-
1
-
-
1942437161
-
Thinning of the cerebral cortex in aging
-
D. H. Salat et al., "Thinning of the cerebral cortex in aging," Cereb Cortex, vol. 14, no. 7, pp. 721-730, 2004.
-
(2004)
Cereb Cortex
, vol.14
, Issue.7
, pp. 721-730
-
-
Salat, D.H.1
-
2
-
-
49449088710
-
Primary cortical folding in the human newborn: An early marker of later functional development
-
Aug.
-
J. Dubois et al., "Primary cortical folding in the human newborn: An early marker of later functional development," Brain, vol. 131, pp. 2028-2041, Aug. 2008.
-
(2008)
Brain
, vol.131
, pp. 2028-2041
-
-
Dubois, J.1
-
3
-
-
44249112798
-
A framework for in vivo quantification of regional brain folding in premature neonates
-
Jun.
-
C. E. Rodriguez-Carranza, P. Mukherjee, D. Vigneron, J. Barkovich, and C. Studholme, "A framework for in vivo quantification of regional brain folding in premature neonates," NeuroImage, vol. 41, pp. 462-478, Jun. 2008.
-
(2008)
NeuroImage
, vol.41
, pp. 462-478
-
-
Rodriguez-Carranza, C.E.1
Mukherjee, P.2
Vigneron, D.3
Barkovich, J.4
Studholme, C.5
-
4
-
-
77954952162
-
Longitudinal changes in cortical thickness associated with normal aging
-
M. Thambisetty et al., "Longitudinal changes in cortical thickness associated with normal aging," NeuroImage, vol. 52, no. 4, pp. 1215-1223, 2010.
-
(2010)
NeuroImage
, vol.52
, Issue.4
, pp. 1215-1223
-
-
Thambisetty, M.1
-
5
-
-
84885918752
-
The structure of the cerebral cortex across adult life: Age-related patterns of surface area, thickness, and gyrification
-
L. J. Hogstrom, L. T. Westlye, K.B. Walhovd,and A. M. Fjell, "The structure of the cerebral cortex across adult life: Age-related patterns of surface area, thickness, and gyrification," Cereb Cortex, vol. 23, no. 11, pp. 2521-2530, 2013.
-
(2013)
Cereb Cortex
, vol.23
, Issue.11
, pp. 2521-2530
-
-
Hogstrom, L.J.1
Westlye, L.T.2
Walhovd, K.B.3
Fjell, A.M.4
-
6
-
-
84896264813
-
Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age
-
G. Li et al., "Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age," J. Neurosci., vol. 34, no. 12, pp. 4228-4238, 2014.
-
(2014)
J. Neurosci.
, vol.34
, Issue.12
, pp. 4228-4238
-
-
Li, G.1
-
7
-
-
84938604195
-
Dynamic development of regional cortical thickness and surface area in early childhood
-
A. E. Lyall et al., "Dynamic development of regional cortical thickness and surface area in early childhood," Cereb Cortex, vol. 25, no. 8, pp. 2204-2212, 2014.
-
(2014)
Cereb Cortex
, vol.25
, Issue.8
, pp. 2204-2212
-
-
Lyall, A.E.1
-
8
-
-
84896737706
-
Automatic quantification of normal cortical folding patterns from fetal brain MRI
-
R. Wright et al., "Automatic quantification of normal cortical folding patterns from fetal brain MRI," NeuroImage, vol. 91, pp. 21-32, 2014.
-
(2014)
NeuroImage
, vol.91
, pp. 21-32
-
-
Wright, R.1
-
9
-
-
84941351387
-
Development of cortical morphology evaluated with longitudinal MR brain images of preterm infants
-
P. Moeskops et al., "Development of cortical morphology evaluated with longitudinal MR brain images of preterm infants," PLOS ONE, vol. 10, no. 7, p. e0131552, 2015.
-
(2015)
PLOS ONE
, vol.10
, Issue.7
-
-
Moeskops, P.1
-
10
-
-
18244406829
-
Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain
-
B. Fischl et al., "Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain," Neuron, vol. 33, no. 3, pp. 341-355, 2002.
-
(2002)
Neuron
, vol.33
, Issue.3
, pp. 341-355
-
-
Fischl, B.1
-
11
-
-
23844494015
-
Automatic segmentation of MR images of the developing newborn brain
-
M. Prastawa, J. H. Gilmore, W. Lin, and G. Gerig, "Automatic segmentation of MR images of the developing newborn brain," Med. Image Anal., vol. 9, no. 5, pp. 457-466, 2005.
-
(2005)
Med. Image Anal.
, vol.9
, Issue.5
, pp. 457-466
-
-
Prastawa, M.1
Gilmore, J.H.2
Lin, W.3
Gerig, G.4
-
12
-
-
35148872689
-
Automatic segmentation and reconstruction of the cortex from neonatal MRI
-
H. Xue et al., "Automatic segmentation and reconstruction of the cortex from neonatal MRI," NeuroImage, vol. 38, no. 3, pp. 461-477, 2007.
-
(2007)
NeuroImage
, vol.38
, Issue.3
, pp. 461-477
-
-
Xue, H.1
-
13
-
-
67349126887
-
Automatic segmentation of newborn brain MRI
-
N. I. Weisenfeld and S. K. Warfield, "Automatic segmentation of newborn brain MRI," NeuroImage, vol. 47, no. 2, pp. 564-572, 2009.
-
(2009)
NeuroImage
, vol.47
, Issue.2
, pp. 564-572
-
-
Weisenfeld, N.I.1
Warfield, S.K.2
-
14
-
-
77956276314
-
Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses
-
P. A. Habas et al., "Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses," Hum. Brain Mapp., vol. 31, no. 9, pp. 1348-1358, 2010.
-
(2010)
Hum. Brain Mapp.
, vol.31
, Issue.9
, pp. 1348-1358
-
-
Habas, P.A.1
-
15
-
-
70349974425
-
Neonatal brain image segmentation in longitudinal MRI studies
-
F. Shi, Y. Fan, S. Tang, J. H. Gilmore, W. Lin, and D. Shen, "Neonatal brain image segmentation in longitudinal MRI studies," NeuroImage, vol. 49, no. 1, pp. 391-400, 2010.
-
(2010)
NeuroImage
, vol.49
, Issue.1
, pp. 391-400
-
-
Shi, F.1
Fan, Y.2
Tang, S.3
Gilmore, J.H.4
Lin, W.5
Shen, D.6
-
16
-
-
84868231259
-
AdaPT: An adaptive preterm segmentation algorithm for neonatal brain MRI
-
M. J. Cardoso et al., "AdaPT: An adaptive preterm segmentation algorithm for neonatal brain MRI," NeuroImage, vol. 65, pp. 97-108, 2013.
-
(2013)
NeuroImage
, vol.65
, pp. 97-108
-
-
Cardoso, M.J.1
-
17
-
-
84906877874
-
Automatic whole brain MRI segmentation of the developing neonatal brain
-
Sep.
-
A. Makropoulos et al., "Automatic whole brain MRI segmentation of the developing neonatal brain," IEEE Trans. Med. Imag., vol. 33, no. 9, pp. 1818-1831, Sep. 2014.
-
(2014)
IEEE Trans. Med. Imag.
, vol.33
, Issue.9
, pp. 1818-1831
-
-
Makropoulos, A.1
-
18
-
-
84920882082
-
LINKS: Learning-based multi-source integration framework for segmentation of infant brain images
-
L. Wang et al., "LINKS: Learning-based multi-source integration framework for segmentation of infant brain images," NeuroImage, vol. 108, pp. 160-172, 2015.
-
(2015)
NeuroImage
, vol.108
, pp. 160-172
-
-
Wang, L.1
-
19
-
-
84940439646
-
Automatic segmentation of MR brain images of preterm infants using supervised classification
-
P. Moeskops et al., "Automatic segmentation of MR brain images of preterm infants using supervised classification," NeuroImage, vol. 118, pp. 628-641, 2015.
-
(2015)
NeuroImage
, vol.118
, pp. 628-641
-
-
Moeskops, P.1
-
20
-
-
34447568454
-
Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification
-
H. A. Vrooman et al., "Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification," NeuroImage, vol. 37, no. 1, pp. 71-81, 2007.
-
(2007)
NeuroImage
, vol.37
, Issue.1
, pp. 71-81
-
-
Vrooman, H.A.1
-
21
-
-
84878335608
-
Automatic neonatal brain tissue segmentation with MRI
-
V. Srhoj-Egekher, M. J. Benders, M. A. Viergever, and I. Išgum, "Automatic neonatal brain tissue segmentation with MRI," in Proc. SPIE Med. Imag., 2013, pp. 86693X-86693X.
-
(2013)
Proc. SPIE Med. Imag.
-
-
Srhoj-Egekher, V.1
Benders, M.J.2
Viergever, M.A.3
Išgum, I.4
-
22
-
-
84892971066
-
Automatic segmentation of eight tissue classes in neonatal brain MRI
-
P. Anbeek et al., "Automatic segmentation of eight tissue classes in neonatal brain MRI," PLOS ONE, vol. 8, no. 12, p. e81895, 2013.
-
(2013)
PLOS ONE
, vol.8
, Issue.12
-
-
Anbeek, P.1
-
23
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov.
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
24
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Adv. Neural Inf. Process. Syst., 2012, pp. 1097-1105.
-
(2012)
Adv. Neural Inf. Process. Syst.
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
25
-
-
84885933775
-
Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network
-
A. Prasoon et al., "Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network," in Proc. MICCAI, 2013, pp. 246-253.
-
(2013)
Proc. MICCAI
, pp. 246-253
-
-
Prasoon, A.1
-
26
-
-
84909644435
-
A new 2.5 D representation for lymph node detection using random sets of deep convolutional neural network observations
-
H. R. Roth et al., "A new 2.5 D representation for lymph node detection using random sets of deep convolutional neural network observations," in Proc. MICCAI, 2014, pp. 520-527.
-
(2014)
Proc. MICCAI
, pp. 520-527
-
-
Roth, H.R.1
-
27
-
-
84920921065
-
Assessment of algorithms for mitosis detection in breast cancer histopathology images
-
M. Veta et al., "Assessment of algorithms for mitosis detection in breast cancer histopathology images," Med. Image Anal., vol. 20, no. 1, pp. 237-248, 2015.
-
(2015)
Med. Image Anal.
, vol.20
, Issue.1
, pp. 237-248
-
-
Veta, M.1
-
28
-
-
84943426034
-
Deep convolutional networks for pancreas segmentation in CT imaging
-
H. R. Roth, A. Farag, L. Lu, E. B. Turkbey, and R. M. Summers, "Deep convolutional networks for pancreas segmentation in CT imaging," in SPIE Med. Imag., 2015, pp. 94131G-94131G.
-
(2015)
SPIE Med. Imag.
-
-
Roth, H.R.1
Farag, A.2
Lu, L.3
Turkbey, E.B.4
Summers, R.M.5
-
29
-
-
84947475390
-
DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation
-
H. R. Roth et al., "DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation," in Proc. MICCAI, 2015, pp. 556-564.
-
(2015)
Proc. MICCAI
, pp. 556-564
-
-
Roth, H.R.1
-
30
-
-
84943754825
-
Deep learning with non-medical training used for chest pathology identification
-
Y. Bar, I. Diamant, L. Wolf, and H. Greenspan, "Deep learning with non-medical training used for chest pathology identification," in Proc. SPIE Med. Imag., 2015, pp. 94140V-94140V.
-
(2015)
Proc. SPIE Med. Imag.
-
-
Bar, Y.1
Diamant, I.2
Wolf, L.3
Greenspan, H.4
-
32
-
-
84921492033
-
Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
-
W. Zhang et al., "Deep convolutional neural networks for multi-modality isointense infant brain image segmentation," NeuroImage, vol. 108, pp. 214-224, 2015.
-
(2015)
NeuroImage
, vol.108
, pp. 214-224
-
-
Zhang, W.1
-
33
-
-
84943752367
-
Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box
-
F. Ciompi et al., "Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box," Med. Image Anal., vol. 26, no. 1, pp. 195-202, 2015.
-
(2015)
Med. Image Anal.
, vol.26
, Issue.1
, pp. 195-202
-
-
Ciompi, F.1
-
34
-
-
84947484146
-
Automatic coronary calcium scoring in cardiac CT angiography using convolutional neural networks
-
J. M. Wolterink, T. Leiner, M. A. Viergever, and I. Išgum, "Automatic coronary calcium scoring in cardiac CT angiography using convolutional neural networks," in Proc. MICCAI, 2015, pp. 589-596.
-
(2015)
Proc. MICCAI
, pp. 589-596
-
-
Wolterink, J.M.1
Leiner, T.2
Viergever, M.A.3
Išgum, I.4
-
35
-
-
84920895738
-
Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge
-
I. Išgum et al., "Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge," Med. Image Anal., vol. 20, no. 1, pp. 135-151, 2015.
-
(2015)
Med. Image Anal.
, vol.20
, Issue.1
, pp. 135-151
-
-
Išgum, I.1
-
36
-
-
84950116370
-
MRBrainS challenge: Online evaluation framework for brain image segmentation in 3T MRI scans
-
A. M. Mendrik et al., "MRBrainS challenge: Online evaluation framework for brain image segmentation in 3T MRI scans," Comput. Intell. Neurosci., 2015.
-
(2015)
Comput. Intell. Neurosci.
-
-
Mendrik, A.M.1
-
37
-
-
80054736963
-
Traffic sign recognition with multi-scale convolutional networks
-
P. Sermanet and Y. LeCun, "Traffic sign recognition with multi-scale convolutional networks," in Proc. Int. Joint Conf. Neural Netw.,2011, pp. 2809-2813.
-
(2011)
Proc. Int. Joint Conf. Neural Netw.
, pp. 2809-2813
-
-
Sermanet, P.1
LeCun, Y.2
-
38
-
-
84865114819
-
Multi-scale convolutional neural networks for natural scene license plate detection
-
J. Li, C. Niu, and M. Fan, "Multi-scale convolutional neural networks for natural scene license plate detection," in Adv. Neural Netw., 2012, pp. 110-119.
-
(2012)
Adv. Neural Netw.
, pp. 110-119
-
-
Li, J.1
Niu, C.2
Fan, M.3
-
39
-
-
77956509090
-
Rectified linear units improve restricted Boltzmann machines
-
V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 807-814.
-
(2010)
Proc. 27th Int. Conf. Mach. Learn.
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
40
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
41
-
-
84893343292
-
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
-
T. Tieleman and G. Hinton, "Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude," in COURSERA: Neural Netw. Mach. Learn., 2012, vol. 4.
-
(2012)
COURSERA: Neural Netw. Mach. Learn.
, vol.4
-
-
Tieleman, T.1
Hinton, G.2
-
42
-
-
84870060046
-
Morphology-driven automatic segmentation of MR images of the neonatal brain
-
L. Gui et al., "Morphology-driven automatic segmentation of MR images of the neonatal brain," Med. Image Anal., vol. 16, no. 8, pp. 1565-1579, 2012.
-
(2012)
Med. Image Anal.
, vol.16
, Issue.8
, pp. 1565-1579
-
-
Gui, L.1
-
43
-
-
34548409688
-
Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
-
D. S. Marcus et al., "Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults," J. Cognitive Neurosci., vol. 19, no. 9, pp. 1498-1507, 2007.
-
(2007)
J. Cognitive Neurosci.
, vol.19
, Issue.9
, pp. 1498-1507
-
-
Marcus, D.S.1
-
45
-
-
0035544623
-
Retrospective correction of MR intensity inhomogeneity by entropy minimization
-
B. Likar, M. A. Viergever, and F. Pernus, "Retrospective correction of MR intensity inhomogeneity by entropy minimization," IEEE Trans. Med. Imag., vol. 20, pp. 1398-1410, 2001.
-
(2001)
IEEE Trans. Med. Imag.
, vol.20
, pp. 1398-1410
-
-
Likar, B.1
Viergever, M.A.2
Pernus, F.3
-
46
-
-
0036828879
-
Fast robust automated brain extraction
-
S. M. Smith, "Fast robust automated brain extraction," Hum. Brain Mapp., vol. 17, no. 3, pp. 143-155, 2002.
-
(2002)
Hum. Brain Mapp.
, vol.17
, Issue.3
, pp. 143-155
-
-
Smith, S.M.1
|