-
1
-
-
84860389648
-
Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades
-
Tabár, L., Vitak, B., Chen, T.H.-H., Yen, A.M.-F., Cohen, A., Tot, T., Chiu, S.Y.-H., Chen, S.L.-S., Fann, J.C.-Y., Rosell, J., Fohlin, H., Smith, R.A., Duffy, S.W., Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades. Radiology 260:3 (2011), 658–663, 10.1148/radiol.11110469.
-
(2011)
Radiology
, vol.260
, Issue.3
, pp. 658-663
-
-
Tabár, L.1
Vitak, B.2
Chen, T.H.-H.3
Yen, A.M.-F.4
Cohen, A.5
Tot, T.6
Chiu, S.Y.-H.7
Chen, S.L.-S.8
Fann, J.C.-Y.9
Rosell, J.10
Fohlin, H.11
Smith, R.A.12
Duffy, S.W.13
-
2
-
-
77954126930
-
Computer-aided diagnostic models in breast cancer screening
-
Ayer, T., Ayvaci, M.U., Liu, Z.X., Alagoz, O., Burnside, E.S., Computer-aided diagnostic models in breast cancer screening. Imaging Med. 2:3 (2010), 313–323.
-
(2010)
Imaging Med.
, vol.2
, Issue.3
, pp. 313-323
-
-
Ayer, T.1
Ayvaci, M.U.2
Liu, Z.X.3
Alagoz, O.4
Burnside, E.S.5
-
3
-
-
84880229711
-
An evaluation of image descriptors combined with clinical data for breast cancer diagnosis
-
Moura, D.C., Guevara López, M.A., An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. Int. J. Comp. Assist. Radiol. Surg. 8:4 (2013), 561–574, 10.1007/s11548-013-0838-2.
-
(2013)
Int. J. Comp. Assist. Radiol. Surg.
, vol.8
, Issue.4
, pp. 561-574
-
-
Moura, D.C.1
Guevara López, M.A.2
-
4
-
-
84873050658
-
Discovering mammography-based machine learning classifiers for breast cancer diagnosis
-
Ramos-Pollán, R., Guevara-López, M.A., Suárez-Ortega, C., Díaz-Herrero, G., Franco-Valiente, J.M., Rubio-del Solar, M., González-de Posada, N., Vaz, M.A.P., Loureiro, J., Ramos, I., Discovering mammography-based machine learning classifiers for breast cancer diagnosis. J. Med. Syst. 36:4 (2012), 2259–2269, 10.1007/s10916-011-9693-2.
-
(2012)
J. Med. Syst.
, vol.36
, Issue.4
, pp. 2259-2269
-
-
Ramos-Pollán, R.1
Guevara-López, M.A.2
Suárez-Ortega, C.3
Díaz-Herrero, G.4
Franco-Valiente, J.M.5
Rubio-del Solar, M.6
González-de Posada, N.7
Vaz, M.A.P.8
Loureiro, J.9
Ramos, I.10
-
5
-
-
84873050103
-
A software framework for building biomedical machine learning classifiers through grid computing resources
-
Ramos-Pollán, R., Guevara-López, M.A., Oliveira, E., A software framework for building biomedical machine learning classifiers through grid computing resources. J. Med. Syst. 36:4 (2012), 2245–2257, 10.1007/s10916-011-9692-3.
-
(2012)
J. Med. Syst.
, vol.36
, Issue.4
, pp. 2245-2257
-
-
Ramos-Pollán, R.1
Guevara-López, M.A.2
Oliveira, E.3
-
6
-
-
84907600379
-
Mass classification in mammograms using selected geometry and texture features, and a new SVM-based feature selection method
-
Liu, X., Tang, J., Mass classification in mammograms using selected geometry and texture features, and a new SVM-based feature selection method. Syst. J. IEEE 8:3 (2014), 910–920, 10.1109/JSYST.2013.2286539.
-
(2014)
Syst. J. IEEE
, vol.8
, Issue.3
, pp. 910-920
-
-
Liu, X.1
Tang, J.2
-
7
-
-
84941998220
-
An efficient approach for automated mass segmentation and classification in mammograms
-
Dong, M., Lu, X., Ma, Y., Guo, Y., Ma, Y., Wang, K., An efficient approach for automated mass segmentation and classification in mammograms. J. Digit. Imaging 28:5 (2015), 613–625, 10.1007/s10278-015-9778-4.
-
(2015)
J. Digit. Imaging
, vol.28
, Issue.5
, pp. 613-625
-
-
Dong, M.1
Lu, X.2
Ma, Y.3
Guo, Y.4
Ma, Y.5
Wang, K.6
-
8
-
-
84879854889
-
Representation learning: a review and new perspectives
-
10.1109/TPAMI.2013.50
-
Bengio, Y., Courville, A., Vincent, P., Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35:8 (2013), 1798–1828 doi:10.1109/TPAMI.2013.50.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
9
-
-
84910651844
-
Deep learning in neural networks: an overview
-
Schmidhuber, J., Deep learning in neural networks: an overview. Neural Netw. 61 (2015), 85–117, 10.1016/j.neunet.2014.09.003.
-
(2015)
Neural Netw.
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
10
-
-
84891279182
-
Hybrid image representation learning model with invariant features for basal cell carcinoma detection
-
pp. 89220M-89220M-6
-
Arevalo, J., Cruz-Roa, A., González, F.A., Hybrid image representation learning model with invariant features for basal cell carcinoma detection. Proc. SPIE, 8922, 2013, 10.1117/12.2035530 pp. 89220M-89220M-6.
-
(2013)
Proc. SPIE
, vol.8922
-
-
Arevalo, J.1
Cruz-Roa, A.2
González, F.A.3
-
11
-
-
84885929616
-
A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
-
Springer
-
Cruz-Roa, A.A., Ovalle, J.E.A., Madabhushi, A., Osorio, F.A.G., A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. in: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013, 2013, Springer, 403–410, 10.1007/978-3-642-40763-5_50.
-
(2013)
in: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013
, pp. 403-410
-
-
Cruz-Roa, A.A.1
Ovalle, J.E.A.2
Madabhushi, A.3
Osorio, F.A.G.4
-
12
-
-
84885898432
-
Deep learning-based feature representation for AD/MCI classification
-
Suk, H.I., Shen, D., Deep learning-based feature representation for AD/MCI classification. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 8150 LNCS, 2013, 583–590, 10.1007/978-3-642-40763-5_72.
-
(2013)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.Vol. 8150 LNCS
, pp. 583-590
-
-
Suk, H.I.1
Shen, D.2
-
13
-
-
84923814844
-
Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
-
Suk, H.-I., Lee, S.-W., Shen, D., Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct., 2013, 1–19, 10.1007/s00429-013-0687-3.
-
(2013)
Brain Struct. Funct.
, pp. 1-19
-
-
Suk, H.-I.1
Lee, S.-W.2
Shen, D.3
-
14
-
-
84907019192
-
Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
-
Suk, H.-I., Lee, S.-W., Shen, D., Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101:0 (2014), 569–582, 10.1016/j.neuroimage.2014.06.077.
-
(2014)
Neuroimage
, vol.101
, pp. 569-582
-
-
Suk, H.-I.1
Lee, S.-W.2
Shen, D.3
-
15
-
-
84921673966
-
Robust deep learning for improved classification of AD/MCI patients
-
G. Wu D. Zhang L. Zhou Springer International Publishing
-
Li, F., Tran, L., Thung, K.-H., Ji, S., Shen, D., Li, J., Robust deep learning for improved classification of AD/MCI patients. Wu, G., Zhang, D., Zhou, L., (eds.) Machine Learning in Medical Imaging, Vol. 8679 of Lecture Notes in Computer Science, 2014, Springer International Publishing, 240–247, 10.1007/978-3-319-10581-9_30.
-
(2014)
Machine Learning in Medical Imaging, Vol. 8679 of Lecture Notes in Computer Science
, pp. 240-247
-
-
Li, F.1
Tran, L.2
Thung, K.-H.3
Ji, S.4
Shen, D.5
Li, J.6
-
16
-
-
84885933775
-
Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network
-
K. Mori I. Sakuma Y. Sato C. Barillot N. Navab Springer Berlin/Heidelberg
-
Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M., Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N., (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2013, Vol. 8150 of Lecture Notes in Computer Science, 2013, Springer, Berlin/Heidelberg, 246–253, 10.1007/978-3-642-40763-5_31.
-
(2013)
Medical Image Computing and Computer-Assisted Intervention - MICCAI 2013, Vol. 8150 of Lecture Notes in Computer Science
, pp. 246-253
-
-
Prasoon, A.1
Petersen, K.2
Igel, C.3
Lauze, F.4
Dam, E.5
Nielsen, M.6
-
17
-
-
84876727324
-
Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review
-
Jalalian, A., Mashohor, S.B., Mahmud, H.R., Saripan, M.I.B., Ramli, A.R.B., Karasfi, B., Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin. Imaging 37:3 (2013), 420–426, 10.1016/j.clinimag.2012.09.024.
-
(2013)
Clin. Imaging
, vol.37
, Issue.3
, pp. 420-426
-
-
Jalalian, A.1
Mashohor, S.B.2
Mahmud, H.R.3
Saripan, M.I.B.4
Ramli, A.R.B.5
Karasfi, B.6
-
18
-
-
85040695751
-
Breast density scoring with multiscale denoising autoencoders
-
Petersen, K., Chernoff, K., Nielsen, M., Ng, A.Y., Breast density scoring with multiscale denoising autoencoders. in: STMI workshop at MICCAI 2012 (15th International Conference on Medical Image Computing and Computer Assisted Intervention), 2012.
-
(2012)
in: STMI workshop at MICCAI 2012 (15th International Conference on Medical Image Computing and Computer Assisted Intervention)
-
-
Petersen, K.1
Chernoff, K.2
Nielsen, M.3
Ng, A.Y.4
-
19
-
-
84903998168
-
Breast tissue segmentation and mammographic risk scoring using deep learning
-
H. Fujita T. Hara C. Muramatsu Springer International Publishing
-
Petersen, K., Nielsen, M., Diao, P., Karssemeijer, N., Lillholm, M., Breast tissue segmentation and mammographic risk scoring using deep learning. Fujita, H., Hara, T., Muramatsu, C., (eds.) Breast Imaging, Vol. 8539 of Lecture Notes in Computer Science, 2014, Springer International Publishing, 88–94, 10.1007/978-3-319-07887-8_13.
-
(2014)
Breast Imaging, Vol. 8539 of Lecture Notes in Computer Science
, pp. 88-94
-
-
Petersen, K.1
Nielsen, M.2
Diao, P.3
Karssemeijer, N.4
Lillholm, M.5
-
20
-
-
84896270629
-
A new approach for clustered MCs classification with sparse features learning and TWSVM
-
Zhang, X.-S., A new approach for clustered MCs classification with sparse features learning and TWSVM. Sci. World J., 2014, 970287, 10.1155/2014/970287.
-
(2014)
Sci. World J.
, pp. 970287
-
-
Zhang, X.-S.1
-
21
-
-
33746746440
-
Computer aided detection of clusters of microcalcifications on full field digital mammograms
-
Ge, J., Sahiner, B., Hadjiiski, L.M., Chan, H.-P., Wei, J., Helvie, M.A., Zhou, C., Computer aided detection of clusters of microcalcifications on full field digital mammograms. Med. Phys. 33:8 (2006), 2975–2988.
-
(2006)
Med. Phys.
, vol.33
, Issue.8
, pp. 2975-2988
-
-
Ge, J.1
Sahiner, B.2
Hadjiiski, L.M.3
Chan, H.-P.4
Wei, J.5
Helvie, M.A.6
Zhou, C.7
-
22
-
-
84874904675
-
Breast image feature learning with adaptive deconvolutional networks
-
Jamieson, A.R., Drukker, K., Giger, M.L., Breast image feature learning with adaptive deconvolutional networks. 2012, 10.1117/12.910710.
-
(2012)
-
-
Jamieson, A.R.1
Drukker, K.2
Giger, M.L.3
-
23
-
-
84918521509
-
The role of imaging techniques in diagnosis of breast cancer
-
Andreea, G.I., Pegza, R., Lascu, L., Bondari, S., Zoia Stoica, Z., Bondari, A., The role of imaging techniques in diagnosis of breast cancer. J. Curr. Health Sci. 37:2 (2011), 241–248.
-
(2011)
J. Curr. Health Sci.
, vol.37
, Issue.2
, pp. 241-248
-
-
Andreea, G.I.1
Pegza, R.2
Lascu, L.3
Bondari, S.4
Zoia Stoica, Z.5
Bondari, A.6
-
24
-
-
84923943411
-
Improving the Mann–Whitney statistical test for feature selection: an approach in breast cancer diagnosis on mammography
-
Pérez, N.P., López, M.A.G., Silva, A., Ramos, I., Improving the Mann–Whitney statistical test for feature selection: an approach in breast cancer diagnosis on mammography. Artif. Intell. Med., 2014, 10.1016/j.artmed.2014.12.004.
-
(2014)
Artif. Intell. Med.
-
-
Pérez, N.P.1
López, M.A.G.2
Silva, A.3
Ramos, I.4
-
25
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y., What is the best multi-stage architecture for object recognition?. in: Computer Vision, 2009 IEEE 12th International Conference on, 2009, 2146–2153, 10.1109/ICCV.2009.5459469.
-
(2009)
in: Computer Vision, 2009 IEEE 12th International Conference on
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
26
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
F. Pereira C. Burges L. Bottou K. Weinberger Curran Associates Inc.
-
Krizhevsky, A., Sutskever, I., Hinton, G.E., Imagenet classification with deep convolutional neural networks. Pereira, F., Burges, C., Bottou, L., Weinberger, K., (eds.) Advances in Neural Information Processing Systems 25, 2012, Curran Associates Inc., 1097–1105.
-
(2012)
Advances in Neural Information Processing Systems 25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
27
-
-
38949193299
-
Why is real-world visual object recognition hard?
-
Pinto, N., Cox, D.D., DiCarlo, J.J., Why is real-world visual object recognition hard?. PLoS Computat. Biol., 4(1), 2008, e27, 10.1371/journal.pcbi.0040027.
-
(2008)
PLoS Computat. Biol.
, vol.4
, Issue.1
, pp. e27
-
-
Pinto, N.1
Cox, D.D.2
DiCarlo, J.J.3
-
28
-
-
52249097028
-
Nonlinear image representation using divisive normalization
-
Lyu, S., Simoncelli, E., Nonlinear image representation using divisive normalization. IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, 2008, 1–8, 10.1109/CVPR.2008.4587821.
-
(2008)
IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008
, pp. 1-8
-
-
Lyu, S.1
Simoncelli, E.2
-
29
-
-
84867711674
-
Learning invariant feature hierarchies
-
A. Fusiello V. Murino R. Cucchiara Springer Berlin, Heidelberg, Florence, Italy
-
LeCun, Y., Learning invariant feature hierarchies. Fusiello, A., Murino, V., Cucchiara, R., (eds.) Computer Vision – ECCV. Workshops and Demonstrations, Vol. 7583 of Lecture Notes in Computer Science, 2012, Springer, Berlin, Heidelberg, Florence, Italy, 496–505, 10.1007/978-3-642-33863-2_51.
-
(2012)
Computer Vision – ECCV. Workshops and Demonstrations, Vol. 7583 of Lecture Notes in Computer Science
, pp. 496-505
-
-
LeCun, Y.1
-
30
-
-
77956002520
-
Learning multiple layers of features from tiny images, Tech. rep.
-
University of Toronto Toronto
-
Krizhevsky, A., Learning multiple layers of features from tiny images, Tech. rep. 2009, University of Toronto, Toronto.
-
(2009)
-
-
Krizhevsky, A.1
-
31
-
-
0034214886
-
Normalization of local contrast in mammograms
-
Veldkamp, W.J., Karssemeijer, N., Normalization of local contrast in mammograms. IEEE Trans. Med. Imaging 19:7 (2000), 731–738, 10.1109/42.875197.
-
(2000)
IEEE Trans. Med. Imaging
, vol.19
, Issue.7
, pp. 731-738
-
-
Veldkamp, W.J.1
Karssemeijer, N.2
-
32
-
-
84911432096
-
Is rotation a nuisance in shape recognition?
-
Ke, Q., Li, Y., Is rotation a nuisance in shape recognition?. in: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, 2014, 4146–4153, 10.1109/CVPR.2014.528.
-
(2014)
in: Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on
, pp. 4146-4153
-
-
Ke, Q.1
Li, Y.2
-
33
-
-
84897543523
-
Maxout networks
-
S. Dasgupta D. Mcallester JMLR Workshop and Conference Proceedings
-
Goodfellow, I., Warde-farley, D., Mirza, M., Courville, A., Bengio, Y., Maxout networks. Dasgupta, S., Mcallester, D., (eds.) Proceedings of the 30th International Conference on Machine Learning (ICML-13), Vol. 28, JMLR Workshop and Conference Proceedings, 2013, 1319–1327.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning (ICML-13), Vol. 28
, pp. 1319-1327
-
-
Goodfellow, I.1
Warde-farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
34
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15 (2014), 1929–1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
35
-
-
85040683512
-
-
Pylearn2: a machine learning research library, arXiv preprint arXiv:1308.4214.
-
I.J. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin, M. Mirza, R. Pascanu, J. Bergstra, F. Bastien, Y. Bengio, Pylearn2: a machine learning research library, arXiv preprint arXiv:1308.4214.
-
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Lamblin, P.3
Dumoulin, V.4
Mirza, M.5
Pascanu, R.6
Bergstra, J.7
Bastien, F.8
Bengio, Y.9
-
36
-
-
84897544737
-
Theano: new features and speed improvements
-
Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A., Bouchard, N., Bengio, Y., Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.
-
(2012)
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.J.5
Bergeron, A.6
Bouchard, N.7
Bengio, Y.8
-
37
-
-
84857855190
-
Random search for hyper-parameter optimization
-
Bergstra, J., Bengio, Y., Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13 (2012), 281–305.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
38
-
-
84903724014
-
Deep learning: methods and applications
-
Deng, L., Yu, D., Deep learning: methods and applications. Found. Trends Signal Process. 7:3–4 (2014), 197–387.
-
(2014)
Found. Trends Signal Process.
, vol.7
, Issue.3-4
, pp. 197-387
-
-
Deng, L.1
Yu, D.2
-
39
-
-
85040650898
-
-
Decaf: A deep convolutional activation feature for generic visual recognition, arXiv preprint arXiv:1310.1531.
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, Decaf: A deep convolutional activation feature for generic visual recognition, arXiv preprint arXiv:1310.1531.
-
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
40
-
-
84898805253
-
Detecting avocados to zucchinis: what have we done, and where are we going?
-
Russakovsky, O., Deng, J., Huang, Z., Berg, A.C., Fei-Fei, L., Detecting avocados to zucchinis: what have we done, and where are we going?. in: International Conference on Computer Vision (ICCV), 2013.
-
(2013)
in: International Conference on Computer Vision (ICCV)
-
-
Russakovsky, O.1
Deng, J.2
Huang, Z.3
Berg, A.C.4
Fei-Fei, L.5
-
41
-
-
84984623442
-
Supervised greedy layer-wise training for deep convolutional networks with small datasets
-
M. Nú nez N. Nguyen D. Camacho B. Trawiński Springer International Publishing
-
Rueda-Plata, D., Ramos-Pollán, R., González, F.A., Supervised greedy layer-wise training for deep convolutional networks with small datasets. Nú nez, M., Nguyen, N., Camacho, D., Trawiński, B., (eds.) Computational Collective Intelligence, Vol. 9329 of Lecture Notes in Computer Science, 2015, Springer International Publishing, 275–284, 10.1007/978-3-319-24069-5_26.
-
(2015)
Computational Collective Intelligence, Vol. 9329 of Lecture Notes in Computer Science
, pp. 275-284
-
-
Rueda-Plata, D.1
Ramos-Pollán, R.2
González, F.A.3
|