메뉴 건너뛰기




Volumn 35, Issue 5, 2016, Pages 1252-1261

Automatic Segmentation of MR Brain Images with a Convolutional Neural Network

Author keywords

Adult brain; automatic image segmentation; convolutional neural networks; deep learning; MRI; preterm neonatal brain

Indexed keywords

BRAIN MAPPING; CLASSIFICATION (OF INFORMATION); CONVOLUTION; IMAGE ACQUISITION; MAGNETIC RESONANCE IMAGING; NEURAL NETWORKS; TISSUE; TISSUE ENGINEERING;

EID: 84968626579     PISSN: 02780062     EISSN: 1558254X     Source Type: Journal    
DOI: 10.1109/TMI.2016.2548501     Document Type: Article
Times cited : (842)

References (46)
  • 1
    • 1942437161 scopus 로고    scopus 로고
    • Thinning of the cerebral cortex in aging
    • D. H. Salat et al., "Thinning of the cerebral cortex in aging," Cereb Cortex, vol. 14, no. 7, pp. 721-730, 2004.
    • (2004) Cereb Cortex , vol.14 , Issue.7 , pp. 721-730
    • Salat, D.H.1
  • 2
    • 49449088710 scopus 로고    scopus 로고
    • Primary cortical folding in the human newborn: An early marker of later functional development
    • Aug.
    • J. Dubois et al., "Primary cortical folding in the human newborn: An early marker of later functional development," Brain, vol. 131, pp. 2028-2041, Aug. 2008.
    • (2008) Brain , vol.131 , pp. 2028-2041
    • Dubois, J.1
  • 3
    • 44249112798 scopus 로고    scopus 로고
    • A framework for in vivo quantification of regional brain folding in premature neonates
    • Jun.
    • C. E. Rodriguez-Carranza, P. Mukherjee, D. Vigneron, J. Barkovich, and C. Studholme, "A framework for in vivo quantification of regional brain folding in premature neonates," NeuroImage, vol. 41, pp. 462-478, Jun. 2008.
    • (2008) NeuroImage , vol.41 , pp. 462-478
    • Rodriguez-Carranza, C.E.1    Mukherjee, P.2    Vigneron, D.3    Barkovich, J.4    Studholme, C.5
  • 4
    • 77954952162 scopus 로고    scopus 로고
    • Longitudinal changes in cortical thickness associated with normal aging
    • M. Thambisetty et al., "Longitudinal changes in cortical thickness associated with normal aging," NeuroImage, vol. 52, no. 4, pp. 1215-1223, 2010.
    • (2010) NeuroImage , vol.52 , Issue.4 , pp. 1215-1223
    • Thambisetty, M.1
  • 5
    • 84885918752 scopus 로고    scopus 로고
    • The structure of the cerebral cortex across adult life: Age-related patterns of surface area, thickness, and gyrification
    • L. J. Hogstrom, L. T. Westlye, K.B. Walhovd,and A. M. Fjell, "The structure of the cerebral cortex across adult life: Age-related patterns of surface area, thickness, and gyrification," Cereb Cortex, vol. 23, no. 11, pp. 2521-2530, 2013.
    • (2013) Cereb Cortex , vol.23 , Issue.11 , pp. 2521-2530
    • Hogstrom, L.J.1    Westlye, L.T.2    Walhovd, K.B.3    Fjell, A.M.4
  • 6
    • 84896264813 scopus 로고    scopus 로고
    • Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age
    • G. Li et al., "Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age," J. Neurosci., vol. 34, no. 12, pp. 4228-4238, 2014.
    • (2014) J. Neurosci. , vol.34 , Issue.12 , pp. 4228-4238
    • Li, G.1
  • 7
    • 84938604195 scopus 로고    scopus 로고
    • Dynamic development of regional cortical thickness and surface area in early childhood
    • A. E. Lyall et al., "Dynamic development of regional cortical thickness and surface area in early childhood," Cereb Cortex, vol. 25, no. 8, pp. 2204-2212, 2014.
    • (2014) Cereb Cortex , vol.25 , Issue.8 , pp. 2204-2212
    • Lyall, A.E.1
  • 8
    • 84896737706 scopus 로고    scopus 로고
    • Automatic quantification of normal cortical folding patterns from fetal brain MRI
    • R. Wright et al., "Automatic quantification of normal cortical folding patterns from fetal brain MRI," NeuroImage, vol. 91, pp. 21-32, 2014.
    • (2014) NeuroImage , vol.91 , pp. 21-32
    • Wright, R.1
  • 9
    • 84941351387 scopus 로고    scopus 로고
    • Development of cortical morphology evaluated with longitudinal MR brain images of preterm infants
    • P. Moeskops et al., "Development of cortical morphology evaluated with longitudinal MR brain images of preterm infants," PLOS ONE, vol. 10, no. 7, p. e0131552, 2015.
    • (2015) PLOS ONE , vol.10 , Issue.7
    • Moeskops, P.1
  • 10
    • 18244406829 scopus 로고    scopus 로고
    • Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain
    • B. Fischl et al., "Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain," Neuron, vol. 33, no. 3, pp. 341-355, 2002.
    • (2002) Neuron , vol.33 , Issue.3 , pp. 341-355
    • Fischl, B.1
  • 11
    • 23844494015 scopus 로고    scopus 로고
    • Automatic segmentation of MR images of the developing newborn brain
    • M. Prastawa, J. H. Gilmore, W. Lin, and G. Gerig, "Automatic segmentation of MR images of the developing newborn brain," Med. Image Anal., vol. 9, no. 5, pp. 457-466, 2005.
    • (2005) Med. Image Anal. , vol.9 , Issue.5 , pp. 457-466
    • Prastawa, M.1    Gilmore, J.H.2    Lin, W.3    Gerig, G.4
  • 12
    • 35148872689 scopus 로고    scopus 로고
    • Automatic segmentation and reconstruction of the cortex from neonatal MRI
    • H. Xue et al., "Automatic segmentation and reconstruction of the cortex from neonatal MRI," NeuroImage, vol. 38, no. 3, pp. 461-477, 2007.
    • (2007) NeuroImage , vol.38 , Issue.3 , pp. 461-477
    • Xue, H.1
  • 13
    • 67349126887 scopus 로고    scopus 로고
    • Automatic segmentation of newborn brain MRI
    • N. I. Weisenfeld and S. K. Warfield, "Automatic segmentation of newborn brain MRI," NeuroImage, vol. 47, no. 2, pp. 564-572, 2009.
    • (2009) NeuroImage , vol.47 , Issue.2 , pp. 564-572
    • Weisenfeld, N.I.1    Warfield, S.K.2
  • 14
    • 77956276314 scopus 로고    scopus 로고
    • Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses
    • P. A. Habas et al., "Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses," Hum. Brain Mapp., vol. 31, no. 9, pp. 1348-1358, 2010.
    • (2010) Hum. Brain Mapp. , vol.31 , Issue.9 , pp. 1348-1358
    • Habas, P.A.1
  • 15
    • 70349974425 scopus 로고    scopus 로고
    • Neonatal brain image segmentation in longitudinal MRI studies
    • F. Shi, Y. Fan, S. Tang, J. H. Gilmore, W. Lin, and D. Shen, "Neonatal brain image segmentation in longitudinal MRI studies," NeuroImage, vol. 49, no. 1, pp. 391-400, 2010.
    • (2010) NeuroImage , vol.49 , Issue.1 , pp. 391-400
    • Shi, F.1    Fan, Y.2    Tang, S.3    Gilmore, J.H.4    Lin, W.5    Shen, D.6
  • 16
    • 84868231259 scopus 로고    scopus 로고
    • AdaPT: An adaptive preterm segmentation algorithm for neonatal brain MRI
    • M. J. Cardoso et al., "AdaPT: An adaptive preterm segmentation algorithm for neonatal brain MRI," NeuroImage, vol. 65, pp. 97-108, 2013.
    • (2013) NeuroImage , vol.65 , pp. 97-108
    • Cardoso, M.J.1
  • 17
    • 84906877874 scopus 로고    scopus 로고
    • Automatic whole brain MRI segmentation of the developing neonatal brain
    • Sep.
    • A. Makropoulos et al., "Automatic whole brain MRI segmentation of the developing neonatal brain," IEEE Trans. Med. Imag., vol. 33, no. 9, pp. 1818-1831, Sep. 2014.
    • (2014) IEEE Trans. Med. Imag. , vol.33 , Issue.9 , pp. 1818-1831
    • Makropoulos, A.1
  • 18
    • 84920882082 scopus 로고    scopus 로고
    • LINKS: Learning-based multi-source integration framework for segmentation of infant brain images
    • L. Wang et al., "LINKS: Learning-based multi-source integration framework for segmentation of infant brain images," NeuroImage, vol. 108, pp. 160-172, 2015.
    • (2015) NeuroImage , vol.108 , pp. 160-172
    • Wang, L.1
  • 19
    • 84940439646 scopus 로고    scopus 로고
    • Automatic segmentation of MR brain images of preterm infants using supervised classification
    • P. Moeskops et al., "Automatic segmentation of MR brain images of preterm infants using supervised classification," NeuroImage, vol. 118, pp. 628-641, 2015.
    • (2015) NeuroImage , vol.118 , pp. 628-641
    • Moeskops, P.1
  • 20
    • 34447568454 scopus 로고    scopus 로고
    • Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification
    • H. A. Vrooman et al., "Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification," NeuroImage, vol. 37, no. 1, pp. 71-81, 2007.
    • (2007) NeuroImage , vol.37 , Issue.1 , pp. 71-81
    • Vrooman, H.A.1
  • 22
    • 84892971066 scopus 로고    scopus 로고
    • Automatic segmentation of eight tissue classes in neonatal brain MRI
    • P. Anbeek et al., "Automatic segmentation of eight tissue classes in neonatal brain MRI," PLOS ONE, vol. 8, no. 12, p. e81895, 2013.
    • (2013) PLOS ONE , vol.8 , Issue.12
    • Anbeek, P.1
  • 23
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 25
    • 84885933775 scopus 로고    scopus 로고
    • Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network
    • A. Prasoon et al., "Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network," in Proc. MICCAI, 2013, pp. 246-253.
    • (2013) Proc. MICCAI , pp. 246-253
    • Prasoon, A.1
  • 26
    • 84909644435 scopus 로고    scopus 로고
    • A new 2.5 D representation for lymph node detection using random sets of deep convolutional neural network observations
    • H. R. Roth et al., "A new 2.5 D representation for lymph node detection using random sets of deep convolutional neural network observations," in Proc. MICCAI, 2014, pp. 520-527.
    • (2014) Proc. MICCAI , pp. 520-527
    • Roth, H.R.1
  • 27
    • 84920921065 scopus 로고    scopus 로고
    • Assessment of algorithms for mitosis detection in breast cancer histopathology images
    • M. Veta et al., "Assessment of algorithms for mitosis detection in breast cancer histopathology images," Med. Image Anal., vol. 20, no. 1, pp. 237-248, 2015.
    • (2015) Med. Image Anal. , vol.20 , Issue.1 , pp. 237-248
    • Veta, M.1
  • 28
    • 84943426034 scopus 로고    scopus 로고
    • Deep convolutional networks for pancreas segmentation in CT imaging
    • H. R. Roth, A. Farag, L. Lu, E. B. Turkbey, and R. M. Summers, "Deep convolutional networks for pancreas segmentation in CT imaging," in SPIE Med. Imag., 2015, pp. 94131G-94131G.
    • (2015) SPIE Med. Imag.
    • Roth, H.R.1    Farag, A.2    Lu, L.3    Turkbey, E.B.4    Summers, R.M.5
  • 29
    • 84947475390 scopus 로고    scopus 로고
    • DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation
    • H. R. Roth et al., "DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation," in Proc. MICCAI, 2015, pp. 556-564.
    • (2015) Proc. MICCAI , pp. 556-564
    • Roth, H.R.1
  • 30
    • 84943754825 scopus 로고    scopus 로고
    • Deep learning with non-medical training used for chest pathology identification
    • Y. Bar, I. Diamant, L. Wolf, and H. Greenspan, "Deep learning with non-medical training used for chest pathology identification," in Proc. SPIE Med. Imag., 2015, pp. 94140V-94140V.
    • (2015) Proc. SPIE Med. Imag.
    • Bar, Y.1    Diamant, I.2    Wolf, L.3    Greenspan, H.4
  • 32
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
    • W. Zhang et al., "Deep convolutional neural networks for multi-modality isointense infant brain image segmentation," NeuroImage, vol. 108, pp. 214-224, 2015.
    • (2015) NeuroImage , vol.108 , pp. 214-224
    • Zhang, W.1
  • 33
    • 84943752367 scopus 로고    scopus 로고
    • Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box
    • F. Ciompi et al., "Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box," Med. Image Anal., vol. 26, no. 1, pp. 195-202, 2015.
    • (2015) Med. Image Anal. , vol.26 , Issue.1 , pp. 195-202
    • Ciompi, F.1
  • 34
    • 84947484146 scopus 로고    scopus 로고
    • Automatic coronary calcium scoring in cardiac CT angiography using convolutional neural networks
    • J. M. Wolterink, T. Leiner, M. A. Viergever, and I. Išgum, "Automatic coronary calcium scoring in cardiac CT angiography using convolutional neural networks," in Proc. MICCAI, 2015, pp. 589-596.
    • (2015) Proc. MICCAI , pp. 589-596
    • Wolterink, J.M.1    Leiner, T.2    Viergever, M.A.3    Išgum, I.4
  • 35
    • 84920895738 scopus 로고    scopus 로고
    • Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge
    • I. Išgum et al., "Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge," Med. Image Anal., vol. 20, no. 1, pp. 135-151, 2015.
    • (2015) Med. Image Anal. , vol.20 , Issue.1 , pp. 135-151
    • Išgum, I.1
  • 36
    • 84950116370 scopus 로고    scopus 로고
    • MRBrainS challenge: Online evaluation framework for brain image segmentation in 3T MRI scans
    • A. M. Mendrik et al., "MRBrainS challenge: Online evaluation framework for brain image segmentation in 3T MRI scans," Comput. Intell. Neurosci., 2015.
    • (2015) Comput. Intell. Neurosci.
    • Mendrik, A.M.1
  • 37
    • 80054736963 scopus 로고    scopus 로고
    • Traffic sign recognition with multi-scale convolutional networks
    • P. Sermanet and Y. LeCun, "Traffic sign recognition with multi-scale convolutional networks," in Proc. Int. Joint Conf. Neural Netw.,2011, pp. 2809-2813.
    • (2011) Proc. Int. Joint Conf. Neural Netw. , pp. 2809-2813
    • Sermanet, P.1    LeCun, Y.2
  • 38
    • 84865114819 scopus 로고    scopus 로고
    • Multi-scale convolutional neural networks for natural scene license plate detection
    • J. Li, C. Niu, and M. Fan, "Multi-scale convolutional neural networks for natural scene license plate detection," in Adv. Neural Netw., 2012, pp. 110-119.
    • (2012) Adv. Neural Netw. , pp. 110-119
    • Li, J.1    Niu, C.2    Fan, M.3
  • 39
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 807-814.
    • (2010) Proc. 27th Int. Conf. Mach. Learn. , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 41
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
    • T. Tieleman and G. Hinton, "Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude," in COURSERA: Neural Netw. Mach. Learn., 2012, vol. 4.
    • (2012) COURSERA: Neural Netw. Mach. Learn. , vol.4
    • Tieleman, T.1    Hinton, G.2
  • 42
    • 84870060046 scopus 로고    scopus 로고
    • Morphology-driven automatic segmentation of MR images of the neonatal brain
    • L. Gui et al., "Morphology-driven automatic segmentation of MR images of the neonatal brain," Med. Image Anal., vol. 16, no. 8, pp. 1565-1579, 2012.
    • (2012) Med. Image Anal. , vol.16 , Issue.8 , pp. 1565-1579
    • Gui, L.1
  • 43
    • 34548409688 scopus 로고    scopus 로고
    • Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
    • D. S. Marcus et al., "Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults," J. Cognitive Neurosci., vol. 19, no. 9, pp. 1498-1507, 2007.
    • (2007) J. Cognitive Neurosci. , vol.19 , Issue.9 , pp. 1498-1507
    • Marcus, D.S.1
  • 45
    • 0035544623 scopus 로고    scopus 로고
    • Retrospective correction of MR intensity inhomogeneity by entropy minimization
    • B. Likar, M. A. Viergever, and F. Pernus, "Retrospective correction of MR intensity inhomogeneity by entropy minimization," IEEE Trans. Med. Imag., vol. 20, pp. 1398-1410, 2001.
    • (2001) IEEE Trans. Med. Imag. , vol.20 , pp. 1398-1410
    • Likar, B.1    Viergever, M.A.2    Pernus, F.3
  • 46
    • 0036828879 scopus 로고    scopus 로고
    • Fast robust automated brain extraction
    • S. M. Smith, "Fast robust automated brain extraction," Hum. Brain Mapp., vol. 17, no. 3, pp. 143-155, 2002.
    • (2002) Hum. Brain Mapp. , vol.17 , Issue.3 , pp. 143-155
    • Smith, S.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.