메뉴 건너뛰기




Volumn 4, Issue , 2016, Pages 8914-8924

A perspective on deep imaging

Author keywords

big data; data acquisition; deep learning; image analysis; image reconstruction; machine learning; medical imaging; Tomographic imaging

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIG DATA; DATA ACQUISITION; IMAGE ANALYSIS; IMAGE PROCESSING; LEARNING SYSTEMS; MEDICAL IMAGE PROCESSING; MEDICAL IMAGING; TOMOGRAPHY;

EID: 85009115445     PISSN: None     EISSN: 21693536     Source Type: Journal    
DOI: 10.1109/ACCESS.2016.2624938     Document Type: Review
Times cited : (462)

References (49)
  • 1
    • 84968661778 scopus 로고    scopus 로고
    • Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique
    • Mar
    • H. Greenspan, B. V. Ginneken, and R. M. Summers, "Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique," IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1153-1159, Mar. 2016.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , Issue.5 , pp. 1153-1159
    • Greenspan, H.1    Ginneken, B.V.2    Summers, R.M.3
  • 5
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Jul
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 6
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of go with deep neural networks and tree search
    • Jan
    • D. Silver et al., "Mastering the game of go with deep neural networks and tree search," Nature, vol. 529, p. 484-489, Jan. 2016.
    • (2016) Nature , vol.529 , pp. 484-489
    • Silver, D.1
  • 7
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • May
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 44-436, May 2015.
    • (2015) Nature , vol.521 , pp. 44-436
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 8
    • 85009119177 scopus 로고    scopus 로고
    • (Sep. 1)
    • (Sep. 1, 2016). [Online]. Available: http://people.idsia.ch/~juergen/deeplearning- conspiracy.html
    • (2016)
  • 11
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Netw., vol. 2, no. 5, pp. 359-366, 1989.
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 12
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik, "Approximation capabilities of multilayer feedforward networks," Neural Netw., vol. 4, no. 2, pp. 251-257, 1991.
    • (1991) Neural Netw. , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 14
    • 2442661205 scopus 로고    scopus 로고
    • An improved exact filtered backprojection algorithm for spiral computed tomography
    • May
    • A. Katsevich, "An improved exact filtered backprojection algorithm for spiral computed tomography," Adv. Appl. Math., vol. 32, no. 4, pp. 681-697, May 2004.
    • (2004) Adv. Appl. Math. , vol.32 , Issue.4 , pp. 681-697
    • Katsevich, A.1
  • 15
    • 84864373822 scopus 로고    scopus 로고
    • Achieving routine submillisievert CT scanning: Report from the summit on management of radiation dose in CT
    • Aug
    • C. H. McCollough et al., "Achieving routine submillisievert CT scanning: Report from the summit on management of radiation dose in CT," Radiol- ogy, vol. 264, no. 2, pp. 567-580, Aug. 2012.
    • (2012) Radiology , vol.264 , Issue.2 , pp. 567-580
    • McCollough, C.H.1
  • 17
    • 84938703753 scopus 로고    scopus 로고
    • State of the art: Iterative CT reconstruction techniques
    • Aug
    • L. L. Geyer et al., "State of the art: Iterative CT reconstruction techniques," Radiology, vol. 276, no. 2, pp. 338-356, Aug. 2015.
    • (2015) Radiology , vol.276 , Issue.2 , pp. 338-356
    • Geyer, L.L.1
  • 19
    • 79961108629 scopus 로고    scopus 로고
    • Reduced lung-cancer mortality with low-dose computed tomographic screening
    • The National Lung Screening Trial Research Team Aug
    • The National Lung Screening Trial Research Team, "Reduced lung-cancer mortality with low-dose computed tomographic screening," New England J. Med., vol. 365, pp. 395-409, Aug. 2011.
    • (2011) New England J. Med. , vol.365 , pp. 395-409
  • 20
    • 35148869761 scopus 로고    scopus 로고
    • CatSim: A new computer assisted tomography simulation environment
    • Mar
    • B. De Man et al., "CatSim: A new computer assisted tomography simulation environment," Proc. SPIE, vol. 6510, pp. U1191-U1198, Mar. 2007.
    • (2007) Proc. SPIE , vol.6510 , pp. U1191-U1198
    • De Man, B.1
  • 21
    • 85009106069 scopus 로고    scopus 로고
    • Big data from CT scanning
    • Q. Yang et al., "Big data from CT scanning," JSM Biomed. Imag., vol. 2, no. 1, pp. 1003-1-1003-6, 2015.
    • (2015) JSM Biomed. Imag. , vol.2 , Issue.1 , pp. 10031-10036
    • Yang, Q.1
  • 22
    • 0025997238 scopus 로고
    • The visible human project
    • M. J. Ackerman, "The visible human project," J. Biocommun., vol. 18, no. 2, p. 14, 1991.
    • (1991) J. Biocommun. , vol.18 , Issue.2 , pp. 14
    • Ackerman, M.J.1
  • 23
    • 36348984478 scopus 로고    scopus 로고
    • A boundary-representation method for designing whole-body radiation dosimetry models: Pregnant females at the ends of three gestational periods-RPI-P3,-P6 and-P9
    • Dec
    • X. G. Xu, V. Taranenko, J. Zhang, and C. Shi, "A boundary-representation method for designing whole-body radiation dosimetry models: Pregnant females at the ends of three gestational periods-RPI-P3,-P6 and-P9," Phys. Med. Biol., vol. 52, no. 23, pp. 7023-7044, Dec. 2007.
    • (2007) Phys. Med. Biol. , vol.52 , Issue.23 , pp. 7023-7044
    • Xu, X.G.1    Taranenko, V.2    Zhang, J.3    Shi, C.4
  • 24
    • 85000428361 scopus 로고    scopus 로고
    • Digital mammographic tumor classification using transfer learning from deep convolutional neural networks
    • Aug
    • B. Q. Huynh, H. Li, and M. Giger, "Digital mammographic tumor classi- fication using transfer learning from deep convolutional neural networks," J. Med. Imag., vol. 3, no. 3, p. 034501, Aug. 2016.
    • (2016) J. Med. Imag. , vol.3 , Issue.3 , pp. 034501
    • Huynh, B.Q.1    Li, H.2    Giger, M.3
  • 25
    • 84962135519 scopus 로고    scopus 로고
    • X-ray CT geometrical calibration via locally linear embedding
    • Mar
    • M. Chen, Y. Xi, W. Cong, B. Liu, B. Wei, and G. Wang, "X-ray CT geometrical calibration via locally linear embedding," J. X-Ray Sci. Technol., vol. 24, no. 2, pp. 241-256, Mar. 2016.
    • (2016) J. X-Ray Sci. Technol. , vol.24 , Issue.2 , pp. 241-256
    • Chen, M.1    Xi, Y.2    Cong, W.3    Liu, B.4    Wei, B.5    Wang, G.6
  • 26
    • 84941992099 scopus 로고    scopus 로고
    • Vision 20/20: Simultaneous CT-MRI-Next chapter of multimodality imaging
    • Oct
    • G. Wang et al., "Vision 20/20: Simultaneous CT-MRI-Next chapter of multimodality imaging," Med. Phys., vol. 42, pp. 5879-5889, Oct. 2015.
    • (2015) Med. Phys. , vol.42 , pp. 5879-5889
    • Wang, G.1
  • 27
    • 84925651777 scopus 로고    scopus 로고
    • Tensor-based dictionary learning for dynamic tomographic reconstruction
    • Apr
    • S. Tan et al., "Tensor-based dictionary learning for dynamic tomographic reconstruction," Phys. Med. Biol., vol. 60, no. 7, pp. 2803-2818, Apr. 2015.
    • (2015) Phys. Med. Biol. , vol.60 , Issue.7 , pp. 2803-2818
    • Tan, S.1
  • 28
    • 0028588610 scopus 로고
    • An artificial neural network approach to quantitative single photon emission computed tomographic reconstruction with collimator, attenuation, and scatter compensation
    • Dec
    • M. T. Munley, C. E. Floyd, Jr., J. E. Bowsher, and R. E. Coleman, "An artificial neural network approach to quantitative single photon emission computed tomographic reconstruction with collimator, attenuation, and scatter compensation," Med. Phys., vol. 21, no. 12, pp. 1889-1899, Dec. 1994.
    • (1994) Med. Phys. , vol.21 , Issue.12 , pp. 1889-1899
    • Munley, M.T.1    Floyd, C.E.2    Bowsher, J.E.3    Coleman, R.E.4
  • 29
    • 0029347985 scopus 로고
    • Neural network reconstruction of singlephoton emission computed tomography images
    • Aug
    • J. P. Kerr and E. B. Bartlett, "Neural network reconstruction of singlephoton emission computed tomography images," J. Digit. Imag., vol. 8, no. 3, pp. 116-126, Aug. 1995.
    • (1995) J. Digit. Imag. , vol.8 , Issue.3 , pp. 116-126
    • Kerr, J.P.1    Bartlett, E.B.2
  • 30
    • 79955633431 scopus 로고    scopus 로고
    • MR image reconstruction from highly undersampled k-space data by dictionary learning
    • May
    • S. Ravishankar and Y. Bresler, "MR image reconstruction from highly undersampled k-space data by dictionary learning," IEEE Trans. Med. Imag., vol. 30, no. 5, pp. 1028-1041, May 2011.
    • (2011) IEEE Trans. Med. Imag. , vol.30 , Issue.5 , pp. 1028-1041
    • Ravishankar, S.1    Bresler, Y.2
  • 31
    • 84867561335 scopus 로고    scopus 로고
    • Low-dose X-ray CT reconstruction via dictionary learning
    • Sep
    • Q. Xu, H. Yu, X. Mou, L. Zhang, J. Hsieh, and G. Wang, "Low-dose X-ray CT reconstruction via dictionary learning," IEEE Trans. Med. Imag., vol. 31, no. 9, pp. 1682-1697, Sep. 2012.
    • (2012) IEEE Trans. Med. Imag. , vol.31 , Issue.9 , pp. 1682-1697
    • Xu, Q.1    Yu, H.2    Mou, X.3    Zhang, L.4    Hsieh, J.5    Wang, G.6
  • 32
    • 84978427520 scopus 로고    scopus 로고
    • Accelerating magnetic resonance imaging via deep learning
    • Apr
    • S. Wang et al., "Accelerating magnetic resonance imaging via deep learning," presented at the IEEE 13th Int. Symp. Biomed. Imag., Apr. 2016, pp. 514-517.
    • (2016) IEEE 13th Int. Symp. Biomed. Imag. , pp. 514-517
    • Wang, S.1
  • 35
    • 33645655614 scopus 로고    scopus 로고
    • Image denoising with block-matching and 3D filtering
    • Feb
    • K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising with block-matching and 3D filtering," Proc. SPIE, vol. 6064, pp. 606414-1-12, Feb. 2006.
    • (2006) Proc. SPIE , vol.6064 , pp. 6064141-60641412
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 41
    • 49749137392 scopus 로고    scopus 로고
    • Image reconstruction from a small number of projections
    • Aug
    • G. T. Herman and R. Davidi, "Image reconstruction from a small number of projections," Inverse Probl, vol. 24, no. 4, pp. 45011-45028, Aug. 2008.
    • (2008) Inverse Probl , vol.24 , Issue.4 , pp. 45011-45028
    • Herman, G.T.1    Davidi, R.2
  • 42
    • 84877889477 scopus 로고    scopus 로고
    • Enhanced compressed sensing recovery with level set normals
    • Jul
    • V. Estellers, J.-P. Thiran, and X. Bresson, "Enhanced compressed sensing recovery with level set normals," IEEE Trans. Image Process., vol. 22, no. 7, pp. 2611-2626, Jul. 2013.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.7 , pp. 2611-2626
    • Estellers, V.1    Thiran, J.-P.2    Bresson, X.3
  • 43
    • 84993972048 scopus 로고    scopus 로고
    • Artificial intelligence: Deep neural reasoning
    • Oct
    • H. Jaeger, "Artificial intelligence: Deep neural reasoning," Nature, vol. 538, pp. 467-468, Oct. 2016.
    • (2016) Nature , vol.538 , pp. 467-468
    • Jaeger, H.1
  • 48
    • 85009120482 scopus 로고    scopus 로고
    • accessed on Sep. 1, 2016
    • accessed on Sep. 1, 2016. [Online]. Available: https://www. 4catalyzer.com/
  • 49
    • 85009102746 scopus 로고    scopus 로고
    • accessed on Sep. 1, 2016
    • accessed on Sep. 1, 2016. [Online]. Available: http://www.nanalyze. com/2016/02/enlitic-deep-learning-algorithms-for-medical-imaging/


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.