메뉴 건너뛰기




Volumn 3, Issue 3, 2016, Pages

Digital mammographic tumor classification using transfer learning from deep convolutional neural networks

Author keywords

computer aided diagnosis radiomics; convolutional neural networks; deep learning; mammography; precision medicine; transfer learning

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BREAST CANCER; BREAST LESION; COMPUTER ASSISTED DIAGNOSIS; CONVOLUTIONAL NEURAL NETWORK; DIGITAL MAMMOGRAPHY; IMAGE ANALYSIS; LEARNING; RECEIVER OPERATING CHARACTERISTIC; SUPPORT VECTOR MACHINE; TUMOR CLASSIFICATION;

EID: 85000428361     PISSN: 23294302     EISSN: 23294310     Source Type: Journal    
DOI: 10.1117/1.JMI.3.3.034501     Document Type: Article
Times cited : (486)

References (28)
  • 1
    • 56749181253 scopus 로고    scopus 로고
    • History and status of CAD and quantitative image analysis
    • M. L. Giger, J. Boone, and H. Chan, "History and status of CAD and quantitative image analysis," Med. Phys. 35(12), 5799-5820 (2008).
    • (2008) Med. Phys , vol.35 , Issue.12 , pp. 5799-5820
    • Giger, M.L.1    Boone, J.2    Chan, H.3
  • 3
    • 84880524177 scopus 로고    scopus 로고
    • Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer
    • M. L. Giger, N. Karssemeijer, and J. A. Schnabel, "Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer," Annu. Rev. Biomed. Eng. 15, 327-357 (2013).
    • (2013) Annu. Rev. Biomed. Eng , vol.15 , pp. 327-357
    • Giger, M.L.1    Karssemeijer, N.2    Schnabel, J.A.3
  • 4
    • 0028334995 scopus 로고
    • Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network
    • W. Zhang et al., "Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network," Med. Phys. 21(4), 517-524 (1994).
    • (1994) Med. Phys , vol.21 , Issue.4 , pp. 517-524
    • Zhang, W.1
  • 5
    • 0029569057 scopus 로고
    • Artificial convolution neural network for medical image pattern recognition
    • S.-C. B. Lo et al., "Artificial convolution neural network for medical image pattern recognition," Neural Networks 8(7), 1201-1214 (1995).
    • (1995) Neural Networks , vol.8 , Issue.7 , pp. 1201-1214
    • Lo, S.-C.B.1
  • 6
    • 84874904675 scopus 로고    scopus 로고
    • Breast image feature learning with adaptive deconvolutional networks
    • A. R. Jamieson, K. Drukker, and M. L. Giger, "Breast image feature learning with adaptive deconvolutional networks," Proc. SPIE 8315, 831506 (2012).
    • (2012) Proc. SPIE , vol.8315
    • Jamieson, A.R.1    Drukker, K.2    Giger, M.L.3
  • 7
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • F. Pereira et al., Eds., Curran Associates, Inc
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in Neural Information Processing Systems, F. Pereira et al., Eds., Vol. 25, pp. 1097-1105, Curran Associates, Inc. (2012).
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 9
    • 84941122549 scopus 로고    scopus 로고
    • Going deeper with convolutions
    • abs/1409.4842
    • C. Szegedy et al., Going deeper with convolutions, CoRR abs/ 1409.4842 (2014).
    • (2014) CoRR
    • Szegedy, C.1
  • 10
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Knowl. Data Eng. 22 (10), 1345-1359 (2010).
    • (2010) IEEE Trans. Knowl. Data Eng , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 11
    • 84977622660 scopus 로고    scopus 로고
    • How transferable are features in deep neural networks?
    • abs/1411.1792
    • J. Yosinski et al., How transferable are features in deep neural networks? CoRR abs/1411.1792 (2014).
    • (2014) CoRR
    • Yosinski, J.1
  • 14
    • 55349095801 scopus 로고    scopus 로고
    • Evaluation of computer-aided diagnosis on a large clinical full-field digitalmammographic dataset
    • H. Li et al., "Evaluation of computer-aided diagnosis on a large clinical full-field digitalmammographic dataset," Acad. Radiol. 15(11), 1437-1445 (2008).
    • (2008) Acad. Radiol , vol.15 , Issue.11 , pp. 1437-1445
    • Li, H.1
  • 15
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • O. Russakovsky et al., "Imagenet large scale visual recognition challenge," Int. J. Comput. Vision 115(3), 211-252 (2015).
    • (2015) Int. J. Comput. Vision , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1
  • 16
    • 0031875382 scopus 로고    scopus 로고
    • Automated computerized classification of malignant and benign masses on digitized mammograms
    • Z. Huo et al., "Automated computerized classification of malignant and benign masses on digitized mammograms," Acad. Radiol. 5(3), 155-168 (1998).
    • (1998) Acad. Radiol , vol.5 , Issue.3 , pp. 155-168
    • Huo, Z.1
  • 17
    • 36348986747 scopus 로고    scopus 로고
    • Volumetric texture analysis of breast lesions on contrast- enhanced magnetic resonance images
    • W. Chen et al., "Volumetric texture analysis of breast lesions on contrast- enhanced magnetic resonance images," Magn. Reson. Med. 58(3), 562-571 (2007).
    • (2007) Magn. Reson. Med , vol.58 , Issue.3 , pp. 562-571
    • Chen, W.1
  • 19
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learn. 20(3), 273-297 (1995).
    • (1995) Mach. Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 21
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (roc) curve
    • J. A. Hanley and B. J. McNeil, "The meaning and use of the area under a receiver operating characteristic (roc) curve," Radiology 143 (1), 29-36 (1982).
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 22
    • 0018079655 scopus 로고
    • Basic principles of roc analysis
    • C. E. Metz, "Basic principles of roc analysis," Semin. Nucl. Med. 8(4), 283-298 (1978).
    • (1978) Semin. Nucl. Med , vol.8 , Issue.4 , pp. 283-298
    • Metz, C.E.1
  • 23
    • 26644464819 scopus 로고    scopus 로고
    • The design and analysis of benchmark experiments
    • T. Hothorn et al., "The design and analysis of benchmark experiments," J. Comput. Graphical Stat. 14 (3), 675-699 (2005).
    • (2005) J. Comput. Graphical Stat , vol.14 , Issue.3 , pp. 675-699
    • Hothorn, T.1
  • 25
    • 84943786510 scopus 로고    scopus 로고
    • Chest pathology detection using deep learning with nonmedical training
    • IEEE
    • Y. Bar et al., "Chest pathology detection using deep learning with nonmedical training," in 2015 IEEE 12th Int. Symp. on Biomedical Imaging (ISBI), pp. 294-297, IEEE (2015).
    • (2015) 2015 IEEE 12th Int. Symp. on Biomedical Imaging (ISBI) , pp. 294-297
    • Bar, Y.1
  • 26
    • 84953218259 scopus 로고    scopus 로고
    • A comparative study for chest radiograph image retrieval using binary texture and deep learning classification
    • IEEE
    • Y. Anavi et al., "A comparative study for chest radiograph image retrieval using binary texture and deep learning classification," in 2015 37th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2940-2943, IEEE (2015).
    • (2015) 2015 37th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC) , pp. 2940-2943
    • Anavi, Y.1
  • 27
    • 84923019397 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer pathology images bycombining handcrafted and convolutional neural network features
    • H. Wang et al., "Mitosis detection in breast cancer pathology images bycombining handcrafted and convolutional neural network features," J. Med. Imaging 1(3), 034003 (2014).
    • (2014) J. Med. Imaging , vol.1 , Issue.3
    • Wang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.