-
1
-
-
84968661778
-
Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique
-
Mar
-
H. Greenspan, B. V. Ginneken, and R. M. Summers, "Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1153-1159, Mar. 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1153-1159
-
-
Greenspan, H.1
Ginneken, B.V.2
Summers, R.M.3
-
3
-
-
84942741565
-
-
3rd ed. Boston, MA, USA: Academic
-
J. H. Byrne, R. Heidelberger, and M. N.Waxham, From Molecules to Net- works: An Introduction to Cellular and Molecular Neuroscience, 3rd ed. Boston, MA, USA: Academic, 2014.
-
(2014)
From Molecules to Net- Works: An Introduction to Cellular and Molecular Neuroscience
-
-
Byrne, J.H.1
Heidelberger, R.2
Waxham, M.N.3
-
5
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Jul
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
6
-
-
84963949906
-
Mastering the game of go with deep neural networks and tree search
-
Jan
-
D. Silver et al., "Mastering the game of go with deep neural networks and tree search," Nature, vol. 529, p. 484-489, Jan. 2016.
-
(2016)
Nature
, vol.529
, pp. 484-489
-
-
Silver, D.1
-
7
-
-
84930630277
-
Deep learning
-
May
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 44-436, May 2015.
-
(2015)
Nature
, vol.521
, pp. 44-436
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
8
-
-
85009119177
-
-
(Sep. 1)
-
(Sep. 1, 2016). [Online]. Available: http://people.idsia.ch/~juergen/deeplearning- conspiracy.html
-
(2016)
-
-
-
9
-
-
84944735469
-
-
Cambridge, MA, USA: MIT Press
-
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 2016.
-
(2016)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
11
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Netw., vol. 2, no. 5, pp. 359-366, 1989.
-
(1989)
Neural Netw.
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
12
-
-
0025751820
-
Approximation capabilities of multilayer feedforward networks
-
K. Hornik, "Approximation capabilities of multilayer feedforward networks," Neural Netw., vol. 4, no. 2, pp. 251-257, 1991.
-
(1991)
Neural Netw.
, vol.4
, Issue.2
, pp. 251-257
-
-
Hornik, K.1
-
14
-
-
2442661205
-
An improved exact filtered backprojection algorithm for spiral computed tomography
-
May
-
A. Katsevich, "An improved exact filtered backprojection algorithm for spiral computed tomography," Adv. Appl. Math., vol. 32, no. 4, pp. 681-697, May 2004.
-
(2004)
Adv. Appl. Math.
, vol.32
, Issue.4
, pp. 681-697
-
-
Katsevich, A.1
-
15
-
-
84864373822
-
Achieving routine submillisievert CT scanning: Report from the summit on management of radiation dose in CT
-
Aug
-
C. H. McCollough et al., "Achieving routine submillisievert CT scanning: Report from the summit on management of radiation dose in CT," Radiol- ogy, vol. 264, no. 2, pp. 567-580, Aug. 2012.
-
(2012)
Radiology
, vol.264
, Issue.2
, pp. 567-580
-
-
McCollough, C.H.1
-
16
-
-
33745156575
-
-
2nd ed. Hoboken, NJ, USA: Wiley
-
J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances, 2nd ed. Hoboken, NJ, USA: Wiley, 2009.
-
(2009)
Computed Tomography: Principles, Design, Artifacts, and Recent Advances
-
-
Hsieh, J.1
-
17
-
-
84938703753
-
State of the art: Iterative CT reconstruction techniques
-
Aug
-
L. L. Geyer et al., "State of the art: Iterative CT reconstruction techniques," Radiology, vol. 276, no. 2, pp. 338-356, Aug. 2015.
-
(2015)
Radiology
, vol.276
, Issue.2
, pp. 338-356
-
-
Geyer, L.L.1
-
18
-
-
0011927628
-
-
E. C. Behrman, V. Chandrashekar, Z.Wang, C. K. Belur, J. E. Steck, and S. R. Skinner. (2002). "A quantum neural network computes entanglement." [Online]. Available: https://arxiv.org/abs/quant-ph/0202131
-
(2002)
A Quantum Neural Network Computes Entanglement
-
-
Behrman, E.C.1
Chandrashekar, V.2
Wang, Z.3
Belur, C.K.4
Steck, J.E.5
Skinner, S.R.6
-
19
-
-
79961108629
-
Reduced lung-cancer mortality with low-dose computed tomographic screening
-
The National Lung Screening Trial Research Team Aug
-
The National Lung Screening Trial Research Team, "Reduced lung-cancer mortality with low-dose computed tomographic screening," New England J. Med., vol. 365, pp. 395-409, Aug. 2011.
-
(2011)
New England J. Med.
, vol.365
, pp. 395-409
-
-
-
20
-
-
35148869761
-
CatSim: A new computer assisted tomography simulation environment
-
Mar
-
B. De Man et al., "CatSim: A new computer assisted tomography simulation environment," Proc. SPIE, vol. 6510, pp. U1191-U1198, Mar. 2007.
-
(2007)
Proc. SPIE
, vol.6510
, pp. U1191-U1198
-
-
De Man, B.1
-
21
-
-
85009106069
-
Big data from CT scanning
-
Q. Yang et al., "Big data from CT scanning," JSM Biomed. Imag., vol. 2, no. 1, pp. 1003-1-1003-6, 2015.
-
(2015)
JSM Biomed. Imag.
, vol.2
, Issue.1
, pp. 10031-10036
-
-
Yang, Q.1
-
22
-
-
0025997238
-
The visible human project
-
M. J. Ackerman, "The visible human project," J. Biocommun., vol. 18, no. 2, p. 14, 1991.
-
(1991)
J. Biocommun.
, vol.18
, Issue.2
, pp. 14
-
-
Ackerman, M.J.1
-
23
-
-
36348984478
-
A boundary-representation method for designing whole-body radiation dosimetry models: Pregnant females at the ends of three gestational periods-RPI-P3,-P6 and-P9
-
Dec
-
X. G. Xu, V. Taranenko, J. Zhang, and C. Shi, "A boundary-representation method for designing whole-body radiation dosimetry models: Pregnant females at the ends of three gestational periods-RPI-P3,-P6 and-P9," Phys. Med. Biol., vol. 52, no. 23, pp. 7023-7044, Dec. 2007.
-
(2007)
Phys. Med. Biol.
, vol.52
, Issue.23
, pp. 7023-7044
-
-
Xu, X.G.1
Taranenko, V.2
Zhang, J.3
Shi, C.4
-
24
-
-
85000428361
-
Digital mammographic tumor classification using transfer learning from deep convolutional neural networks
-
Aug
-
B. Q. Huynh, H. Li, and M. Giger, "Digital mammographic tumor classi- fication using transfer learning from deep convolutional neural networks," J. Med. Imag., vol. 3, no. 3, p. 034501, Aug. 2016.
-
(2016)
J. Med. Imag.
, vol.3
, Issue.3
, pp. 034501
-
-
Huynh, B.Q.1
Li, H.2
Giger, M.3
-
25
-
-
84962135519
-
X-ray CT geometrical calibration via locally linear embedding
-
Mar
-
M. Chen, Y. Xi, W. Cong, B. Liu, B. Wei, and G. Wang, "X-ray CT geometrical calibration via locally linear embedding," J. X-Ray Sci. Technol., vol. 24, no. 2, pp. 241-256, Mar. 2016.
-
(2016)
J. X-Ray Sci. Technol.
, vol.24
, Issue.2
, pp. 241-256
-
-
Chen, M.1
Xi, Y.2
Cong, W.3
Liu, B.4
Wei, B.5
Wang, G.6
-
26
-
-
84941992099
-
Vision 20/20: Simultaneous CT-MRI-Next chapter of multimodality imaging
-
Oct
-
G. Wang et al., "Vision 20/20: Simultaneous CT-MRI-Next chapter of multimodality imaging," Med. Phys., vol. 42, pp. 5879-5889, Oct. 2015.
-
(2015)
Med. Phys.
, vol.42
, pp. 5879-5889
-
-
Wang, G.1
-
27
-
-
84925651777
-
Tensor-based dictionary learning for dynamic tomographic reconstruction
-
Apr
-
S. Tan et al., "Tensor-based dictionary learning for dynamic tomographic reconstruction," Phys. Med. Biol., vol. 60, no. 7, pp. 2803-2818, Apr. 2015.
-
(2015)
Phys. Med. Biol.
, vol.60
, Issue.7
, pp. 2803-2818
-
-
Tan, S.1
-
28
-
-
0028588610
-
An artificial neural network approach to quantitative single photon emission computed tomographic reconstruction with collimator, attenuation, and scatter compensation
-
Dec
-
M. T. Munley, C. E. Floyd, Jr., J. E. Bowsher, and R. E. Coleman, "An artificial neural network approach to quantitative single photon emission computed tomographic reconstruction with collimator, attenuation, and scatter compensation," Med. Phys., vol. 21, no. 12, pp. 1889-1899, Dec. 1994.
-
(1994)
Med. Phys.
, vol.21
, Issue.12
, pp. 1889-1899
-
-
Munley, M.T.1
Floyd, C.E.2
Bowsher, J.E.3
Coleman, R.E.4
-
29
-
-
0029347985
-
Neural network reconstruction of singlephoton emission computed tomography images
-
Aug
-
J. P. Kerr and E. B. Bartlett, "Neural network reconstruction of singlephoton emission computed tomography images," J. Digit. Imag., vol. 8, no. 3, pp. 116-126, Aug. 1995.
-
(1995)
J. Digit. Imag.
, vol.8
, Issue.3
, pp. 116-126
-
-
Kerr, J.P.1
Bartlett, E.B.2
-
30
-
-
79955633431
-
MR image reconstruction from highly undersampled k-space data by dictionary learning
-
May
-
S. Ravishankar and Y. Bresler, "MR image reconstruction from highly undersampled k-space data by dictionary learning," IEEE Trans. Med. Imag., vol. 30, no. 5, pp. 1028-1041, May 2011.
-
(2011)
IEEE Trans. Med. Imag.
, vol.30
, Issue.5
, pp. 1028-1041
-
-
Ravishankar, S.1
Bresler, Y.2
-
31
-
-
84867561335
-
Low-dose X-ray CT reconstruction via dictionary learning
-
Sep
-
Q. Xu, H. Yu, X. Mou, L. Zhang, J. Hsieh, and G. Wang, "Low-dose X-ray CT reconstruction via dictionary learning," IEEE Trans. Med. Imag., vol. 31, no. 9, pp. 1682-1697, Sep. 2012.
-
(2012)
IEEE Trans. Med. Imag.
, vol.31
, Issue.9
, pp. 1682-1697
-
-
Xu, Q.1
Yu, H.2
Mou, X.3
Zhang, L.4
Hsieh, J.5
Wang, G.6
-
32
-
-
84978427520
-
Accelerating magnetic resonance imaging via deep learning
-
Apr
-
S. Wang et al., "Accelerating magnetic resonance imaging via deep learning," presented at the IEEE 13th Int. Symp. Biomed. Imag., Apr. 2016, pp. 514-517.
-
(2016)
IEEE 13th Int. Symp. Biomed. Imag.
, pp. 514-517
-
-
Wang, S.1
-
33
-
-
85029601946
-
Learning a variational model for compressed sensing MRI reconstruction
-
K. Hammernik, F. Knoll, D. K. Sodickson, and T. Pock, "Learning a variational model for compressed sensing MRI reconstruction," presented at the 24th Annu. Meeting Int. Soc. Magn. Reson. Med., 2016, pp. 331-332.
-
(2016)
24th Annu. Meeting Int. Soc. Magn. Reson. Med
, pp. 331-332
-
-
Hammernik, K.1
Knoll, F.2
Sodickson, D.K.3
Pock, T.4
-
35
-
-
33645655614
-
Image denoising with block-matching and 3D filtering
-
Feb
-
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising with block-matching and 3D filtering," Proc. SPIE, vol. 6064, pp. 606414-1-12, Feb. 2006.
-
(2006)
Proc. SPIE
, vol.6064
, pp. 6064141-60641412
-
-
Dabov, K.1
Foi, A.2
Katkovnik, V.3
Egiazarian, K.4
-
41
-
-
49749137392
-
Image reconstruction from a small number of projections
-
Aug
-
G. T. Herman and R. Davidi, "Image reconstruction from a small number of projections," Inverse Probl, vol. 24, no. 4, pp. 45011-45028, Aug. 2008.
-
(2008)
Inverse Probl
, vol.24
, Issue.4
, pp. 45011-45028
-
-
Herman, G.T.1
Davidi, R.2
-
42
-
-
84877889477
-
Enhanced compressed sensing recovery with level set normals
-
Jul
-
V. Estellers, J.-P. Thiran, and X. Bresson, "Enhanced compressed sensing recovery with level set normals," IEEE Trans. Image Process., vol. 22, no. 7, pp. 2611-2626, Jul. 2013.
-
(2013)
IEEE Trans. Image Process.
, vol.22
, Issue.7
, pp. 2611-2626
-
-
Estellers, V.1
Thiran, J.-P.2
Bresson, X.3
-
43
-
-
84993972048
-
Artificial intelligence: Deep neural reasoning
-
Oct
-
H. Jaeger, "Artificial intelligence: Deep neural reasoning," Nature, vol. 538, pp. 467-468, Oct. 2016.
-
(2016)
Nature
, vol.538
, pp. 467-468
-
-
Jaeger, H.1
-
47
-
-
84969980426
-
Supervised autonomous robotic soft tissue surgery
-
May
-
A. Shademan, R. S. Decker, J. D. Opfermann, S. Leonard, A. Krieger, and P. C. W. Kim, "Supervised autonomous robotic soft tissue surgery," Sci. Transl. Med., vol. 8, no. 337, p. 337ra64, May 2016.
-
(2016)
Sci. Transl. Med.
, vol.8
, Issue.337
, pp. 337ra64
-
-
Shademan, A.1
Decker, R.S.2
Opfermann, J.D.3
Leonard, S.4
Krieger, A.5
Kim, P.C.W.6
-
48
-
-
85009120482
-
-
accessed on Sep. 1, 2016
-
accessed on Sep. 1, 2016. [Online]. Available: https://www. 4catalyzer.com/
-
-
-
-
49
-
-
85009102746
-
-
accessed on Sep. 1, 2016
-
accessed on Sep. 1, 2016. [Online]. Available: http://www.nanalyze. com/2016/02/enlitic-deep-learning-algorithms-for-medical-imaging/
-
-
-
|