-
1
-
-
56749181253
-
History and status of CAD and quantitative image analysis
-
M. L. Giger, J. Boone, and H. Chan, "History and status of CAD and quantitative image analysis," Med. Phys. 35(12), 5799-5820 (2008).
-
(2008)
Med. Phys
, vol.35
, Issue.12
, pp. 5799-5820
-
-
Giger, M.L.1
Boone, J.2
Chan, H.3
-
2
-
-
33646484506
-
Advances in CAD for diagnosis of breast cancer
-
L. Hadjiiski, B. Sahiner, and H.-P. Chan, "Advances in CAD for diagnosis of breast cancer," Curr. Opin. Obstet. Gynecol. 18(1), 64-70 (2006).
-
(2006)
Curr. Opin. Obstet. Gynecol
, vol.18
, Issue.1
, pp. 64-70
-
-
Hadjiiski, L.1
Sahiner, B.2
Chan, H.-P.3
-
3
-
-
84880524177
-
Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer
-
M. L. Giger, N. Karssemeijer, and J. A. Schnabel, "Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer," Annu. Rev. Biomed. Eng. 15, 327-357 (2013).
-
(2013)
Annu. Rev. Biomed. Eng
, vol.15
, pp. 327-357
-
-
Giger, M.L.1
Karssemeijer, N.2
Schnabel, J.A.3
-
4
-
-
0028334995
-
Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network
-
W. Zhang et al., "Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network," Med. Phys. 21(4), 517-524 (1994).
-
(1994)
Med. Phys
, vol.21
, Issue.4
, pp. 517-524
-
-
Zhang, W.1
-
5
-
-
0029569057
-
Artificial convolution neural network for medical image pattern recognition
-
S.-C. B. Lo et al., "Artificial convolution neural network for medical image pattern recognition," Neural Networks 8(7), 1201-1214 (1995).
-
(1995)
Neural Networks
, vol.8
, Issue.7
, pp. 1201-1214
-
-
Lo, S.-C.B.1
-
6
-
-
84874904675
-
Breast image feature learning with adaptive deconvolutional networks
-
A. R. Jamieson, K. Drukker, and M. L. Giger, "Breast image feature learning with adaptive deconvolutional networks," Proc. SPIE 8315, 831506 (2012).
-
(2012)
Proc. SPIE
, vol.8315
-
-
Jamieson, A.R.1
Drukker, K.2
Giger, M.L.3
-
7
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
F. Pereira et al., Eds., Curran Associates, Inc
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in Neural Information Processing Systems, F. Pereira et al., Eds., Vol. 25, pp. 1097-1105, Curran Associates, Inc. (2012).
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
9
-
-
84941122549
-
Going deeper with convolutions
-
abs/1409.4842
-
C. Szegedy et al., Going deeper with convolutions, CoRR abs/ 1409.4842 (2014).
-
(2014)
CoRR
-
-
Szegedy, C.1
-
10
-
-
77956031473
-
A survey on transfer learning
-
S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Knowl. Data Eng. 22 (10), 1345-1359 (2010).
-
(2010)
IEEE Trans. Knowl. Data Eng
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
11
-
-
84977622660
-
How transferable are features in deep neural networks?
-
abs/1411.1792
-
J. Yosinski et al., How transferable are features in deep neural networks? CoRR abs/1411.1792 (2014).
-
(2014)
CoRR
-
-
Yosinski, J.1
-
14
-
-
55349095801
-
Evaluation of computer-aided diagnosis on a large clinical full-field digitalmammographic dataset
-
H. Li et al., "Evaluation of computer-aided diagnosis on a large clinical full-field digitalmammographic dataset," Acad. Radiol. 15(11), 1437-1445 (2008).
-
(2008)
Acad. Radiol
, vol.15
, Issue.11
, pp. 1437-1445
-
-
Li, H.1
-
15
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky et al., "Imagenet large scale visual recognition challenge," Int. J. Comput. Vision 115(3), 211-252 (2015).
-
(2015)
Int. J. Comput. Vision
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
-
16
-
-
0031875382
-
Automated computerized classification of malignant and benign masses on digitized mammograms
-
Z. Huo et al., "Automated computerized classification of malignant and benign masses on digitized mammograms," Acad. Radiol. 5(3), 155-168 (1998).
-
(1998)
Acad. Radiol
, vol.5
, Issue.3
, pp. 155-168
-
-
Huo, Z.1
-
17
-
-
36348986747
-
Volumetric texture analysis of breast lesions on contrast- enhanced magnetic resonance images
-
W. Chen et al., "Volumetric texture analysis of breast lesions on contrast- enhanced magnetic resonance images," Magn. Reson. Med. 58(3), 562-571 (2007).
-
(2007)
Magn. Reson. Med
, vol.58
, Issue.3
, pp. 562-571
-
-
Chen, W.1
-
19
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learn. 20(3), 273-297 (1995).
-
(1995)
Mach. Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
21
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (roc) curve
-
J. A. Hanley and B. J. McNeil, "The meaning and use of the area under a receiver operating characteristic (roc) curve," Radiology 143 (1), 29-36 (1982).
-
(1982)
Radiology
, vol.143
, Issue.1
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
22
-
-
0018079655
-
Basic principles of roc analysis
-
C. E. Metz, "Basic principles of roc analysis," Semin. Nucl. Med. 8(4), 283-298 (1978).
-
(1978)
Semin. Nucl. Med
, vol.8
, Issue.4
, pp. 283-298
-
-
Metz, C.E.1
-
23
-
-
26644464819
-
The design and analysis of benchmark experiments
-
T. Hothorn et al., "The design and analysis of benchmark experiments," J. Comput. Graphical Stat. 14 (3), 675-699 (2005).
-
(2005)
J. Comput. Graphical Stat
, vol.14
, Issue.3
, pp. 675-699
-
-
Hothorn, T.1
-
25
-
-
84943786510
-
Chest pathology detection using deep learning with nonmedical training
-
IEEE
-
Y. Bar et al., "Chest pathology detection using deep learning with nonmedical training," in 2015 IEEE 12th Int. Symp. on Biomedical Imaging (ISBI), pp. 294-297, IEEE (2015).
-
(2015)
2015 IEEE 12th Int. Symp. on Biomedical Imaging (ISBI)
, pp. 294-297
-
-
Bar, Y.1
-
26
-
-
84953218259
-
A comparative study for chest radiograph image retrieval using binary texture and deep learning classification
-
IEEE
-
Y. Anavi et al., "A comparative study for chest radiograph image retrieval using binary texture and deep learning classification," in 2015 37th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2940-2943, IEEE (2015).
-
(2015)
2015 37th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC)
, pp. 2940-2943
-
-
Anavi, Y.1
-
27
-
-
84923019397
-
Mitosis detection in breast cancer pathology images bycombining handcrafted and convolutional neural network features
-
H. Wang et al., "Mitosis detection in breast cancer pathology images bycombining handcrafted and convolutional neural network features," J. Med. Imaging 1(3), 034003 (2014).
-
(2014)
J. Med. Imaging
, vol.1
, Issue.3
-
-
Wang, H.1
-
28
-
-
84951761386
-
Unregistered multiview mammogram analysis with pre-trained deep learning models
-
Springer, New York City
-
G. Carneiro, J. Nascimento, and A. P. Bradley, "Unregistered multiview mammogram analysis with pre-trained deep learning models," in Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), pp. 652-660, Springer, New York City (2015).
-
(2015)
Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015)
, pp. 652-660
-
-
Carneiro, G.1
Nascimento, J.2
Bradley, A.P.3
|