
  • 14
    • 84973471101 scopus 로고    scopus 로고
    • Multimodal Brain Tumor Segmentation (BRATS 2013).
    • Farahani, K., Menze, B., Reyes, M., 2013. Multimodal Brain Tumor Segmentation (BRATS 2013).
    • (2013)
    • Farahani, K.1    Menze, B.2    Reyes, M.3
  • 15
    • 84973439953 scopus 로고    scopus 로고
    • Brats 2014 Challenge Manuscripts.
    • Farahani, K., Menze, B., Reyes, M., 2014. Brats 2014 Challenge Manuscripts.
    • (2014)
    • Farahani, K.1    Menze, B.2    Reyes, M.3
  • 20
    • 84857934398 scopus 로고    scopus 로고
    • Tumor-cut: Segmentation of brain tumors on contrast enhanced mr images for radiosurgery applications
    • Hamamci A., Kucuk N., Karaman K., Engin K., Unal G. Tumor-cut: Segmentation of brain tumors on contrast enhanced mr images for radiosurgery applications. IEEE Trans. Med. Imag. 2012, 31:790-804.
    • (2012) IEEE Trans. Med. Imag. , vol.31 , pp. 790-804
    • Hamamci, A.1    Kucuk, N.2    Karaman, K.3    Engin, K.4    Unal, G.5
  • 23
    • 84973464200 scopus 로고    scopus 로고
    • Deep and wide multiscale recursive networks for robust image labeling
    • Huang G.B., Jain V. Deep and wide multiscale recursive networks for robust image labeling. arXiv preprint arXiv:1310.0354 2013.
    • (2013) arXiv preprint arXiv:1310.0354
    • Huang, G.B.1    Jain, V.2
  • 25
    • 62949196900 scopus 로고    scopus 로고
    • 3D brain tumor segmentation in mri using fuzzy classification, symmetry analysis and spatially constrained deformable models
    • Khotanlou H., Colliot O., Atif J., Bloch I. 3D brain tumor segmentation in mri using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 2009, 160:1457-1473.
    • (2009) Fuzzy Sets Syst. , vol.160 , pp. 1457-1473
    • Khotanlou, H.1    Colliot, O.2    Atif, J.3    Bloch, I.4
  • 27
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Krizhevsky A., Sutskever I., Hinton G. ImageNet classification with deep convolutional neural networks. NIPS 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 29
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86:2278-2324.
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 32
  • 34
    • 84988909615 scopus 로고    scopus 로고
    • Joint tumor segmentation and dense deformable registration of brain mr images.
    • Parisot S., Duffau H., Chemouny S., Paragios N. Joint tumor segmentation and dense deformable registration of brain mr images. MICCAI 2012, Vol. 7511:651-658.
    • (2012) MICCAI , vol.7511 , pp. 651-658
    • Parisot, S.1    Duffau, H.2    Chemouny, S.3    Paragios, N.4
  • 36
    • 84865755344 scopus 로고    scopus 로고
    • 3D variational brain tumor segmentation using dirichlet priors on a clustered feature set.
    • Popuri K., Cobzas D., Murtha A., Jgersand M. 3D variational brain tumor segmentation using dirichlet priors on a clustered feature set. Int. J. Comput. Assist. Radiol. Surg. 2012, 7:493-506.
    • (2012) Int. J. Comput. Assist. Radiol. Surg. , vol.7 , pp. 493-506
    • Popuri, K.1    Cobzas, D.2    Murtha, A.3    Jgersand, M.4
  • 37
    • 4444333897 scopus 로고    scopus 로고
    • A brain tumor segmentation framework based on outlier detection
    • Prastawa M., Bullit E., Ho S., Gerig G. A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 2004, 8:275-283.
    • (2004) Med. Image Anal. , vol.8 , pp. 275-283
    • Prastawa, M.1    Bullit, E.2    Ho, S.3    Gerig, G.4
  • 44
    • 84894615199 scopus 로고    scopus 로고
    • Hierarchical probabilistic gabor and mrf segmentation of brain tumours in mri volumes.
    • Subbanna N., Precup D., Collins L., Arbel T. Hierarchical probabilistic gabor and mrf segmentation of brain tumours in mri volumes. in Proceedings of MICCAI 2013, Vol. 8149:751-758.
    • (2013) in Proceedings of MICCAI , vol.8149 , pp. 751-758
    • Subbanna, N.1    Precup, D.2    Collins, L.3    Arbel, T.4
  • 47
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Springer
    • Zeiler M.D., Fergus R. Visualizing and understanding convolutional networks. Computer Vision-ECCV 2014 2014, 818-833. Springer.
    • (2014) Computer Vision-ECCV 2014 , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.