메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 2497-2506

Learning to Read Chest X-Rays: Recurrent Neural Cascade Model for Automated Image Annotation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; IMAGE ANALYSIS; IMAGE RETRIEVAL; NEURAL NETWORKS; PATTERN RECOGNITION; STREAM FLOW;

EID: 84986277510     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.274     Document Type: Conference Paper
Times cited : (367)

References (65)
  • 6
    • 84957029470 scopus 로고    scopus 로고
    • Mind's eye: A recurrent visual representation for image caption generation
    • X. Chen and C. Lawrence Zitnick. Mind's eye: A recurrent visual representation for image caption generation. In CVPR, 2015.
    • (2015) CVPR
    • Chen, X.1    Lawrence Zitnick, C.2
  • 21
    • 84911384217 scopus 로고    scopus 로고
    • Evaluation of scan-line optimization for 3d medical image registration
    • S. Hermann. Evaluation of scan-line optimization for 3d medical image registration. In CVPR, 2014.
    • (2014) CVPR
    • Hermann, S.1
  • 22
    • 58149242540 scopus 로고    scopus 로고
    • TREC genomics special issue overview
    • W. Hersh and E. Voorhees. Trec genomics special issue overview. Information Retrieval, 12(1):1-15, 2009.
    • (2009) Information Retrieval , vol.12 , Issue.1 , pp. 1-15
    • Hersh, W.1    Voorhees, E.2
  • 26
    • 84959197467 scopus 로고    scopus 로고
    • Mapping visual features to semantic profiles for retrieval in medical imaging
    • J. Hofmanninger and G. Langs. Mapping visual features to semantic profiles for retrieval in medical imaging. In CVPR, 2015.
    • (2015) CVPR
    • Hofmanninger, J.1    Langs, G.2
  • 30
    • 84969972527 scopus 로고    scopus 로고
    • An empirical exploration of recurrent network architectures
    • R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical exploration of recurrent network architectures. In ICML 2015, 2015.
    • (2015) ICML 2015
    • Jozefowicz, R.1    Zaremba, W.2    Sutskever, I.3
  • 31
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In CVPR, 2015.
    • (2015) CVPR
    • Karpathy, A.1    Fei-Fei, L.2
  • 33
    • 84959191227 scopus 로고    scopus 로고
    • Joint photo stream and blog post summarization and exploration
    • G. Kim, S. Moon, and L. Sigal. Joint photo stream and blog post summarization and exploration. In CVPR, 2015.
    • (2015) CVPR
    • Kim, G.1    Moon, S.2    Sigal, L.3
  • 34
    • 84959189488 scopus 로고    scopus 로고
    • Ranking and retrieval of image sequences from multiple paragraph queries
    • G. Kim, S. Moon, and L. Sigal. Ranking and retrieval of image sequences from multiple paragraph queries. In CVPR, 2015.
    • (2015) CVPR
    • Kim, G.1    Moon, S.2    Sigal, L.3
  • 35
    • 84911405209 scopus 로고    scopus 로고
    • Joint summarization of large-scale collections of web images and videos for storyline reconstruction
    • G. Kim, L. Sigal, and E. P. Xing. Joint summarization of large-scale collections of web images and videos for storyline reconstruction. In CVPR, 2014.
    • (2014) CVPR
    • Kim, G.1    Sigal, L.2    Xing, E.P.3
  • 37
    • 84959196607 scopus 로고    scopus 로고
    • Associating neural word embeddings with deep image representations using fisher vectors
    • B. Klein, G. Lev, G. Sadeh, and L. Wolf. Associating neural word embeddings with deep image representations using fisher vectors. In CVPR, 2015.
    • (2015) CVPR
    • Klein, B.1    Lev, G.2    Sadeh, G.3    Wolf, L.4
  • 40
    • 84911435155 scopus 로고    scopus 로고
    • Patch-based evaluation of image segmentation
    • C. Ledig, W. Shi, W. Bai, and D. Rueckert. Patch-based evaluation of image segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Ledig, C.1    Shi, W.2    Bai, W.3    Rueckert, D.4
  • 46
    • 84911378353 scopus 로고    scopus 로고
    • Fully automated non-rigid segmentation with distance regularized level set evolution initialized and constrained by deep-structured inference
    • T. A. Ngo and G. Carneiro. Fully automated non-rigid segmentation with distance regularized level set evolution initialized and constrained by deep-structured inference. In CVPR, 2014.
    • (2014) CVPR
    • Ngo, T.A.1    Carneiro, G.2
  • 49
    • 84959224938 scopus 로고    scopus 로고
    • Image segmentation in twenty questions
    • C. Rupprecht, L. Peter, and N. Navab. Image segmentation in twenty questions. In CVPR, 2015.
    • (2015) CVPR
    • Rupprecht, C.1    Peter, L.2    Navab, N.3
  • 50
    • 84911432319 scopus 로고    scopus 로고
    • Joint coupled-feature representation and coupled boosting for ad diagnosis
    • Y. Shi, H.-I. Suk, Y. Gao, and D. Shen. Joint coupled-feature representation and coupled boosting for ad diagnosis. In CVPR, 2014.
    • (2014) CVPR
    • Shi, Y.1    Suk, H.-I.2    Gao, Y.3    Shen, D.4
  • 51
    • 84959244105 scopus 로고    scopus 로고
    • Interleaved text/image deep mining on a very largescale radiology database
    • H.-C. Shin, L. Lu, L. Kim, A. Seff, J. Yao, and R. M. Summers. Interleaved text/image deep mining on a very largescale radiology database. In CVPR, 2015.
    • (2015) CVPR
    • Shin, H.-C.1    Lu, L.2    Kim, L.3    Seff, A.4    Yao, J.5    Summers, R.M.6
  • 53
    • 84933585162 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
    • (2014) ArXiv Preprint ArXiv , vol.1409 , pp. 1556
    • Simonyan, K.1    Zisserman, A.2
  • 55
    • 84911383253 scopus 로고    scopus 로고
    • Iterative multilevel mrf leveraging context and voxel information for brain tumour segmentation in mri
    • N. Subbanna, D. Precup, and T. Arbel. Iterative multilevel mrf leveraging context and voxel information for brain tumour segmentation in mri. In CVPR, 2014.
    • (2014) CVPR
    • Subbanna, N.1    Precup, D.2    Arbel, T.3
  • 56
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS 2014.
    • (2014) NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 57
    • 85009900997 scopus 로고    scopus 로고
    • Learning the correlation between images and disease labels using ambiguous learning
    • T. Syeda-Mahmood, R. Kumar, and C. Compas. Learning the correlation between images and disease labels using ambiguous learning. In MICCAI. 2015.
    • (2015) MICCAI.
    • Syeda-Mahmood, T.1    Kumar, R.2    Compas, C.3
  • 61
    • 84946747440 scopus 로고    scopus 로고
    • Show and tell: A neural image caption generator
    • O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In CVPR, 2015.
    • (2015) CVPR
    • Vinyals, O.1    Toshev, A.2    Bengio, S.3    Erhan, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.