메뉴 건너뛰기




Volumn 127, Issue , 2016, Pages 248-257

Representation learning for mammography mass lesion classification with convolutional neural networks

Author keywords

Breast cancer; Computer aided diagnosis; Convolutional neural networks; Feature learning; Mammography

Indexed keywords

BENCHMARKING; COMPUTER AIDED DIAGNOSIS; COMPUTER AIDED INSTRUCTION; CONVOLUTION; DIAGNOSIS; DISEASES; FEATURE EXTRACTION; GRAPHIC METHODS; MAMMOGRAPHY; NEURAL NETWORKS;

EID: 84955570567     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2015.12.014     Document Type: Article
Times cited : (426)

References (41)
  • 2
    • 77954126930 scopus 로고    scopus 로고
    • Computer-aided diagnostic models in breast cancer screening
    • Ayer, T., Ayvaci, M.U., Liu, Z.X., Alagoz, O., Burnside, E.S., Computer-aided diagnostic models in breast cancer screening. Imaging Med. 2:3 (2010), 313–323.
    • (2010) Imaging Med. , vol.2 , Issue.3 , pp. 313-323
    • Ayer, T.1    Ayvaci, M.U.2    Liu, Z.X.3    Alagoz, O.4    Burnside, E.S.5
  • 3
    • 84880229711 scopus 로고    scopus 로고
    • An evaluation of image descriptors combined with clinical data for breast cancer diagnosis
    • Moura, D.C., Guevara López, M.A., An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. Int. J. Comp. Assist. Radiol. Surg. 8:4 (2013), 561–574, 10.1007/s11548-013-0838-2.
    • (2013) Int. J. Comp. Assist. Radiol. Surg. , vol.8 , Issue.4 , pp. 561-574
    • Moura, D.C.1    Guevara López, M.A.2
  • 5
    • 84873050103 scopus 로고    scopus 로고
    • A software framework for building biomedical machine learning classifiers through grid computing resources
    • Ramos-Pollán, R., Guevara-López, M.A., Oliveira, E., A software framework for building biomedical machine learning classifiers through grid computing resources. J. Med. Syst. 36:4 (2012), 2245–2257, 10.1007/s10916-011-9692-3.
    • (2012) J. Med. Syst. , vol.36 , Issue.4 , pp. 2245-2257
    • Ramos-Pollán, R.1    Guevara-López, M.A.2    Oliveira, E.3
  • 6
    • 84907600379 scopus 로고    scopus 로고
    • Mass classification in mammograms using selected geometry and texture features, and a new SVM-based feature selection method
    • Liu, X., Tang, J., Mass classification in mammograms using selected geometry and texture features, and a new SVM-based feature selection method. Syst. J. IEEE 8:3 (2014), 910–920, 10.1109/JSYST.2013.2286539.
    • (2014) Syst. J. IEEE , vol.8 , Issue.3 , pp. 910-920
    • Liu, X.1    Tang, J.2
  • 7
    • 84941998220 scopus 로고    scopus 로고
    • An efficient approach for automated mass segmentation and classification in mammograms
    • Dong, M., Lu, X., Ma, Y., Guo, Y., Ma, Y., Wang, K., An efficient approach for automated mass segmentation and classification in mammograms. J. Digit. Imaging 28:5 (2015), 613–625, 10.1007/s10278-015-9778-4.
    • (2015) J. Digit. Imaging , vol.28 , Issue.5 , pp. 613-625
    • Dong, M.1    Lu, X.2    Ma, Y.3    Guo, Y.4    Ma, Y.5    Wang, K.6
  • 8
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: a review and new perspectives
    • 10.1109/TPAMI.2013.50
    • Bengio, Y., Courville, A., Vincent, P., Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35:8 (2013), 1798–1828 doi:10.1109/TPAMI.2013.50.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 9
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber, J., Deep learning in neural networks: an overview. Neural Netw. 61 (2015), 85–117, 10.1016/j.neunet.2014.09.003.
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 10
    • 84891279182 scopus 로고    scopus 로고
    • Hybrid image representation learning model with invariant features for basal cell carcinoma detection
    • pp. 89220M-89220M-6
    • Arevalo, J., Cruz-Roa, A., González, F.A., Hybrid image representation learning model with invariant features for basal cell carcinoma detection. Proc. SPIE, 8922, 2013, 10.1117/12.2035530 pp. 89220M-89220M-6.
    • (2013) Proc. SPIE , vol.8922
    • Arevalo, J.1    Cruz-Roa, A.2    González, F.A.3
  • 13
    • 84923814844 scopus 로고    scopus 로고
    • Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
    • Suk, H.-I., Lee, S.-W., Shen, D., Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct., 2013, 1–19, 10.1007/s00429-013-0687-3.
    • (2013) Brain Struct. Funct. , pp. 1-19
    • Suk, H.-I.1    Lee, S.-W.2    Shen, D.3
  • 14
    • 84907019192 scopus 로고    scopus 로고
    • Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
    • Suk, H.-I., Lee, S.-W., Shen, D., Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101:0 (2014), 569–582, 10.1016/j.neuroimage.2014.06.077.
    • (2014) Neuroimage , vol.101 , pp. 569-582
    • Suk, H.-I.1    Lee, S.-W.2    Shen, D.3
  • 17
    • 84876727324 scopus 로고    scopus 로고
    • Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review
    • Jalalian, A., Mashohor, S.B., Mahmud, H.R., Saripan, M.I.B., Ramli, A.R.B., Karasfi, B., Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin. Imaging 37:3 (2013), 420–426, 10.1016/j.clinimag.2012.09.024.
    • (2013) Clin. Imaging , vol.37 , Issue.3 , pp. 420-426
    • Jalalian, A.1    Mashohor, S.B.2    Mahmud, H.R.3    Saripan, M.I.B.4    Ramli, A.R.B.5    Karasfi, B.6
  • 19
    • 84903998168 scopus 로고    scopus 로고
    • Breast tissue segmentation and mammographic risk scoring using deep learning
    • H. Fujita T. Hara C. Muramatsu Springer International Publishing
    • Petersen, K., Nielsen, M., Diao, P., Karssemeijer, N., Lillholm, M., Breast tissue segmentation and mammographic risk scoring using deep learning. Fujita, H., Hara, T., Muramatsu, C., (eds.) Breast Imaging, Vol. 8539 of Lecture Notes in Computer Science, 2014, Springer International Publishing, 88–94, 10.1007/978-3-319-07887-8_13.
    • (2014) Breast Imaging, Vol. 8539 of Lecture Notes in Computer Science , pp. 88-94
    • Petersen, K.1    Nielsen, M.2    Diao, P.3    Karssemeijer, N.4    Lillholm, M.5
  • 20
    • 84896270629 scopus 로고    scopus 로고
    • A new approach for clustered MCs classification with sparse features learning and TWSVM
    • Zhang, X.-S., A new approach for clustered MCs classification with sparse features learning and TWSVM. Sci. World J., 2014, 970287, 10.1155/2014/970287.
    • (2014) Sci. World J. , pp. 970287
    • Zhang, X.-S.1
  • 21
    • 33746746440 scopus 로고    scopus 로고
    • Computer aided detection of clusters of microcalcifications on full field digital mammograms
    • Ge, J., Sahiner, B., Hadjiiski, L.M., Chan, H.-P., Wei, J., Helvie, M.A., Zhou, C., Computer aided detection of clusters of microcalcifications on full field digital mammograms. Med. Phys. 33:8 (2006), 2975–2988.
    • (2006) Med. Phys. , vol.33 , Issue.8 , pp. 2975-2988
    • Ge, J.1    Sahiner, B.2    Hadjiiski, L.M.3    Chan, H.-P.4    Wei, J.5    Helvie, M.A.6    Zhou, C.7
  • 22
    • 84874904675 scopus 로고    scopus 로고
    • Breast image feature learning with adaptive deconvolutional networks
    • Jamieson, A.R., Drukker, K., Giger, M.L., Breast image feature learning with adaptive deconvolutional networks. 2012, 10.1117/12.910710.
    • (2012)
    • Jamieson, A.R.1    Drukker, K.2    Giger, M.L.3
  • 24
    • 84923943411 scopus 로고    scopus 로고
    • Improving the Mann–Whitney statistical test for feature selection: an approach in breast cancer diagnosis on mammography
    • Pérez, N.P., López, M.A.G., Silva, A., Ramos, I., Improving the Mann–Whitney statistical test for feature selection: an approach in breast cancer diagnosis on mammography. Artif. Intell. Med., 2014, 10.1016/j.artmed.2014.12.004.
    • (2014) Artif. Intell. Med.
    • Pérez, N.P.1    López, M.A.G.2    Silva, A.3    Ramos, I.4
  • 26
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • F. Pereira C. Burges L. Bottou K. Weinberger Curran Associates Inc.
    • Krizhevsky, A., Sutskever, I., Hinton, G.E., Imagenet classification with deep convolutional neural networks. Pereira, F., Burges, C., Bottou, L., Weinberger, K., (eds.) Advances in Neural Information Processing Systems 25, 2012, Curran Associates Inc., 1097–1105.
    • (2012) Advances in Neural Information Processing Systems 25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 27
    • 38949193299 scopus 로고    scopus 로고
    • Why is real-world visual object recognition hard?
    • Pinto, N., Cox, D.D., DiCarlo, J.J., Why is real-world visual object recognition hard?. PLoS Computat. Biol., 4(1), 2008, e27, 10.1371/journal.pcbi.0040027.
    • (2008) PLoS Computat. Biol. , vol.4 , Issue.1 , pp. e27
    • Pinto, N.1    Cox, D.D.2    DiCarlo, J.J.3
  • 29
    • 84867711674 scopus 로고    scopus 로고
    • Learning invariant feature hierarchies
    • A. Fusiello V. Murino R. Cucchiara Springer Berlin, Heidelberg, Florence, Italy
    • LeCun, Y., Learning invariant feature hierarchies. Fusiello, A., Murino, V., Cucchiara, R., (eds.) Computer Vision – ECCV. Workshops and Demonstrations, Vol. 7583 of Lecture Notes in Computer Science, 2012, Springer, Berlin, Heidelberg, Florence, Italy, 496–505, 10.1007/978-3-642-33863-2_51.
    • (2012) Computer Vision – ECCV. Workshops and Demonstrations, Vol. 7583 of Lecture Notes in Computer Science , pp. 496-505
    • LeCun, Y.1
  • 30
    • 77956002520 scopus 로고    scopus 로고
    • Learning multiple layers of features from tiny images, Tech. rep.
    • University of Toronto Toronto
    • Krizhevsky, A., Learning multiple layers of features from tiny images, Tech. rep. 2009, University of Toronto, Toronto.
    • (2009)
    • Krizhevsky, A.1
  • 31
    • 0034214886 scopus 로고    scopus 로고
    • Normalization of local contrast in mammograms
    • Veldkamp, W.J., Karssemeijer, N., Normalization of local contrast in mammograms. IEEE Trans. Med. Imaging 19:7 (2000), 731–738, 10.1109/42.875197.
    • (2000) IEEE Trans. Med. Imaging , vol.19 , Issue.7 , pp. 731-738
    • Veldkamp, W.J.1    Karssemeijer, N.2
  • 37
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • Bergstra, J., Bengio, Y., Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13 (2012), 281–305.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 38
    • 84903724014 scopus 로고    scopus 로고
    • Deep learning: methods and applications
    • Deng, L., Yu, D., Deep learning: methods and applications. Found. Trends Signal Process. 7:3–4 (2014), 197–387.
    • (2014) Found. Trends Signal Process. , vol.7 , Issue.3-4 , pp. 197-387
    • Deng, L.1    Yu, D.2
  • 39
    • 85040650898 scopus 로고    scopus 로고
    • Decaf: A deep convolutional activation feature for generic visual recognition, arXiv preprint arXiv:1310.1531.
    • J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, Decaf: A deep convolutional activation feature for generic visual recognition, arXiv preprint arXiv:1310.1531.
    • Donahue, J.1    Jia, Y.2    Vinyals, O.3    Hoffman, J.4    Zhang, N.5    Tzeng, E.6    Darrell, T.7
  • 41
    • 84984623442 scopus 로고    scopus 로고
    • Supervised greedy layer-wise training for deep convolutional networks with small datasets
    • M. Nú nez N. Nguyen D. Camacho B. Trawiński Springer International Publishing
    • Rueda-Plata, D., Ramos-Pollán, R., González, F.A., Supervised greedy layer-wise training for deep convolutional networks with small datasets. Nú nez, M., Nguyen, N., Camacho, D., Trawiński, B., (eds.) Computational Collective Intelligence, Vol. 9329 of Lecture Notes in Computer Science, 2015, Springer International Publishing, 275–284, 10.1007/978-3-319-24069-5_26.
    • (2015) Computational Collective Intelligence, Vol. 9329 of Lecture Notes in Computer Science , pp. 275-284
    • Rueda-Plata, D.1    Ramos-Pollán, R.2    González, F.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.