-
1
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
2
-
-
84910651844
-
Deep learning in neural networks: An overview
-
J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Netw., vol. 61, pp. 85-117, 2015.
-
(2015)
Neural Netw.
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
3
-
-
84973911419
-
-
ArXiv:150201852v1
-
K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification," ArXiv:150201852v1, 2015.
-
(2015)
Delving Deep into Rectifiers: Surpassing Human-level Performance on Imagenet Classification
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
4
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Adv. Neural Inf. Process. Syst., 2012, vol. 25, pp. 1097-1105.
-
(2012)
Adv. Neural Inf. Process. Syst.
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
5
-
-
84861776914
-
Multi-column deep neural network for traffic sign classification
-
D. C. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, "Multi-column deep neural network for traffic sign classification," Neural Netw., vol. 32, pp. 333-338, 2012.
-
(2012)
Neural Netw.
, vol.32
, pp. 333-338
-
-
Ciresan, D.C.1
Meier, U.2
Masci, J.3
Schmidhuber, J.4
-
6
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
Proc. MICCAI
-
D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, "Mitosis detection in breast cancer histology images with deep neural networks," in Proc. MICCAI, 2013, vol. 8150, LNCS, pp. 411-418.
-
(2013)
LNCS
, vol.8150
, pp. 411-418
-
-
Ciresan, D.C.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
7
-
-
84906980652
-
Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features
-
Proc. MICCAI
-
Y. Guo, G. Wu, L. A. Commander, S. Szary, V. Jewells, W. Lin, and D. Shent, "Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features," in Proc. MICCAI, 2014, vol. 8674, LNCS, pp. 308-315.
-
(2014)
LNCS
, vol.8674
, pp. 308-315
-
-
Guo, Y.1
Wu, G.2
Commander, L.A.3
Szary, S.4
Jewells, V.5
Lin, W.6
Shent, D.7
-
8
-
-
84885929616
-
A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
-
Proc. MICCAI
-
A. A. Cruz-Roa, J. E. Arevalo Ovalle, A. Madabhushi, and F. A. González Osorio, "A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection," Proc. MICCAI, vol. 8150, LNCS, pp. 403-410, 2013.
-
(2013)
LNCS
, vol.8150
, pp. 403-410
-
-
Cruz-Roa, A.A.1
Arevalo Ovalle, J.E.2
Madabhushi, A.3
González Osorio, F.A.4
-
9
-
-
0037806811
-
The boosting approach to machine learning: An overview
-
Nonlinear Estimation and Classification. New York: Springer
-
R. E. Schapire, "The boosting approach to machine learning: An overview," in Nonlinear Estimation and Classification. New York: Springer, 2003, vol. 171, LNCS, pp. 149-171.
-
(2003)
LNCS
, vol.171
, pp. 149-171
-
-
Schapire, R.E.1
-
10
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119-139, 1997.
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
11
-
-
84944326660
-
Automatic detection of cerebral microbleeds via deep learning based 3d feature representation
-
H. Chen et al., "Automatic detection of cerebral microbleeds via deep learning based 3d feature representation," in Proc. IEEE Int. Symp. Biomed. Imag., 2015, pp. 764-767.
-
(2015)
Proc. IEEE Int. Symp. Biomed. Imag.
, pp. 764-767
-
-
Chen, H.1
-
12
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Y. Freund, E. Shamir, and N. Tishby, "Selective sampling using the query by committee algorithm," Mach. Learn., vol. 28, no. 2, pp. 133-168, 1997.
-
(1997)
Mach. Learn.
, vol.28
, Issue.2
, pp. 133-168
-
-
Freund, Y.1
Shamir, E.2
Tishby, N.3
-
13
-
-
84875898112
-
Dynamic sampling approach to training neural networks for multiclass imbalance classification
-
Apr
-
M. Lin, K. Tang, and X. Yao, "Dynamic sampling approach to training neural networks for multiclass imbalance classification," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 4, pp. 647-660, Apr. 2013.
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.24
, Issue.4
, pp. 647-660
-
-
Lin, M.1
Tang, K.2
Yao, X.3
-
14
-
-
63449090301
-
Learning on the border: Active learning in imbalanced data classification
-
S. Ertekin, J. Huang, L. Bottou, and L. Giles, "Learning on the border: active learning in imbalanced data classification," in Proc. 16th ACM Conf. Inf. Knowl. Manage., 2007, pp. 127-136.
-
(2007)
Proc. 16th ACM Conf. Inf. Knowl. Manage.
, pp. 127-136
-
-
Ertekin, S.1
Huang, J.2
Bottou, L.3
Giles, L.4
-
15
-
-
77955013602
-
Diabetic retinopathy
-
N. Cheung, P. Mitchell, and T. Y. Wong, "Diabetic retinopathy," Lancet, vol. 376, no. 9735, pp. 124-136, 2010.
-
(2010)
Lancet
, vol.376
, Issue.9735
, pp. 124-136
-
-
Cheung, N.1
Mitchell, P.2
Wong, T.Y.3
-
16
-
-
78650207175
-
Retinal imaging and image analysis
-
M. D. Abràmoff, M. K. Garvin, and M. Sonka, "Retinal imaging and image analysis," IEEE Rev. Biomed. Eng., vol. 3, pp. 169-208, 2010.
-
(2010)
IEEE Rev. Biomed. Eng.
, vol.3
, pp. 169-208
-
-
Abràmoff, M.D.1
Garvin, M.K.2
Sonka, M.3
-
17
-
-
84866759331
-
A survey on hemorrhage detection in diabetic retinopathy retinal images
-
P. Jitpakdee, P. Aimmanee, and B. Uyyanonvara, "A survey on hemorrhage detection in diabetic retinopathy retinal images," in Proc. 9th Int. Conf. Elect. Eng./Electron., Comput., Telecommun. Inf. Technol., 2012, pp. 1-4.
-
(2012)
Proc. 9th Int. Conf. Elect. Eng./Electron., Comput., Telecommun. Inf. Technol.
, pp. 1-4
-
-
Jitpakdee, P.1
Aimmanee, P.2
Uyyanonvara, B.3
-
18
-
-
77958031194
-
Automatic detection of microaneurysms and hemorrhages in digital fundus images
-
G. B. Kande, T. S. Savithri, and P. V. Subbaiah, "Automatic detection of microaneurysms and hemorrhages in digital fundus images," J. Digit. Imag., vol. 23, no. 4, pp. 430-437, 2010.
-
(2010)
J. Digit. Imag.
, vol.23
, Issue.4
, pp. 430-437
-
-
Kande, G.B.1
Savithri, T.S.2
Subbaiah, P.V.3
-
19
-
-
54449099727
-
Optimal wavelet transform for the detection of microaneurysms in retina photographs
-
Sep
-
G. Quellec et al., "Optimal wavelet transform for the detection of microaneurysms in retina photographs," IEEE Trans. Med. Imag., vol. 27, no. 9, pp. 1230-1241, Sep. 2008.
-
(2008)
IEEE Trans. Med. Imag.
, vol.27
, Issue.9
, pp. 1230-1241
-
-
Quellec, G.1
-
20
-
-
84867301944
-
Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy
-
U. M. Akram and S. A. Khan, "Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy," J. Med. Syst., vol. 36, no. 5, pp. 3151-3162, 2012.
-
(2012)
J. Med. Syst.
, vol.36
, Issue.5
, pp. 3151-3162
-
-
Akram, U.M.1
Khan, S.A.2
-
21
-
-
18844459424
-
Automatic detection of red lesions in digital color fundus photographs
-
May
-
M. Niemeijer, B. van Ginneken, J. Staal, M. S. A. Suttorp-Schulten, and M. D. Abràmoff, "Automatic detection of red lesions in digital color fundus photographs," IEEE Trans. Med. Imag., vol. 24, no. 5, pp. 584-592, May 2005.
-
(2005)
IEEE Trans. Med. Imag.
, vol.24
, Issue.5
, pp. 584-592
-
-
Niemeijer, M.1
Van Ginneken, B.2
Staal, J.3
Suttorp-Schulten, M.S.A.4
Abràmoff, M.D.5
-
22
-
-
84887996882
-
Improving microaneurysm detection in color fundus images by using context-aware approaches
-
B. Antal and A. Hajdu, "Improving microaneurysm detection in color fundus images by using context-aware approaches," Comput. Med. Imag. Graph., vol. 37, no. 5, pp. 403-408, 2013.
-
(2013)
Comput. Med. Imag. Graph.
, vol.37
, Issue.5
, pp. 403-408
-
-
Antal, B.1
Hajdu, A.2
-
23
-
-
0036122499
-
Automated detection of diabetic retinopathy on digital fundus images
-
C. Sinthanayothin et al., "Automated detection of diabetic retinopathy on digital fundus images," Diabetic Med., vol. 19, no. 2, pp. 105-112, 2002.
-
(2002)
Diabetic Med.
, vol.19
, Issue.2
, pp. 105-112
-
-
Sinthanayothin, C.1
-
24
-
-
84968535148
-
Certain investigation of the retinal hemorrhage detection in fundus images
-
S. Deepa and S. Vijayprasath, "Certain investigation of the retinal hemorrhage detection in fundus images," Int. J. Electron. Commun. Eng., vol. 2, no. 2, pp. 29-40, 2015.
-
(2015)
Int. J. Electron. Commun. Eng.
, vol.2
, Issue.2
, pp. 29-40
-
-
Deepa, S.1
Vijayprasath, S.2
-
25
-
-
84873307847
-
Splat feature classification with application to retinal hemorrhage detection in fundus images
-
Feb
-
L. Tang, M. Niemeijer, J. M. Reinhardt, M. K. Garvin, and M. D. Abràmoff, "Splat feature classification with application to retinal hemorrhage detection in fundus images," IEEE Trans. Med. Imag., vol. 32, no. 2, pp. 364-375, Feb. 2013.
-
(2013)
IEEE Trans. Med. Imag.
, vol.32
, Issue.2
, pp. 364-375
-
-
Tang, L.1
Niemeijer, M.2
Reinhardt, J.M.3
Garvin, M.K.4
Abràmoff, M.D.5
-
26
-
-
0019397313
-
Generalizing the hough transform to detect arbitrary shapes
-
D. Ballard, "Generalizing the hough transform to detect arbitrary shapes," Pattern Recognit., vol. 13, no. 2, pp. 111-122, 1981.
-
(1981)
Pattern Recognit.
, vol.13
, Issue.2
, pp. 111-122
-
-
Ballard, D.1
-
27
-
-
79953738869
-
Retinal image analysis: Preprocessing and feature extraction
-
A. G. Marrugo and M. S. Millán, "Retinal image analysis: Preprocessing and feature extraction," in J. Phys., Conf. Ser., 2011, vol. 274, p. 012039.
-
(2011)
J. Phys., Conf. Ser.
, vol.274
-
-
Marrugo, A.G.1
Millán, M.S.2
-
28
-
-
84968630623
-
A comparative study on preprocessing techniques in diabetic retinopathy retinal images: Illumination correction and contrast enhancement
-
S. H. Rasta, M. E. Partovi, H. Seyedarabi, and A. Javadzadeh, "A comparative study on preprocessing techniques in diabetic retinopathy retinal images: illumination correction and contrast enhancement," J. Med. Signals Sensors, vol. 5, no. 1, pp. 40-48, 2015.
-
(2015)
J. Med. Signals Sensors
, vol.5
, Issue.1
, pp. 40-48
-
-
Rasta, S.H.1
Partovi, M.E.2
Seyedarabi, H.3
Javadzadeh, A.4
-
31
-
-
84909643400
-
2D view aggregation for lymph node detection using a shallow hierarchy of linear classifiers
-
Proc. MICCAI
-
A. Seff et al., "2D view aggregation for lymph node detection using a shallow hierarchy of linear classifiers," Proc. MICCAI, vol. 8673, LNCS, pp. 544-552, 2014.
-
(2014)
LNCS
, vol.8673
, pp. 544-552
-
-
Seff, A.1
-
33
-
-
0024622633
-
An efficient parallel algorithm for random sampling
-
V. Rajan, R. K. Ghosh, and P. Gupta, "An efficient parallel algorithm for random sampling," Inform. Process. Lett., vol. 30, no. 5, pp. 265-268, 1989.
-
(1989)
Inform. Process. Lett.
, vol.30
, Issue.5
, pp. 265-268
-
-
Rajan, V.1
Ghosh, R.K.2
Gupta, P.3
-
34
-
-
84855568161
-
Roulette-wheel selection via stochastic acceptance
-
A. Lipowski and D. Lipowska, "Roulette-wheel selection via stochastic acceptance," Physica A, Stat. Mechan. Appl., vol. 391, no. 6, pp. 2193-2196, 2012.
-
(2012)
Physica A, Stat. Mechan. Appl.
, vol.391
, Issue.6
, pp. 2193-2196
-
-
Lipowski, A.1
Lipowska, D.2
-
35
-
-
69249157784
-
ROC, LROC, FROC, AFROC: An alphabet soup
-
X. He and E. Frey, "ROC, LROC, FROC, AFROC: An alphabet soup," J. Am. Coll. Radiol., vol. 6, no. 9, pp. 652-655, 2009.
-
(2009)
J. Am. Coll. Radiol.
, vol.6
, Issue.9
, pp. 652-655
-
-
He, X.1
Frey, E.2
-
36
-
-
84877088163
-
Automatic drusen quantification and risk assessment of age-related macular degeneration on color fundus images
-
M. J. J. P. van Grinsven et al., "Automatic drusen quantification and risk assessment of age-related macular degeneration on color fundus images," Invest. Ophthalmol. Vis. Sci., vol. 54, no. 4, pp. 3019-3027, 2013.
-
(2013)
Invest. Ophthalmol. Vis. Sci.
, vol.54
, Issue.4
, pp. 3019-3027
-
-
Van Grinsven, M.J.J.P.1
-
37
-
-
0037380362
-
Computer-aided detection versus independent double reading of masses on mammograms
-
N. Karssemeijer et al., "Computer-aided detection versus independent double reading of masses on mammograms," Radiology, vol. 227, no. 1, pp. 192-200, 2003.
-
(2003)
Radiology
, vol.227
, Issue.1
, pp. 192-200
-
-
Karssemeijer, N.1
-
38
-
-
84920871126
-
Automated localization of breast cancer in DCE-MRI
-
A. Gubern-Mérida et al., "Automated localization of breast cancer in DCE-MRI," Med. Image Anal., vol. 20, no. 1, pp. 265-274, 2015.
-
(2015)
Med. Image Anal.
, vol.20
, Issue.1
, pp. 265-274
-
-
Gubern-Mérida, A.1
-
40
-
-
36349025824
-
Advantages and examples of resampling for CAD evaluation
-
F. Samuelson, N. Petrick, and S. Paquerault, "Advantages and examples of resampling for CAD evaluation," in Proc. IEEE Int. Symp. Biomed. Imag., 2007, pp. 492-495.
-
(2007)
Proc. IEEE Int. Symp. Biomed. Imag.
, pp. 492-495
-
-
Samuelson, F.1
Petrick, N.2
Paquerault, S.3
-
41
-
-
84857855190
-
Random search for hyper-parameter optimization
-
J. Bergstra and Y. Bengio, "Random search for hyper-parameter optimization," J. Mach. Learn. Res., vol. 13, no. 1, pp. 281-305, 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, Issue.1
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
42
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
44
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Aug
-
C. Farabet, C. Couprie, L. Najman, and Y. LeCun, "Learning hierarchical features for scene labeling," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1915-1929, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
45
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
N. V. Chawla, N. Japkowicz, and A. Kotcz, "Editorial: Special issue on learning from imbalanced data sets," SIGKDD Explorat., vol. 6, pp. 1-6, 2004.
-
(2004)
SIGKDD Explorat.
, vol.6
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
46
-
-
68549133155
-
Learning from imbalanced data
-
Sep
-
H. He and E. A. Garcia, "Learning from imbalanced data," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
48
-
-
70849126253
-
The unreasonable effectiveness of data
-
Mar./Apr
-
A. Halevy, P. Norvig, and F. Pereira, "The unreasonable effectiveness of data," IEEE Intell. Syst., vol. 24, no. 2, pp. 8-12, Mar./Apr. 2009.
-
(2009)
IEEE Intell. Syst.
, vol.24
, Issue.2
, pp. 8-12
-
-
Halevy, A.1
Norvig, P.2
Pereira, F.3
|