메뉴 건너뛰기




Volumn 7700 LECTURE NO, Issue , 2012, Pages 437-478

Practical recommendations for gradient-based training of deep architectures

Author keywords

[No Author keywords available]

Indexed keywords

DEEP LEARNING; DEEP NEURAL NETWORKS; LEARNING ALGORITHMS; NETWORK ARCHITECTURE; NETWORK LAYERS; SIGNALING;

EID: 84872577736     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-35289-8_26     Document Type: Article
Times cited : (1651)

References (120)
  • 1
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • Amari, S.: Natural gradient works efficiently in learning. Neural Computation 10(2), 251-276 (1998) (Pubitemid 128463152)
    • (1998) Neural Computation , vol.10 , Issue.2 , pp. 251-276
    • Amari, S.-I.1
  • 2
    • 84872521281 scopus 로고    scopus 로고
    • Non-asymptotic analysis of stochastic approximation algorithms
    • Bach, F., Moulines, E.: Non-asymptotic analysis of stochastic approximation algorithms. In: NIPS 2011 (2011)
    • (2011) NIPS 2011
    • Bach, F.1    Moulines, E.2
  • 3
    • 76749123278 scopus 로고    scopus 로고
    • Differentiable sparse coding
    • Bagnell, J.A., Bradley, D.M.: Differentiable sparse coding. In: NIPS 2009, pp. 113-120 (2009)
    • (2009) NIPS 2009 , pp. 113-120
    • Bagnell, J.A.1    Bradley, D.M.2
  • 4
    • 84991988347 scopus 로고
    • Learning internal representations
    • Baxter, J.: Learning internal representations. In: COLT 1995, pp. 311-320 (1995)
    • (1995) COLT 1995 , pp. 311-320
    • Baxter, J.1
  • 5
    • 0031187873 scopus 로고    scopus 로고
    • A Bayesian/information theoretic model of learning via multiple task sampling
    • Baxter, J.: A Bayesian/information theoretic model of learning via multiple task sampling. Machine Learning 28, 7-40 (1997)
    • (1997) Machine Learning , vol.28 , pp. 7-40
    • Baxter, J.1
  • 6
    • 79959407847 scopus 로고    scopus 로고
    • Neural net language models
    • Bengio, Y.: Neural net language models. Scholarpedia 3(1), 3881 (2008)
    • (2008) Scholarpedia , vol.3 , Issue.1 , pp. 3881
    • Bengio, Y.1
  • 7
    • 78650904464 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio, Y.: Learning deep architectures for AI. Now Publishers (2009)
    • (2009) Now Publishers
    • Bengio, Y.1
  • 9
    • 80054108245 scopus 로고    scopus 로고
    • Kivinen, J., Szepesvari, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS Springer, Heidelberg
    • Bengio, Y., Delalleau, O.: On the Expressive Power of Deep Architectures. In: Kivinen, J., Szepesvari, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS, vol. 6925, pp. 18-36. Springer, Heidelberg (2011)
    • (2011) On the Expressive Power of Deep Architectures , vol.6925 , pp. 18-36
    • Bengio, Y.1    Delalleau, O.2
  • 11
    • 0142166851 scopus 로고    scopus 로고
    • A neural probabilistic language model
    • Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. JMLR 3, 1137-1155 (2003)
    • (2003) JMLR , vol.3 , pp. 1137-1155
    • Bengio, Y.1    Ducharme, R.2    Vincent, P.3    Jauvin, C.4
  • 13
    • 77954662106 scopus 로고    scopus 로고
    • The curse of highly variable functions for local kernel machines
    • Bengio, Y., Delalleau, O., Le Roux, N.: The curse of highly variable functions for local kernel machines. In: NIPS 2005, pp. 107-114 (2006b)
    • (2006) NIPS 2005 , pp. 107-114
    • Bengio, Y.1    Delalleau, O.2    Le Roux, N.3
  • 16
    • 84872509374 scopus 로고    scopus 로고
    • Implicit density estimation by local moment matching to sample from auto-encoders
    • arXiv: 1207.0057
    • Bengio, Y., Alain, G., Rifai, S.: Implicit density estimation by local moment matching to sample from auto-encoders. Technical report, arXiv:1207.0057 (2012)
    • (2012) Technical report
    • Bengio, Y.1    Alain, G.2    Rifai, S.3
  • 17
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Machine Learning Res. 13, 281-305 (2012)
    • (2012) J. Machine Learning Res. , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 21
    • 81155141540 scopus 로고    scopus 로고
    • Incremental gradient, subgradient, and proximal methods for convex optimization: A survey
    • Bertsekas, D.P.: Incremental gradient, subgradient, and proximal methods for convex optimization: A survey. Technical Report 2848, LIDS (2010)
    • (2010) Technical Report 2848, LIDS
    • Bertsekas, D.P.1
  • 24
    • 84879866425 scopus 로고    scopus 로고
    • Joint learning of words and meaning representations for open-text semantic parsing
    • Bordes, A., Glorot, X., Weston, J., Bengio, Y.: Joint learning of words and meaning representations for open-text semantic parsing. In: AISTATS 2012 (2012)
    • (2012) AISTATS 2012
    • Bordes, A.1    Glorot, X.2    Weston, J.3    Bengio, Y.4
  • 25
  • 26
    • 84872521733 scopus 로고    scopus 로고
    • Montavon, G., Orr, G.B., Muller, K.-R. (eds.) NN: Tricks of the Trade, 2nd edn. LNCS Springer, Heidelberg
    • Bottou, L.: Stochastic Gradient Descent Tricks. In: Montavon, G., Orr, G.B., Muller, K.-R. (eds.) NN: Tricks of the Trade, 2nd edn. LNCS, vol. 7700, pp. 421-436. Springer, Heidelberg (2012)
    • (2012) Stochastic Gradient Descent Tricks , vol.7700 , pp. 421-436
    • Bottou, L.1
  • 27
    • 85162035281 scopus 로고    scopus 로고
    • The tradeoffs of large scale learning
    • Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: NIPS 2008 (2008)
    • (2008) NIPS 2008
    • Bottou, L.1    Bousquet, O.2
  • 28
    • 84899022736 scopus 로고    scopus 로고
    • Large-scale on-line learning
    • Bottou, L., LeCun, Y.: Large-scale on-line learning. In: NIPS 2003 (2004)
    • (2004) NIPS 2003
    • Bottou, L.1    LeCun, Y.2
  • 29
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors. Machine Learning 24(2), 123-140 (1994) (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 30
    • 79959650504 scopus 로고    scopus 로고
    • Quickly generating representative samples from an rbm-derived process
    • Breuleux, O., Bengio, Y., Vincent, P.: Quickly generating representative samples from an rbm-derived process. Neural Computation 23(8), 2053-2073 (2011)
    • (2011) Neural Computation , vol.23 , Issue.8 , pp. 2053-2073
    • Breuleux, O.1    Bengio, Y.2    Vincent, P.3
  • 32
    • 80053444761 scopus 로고    scopus 로고
    • Enhanced gradient and adaptive learning rate for training restricted boltzmann machines
    • Cho, K., Raiko, T., Ilin, A.: Enhanced gradient and adaptive learning rate for training restricted boltzmann machines. In: ICML 2011, pp. 105-112 (2011)
    • (2011) ICML 2011 , pp. 105-112
    • Cho, K.1    Raiko, T.2    Ilin, A.3
  • 33
    • 80053442434 scopus 로고    scopus 로고
    • The importance of encoding versus training with sparse coding and vector quantization
    • Coates, A., Ng, A.Y.: The importance of encoding versus training with sparse coding and vector quantization. In: ICML 2011 (2011)
    • (2011) ICML 2011
    • Coates, A.1    Ng, A.Y.2
  • 38
    • 80053436198 scopus 로고    scopus 로고
    • Unsupervised models of images by spikeand-slab RBMs
    • Courville, A., Bergstra, J., Bengio, Y.: Unsupervised models of images by spikeand-slab RBMs. In: ICML 2011 (2011)
    • (2011) ICML 2011
    • Courville, A.1    Bergstra, J.2    Bengio, Y.3
  • 39
    • 84872545161 scopus 로고    scopus 로고
    • Sampled reconstruction for large-scale learning of embeddings
    • Dauphin, Y., Glorot, X., Bengio, Y.: Sampled reconstruction for large-scale learning of embeddings. In: Proc. ICML 2011 (2011)
    • (2011) Proc. ICML 2011
    • Dauphin, Y.1    Glorot, X.2    Bengio, Y.3
  • 42
    • 0027636611 scopus 로고
    • Learning and development in neural networks: The importance of starting small
    • Elman, J.L.: Learning and development in neural networks: The importance of starting small. Cognition 48, 781-799 (1993)
    • (1993) Cognition , vol.48 , pp. 781-799
    • Elman, J.L.1
  • 45
    • 0032165969 scopus 로고    scopus 로고
    • A general framework for adaptive processing of data structures
    • PII S1045922798061906
    • Frasconi, P., Gori, M., Sperduti, A.: A general framework for adaptive processing of data structures. IEEE Transactions on Neural Networks 9(5), 768-786 (1998) (Pubitemid 128743645)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.5 , pp. 768-786
    • Frasconi, P.1    Gori, M.2    Sperduti, A.3
  • 46
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Computation 4(1), 1-58 (1992)
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 48
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS 2010, pp. 249-256 (2010)
    • (2010) AISTATS 2010 , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 49
    • 84872578524 scopus 로고    scopus 로고
    • Deep sparse rectifier neural networks
    • Glorot, X., Bordes, A., Bengio, Y. (2011a). Deep sparse rectifier neural networks. In: AISTATS 2011 (2011)
    • (2011) AISTATS 2011 , Issue.2011
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 50
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: A deep learning approach
    • Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: A deep learning approach. In: ICML 2011 (2011b)
    • (2011) ICML 2011
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 51
    • 84860644702 scopus 로고    scopus 로고
    • Measuring invariances in deep networks
    • Goodfellow, I., Le, Q., Saxe, A., Ng, A.: Measuring invariances in deep networks. In: NIPS 2009, pp. 646-654 (2009)
    • (2009) NIPS 2009 , pp. 646-654
    • Goodfellow I. Le, Q.1    Saxe, A.2    Ng, A.3
  • 54
    • 0002810605 scopus 로고
    • Almost optimal lower bounds for small depth circuits
    • Hastad, J.: Almost optimal lower bounds for small depth circuits. In: STOC 1986, pp. 6-20 (1986)
    • (1986) STOC 1986 , pp. 6-20
    • Hastad, J.1
  • 55
    • 0001295178 scopus 로고
    • On the power of small-depth threshold circuits
    • Hastad, J., Goldmann, M.: On the power of small-depth threshold circuits. Computational Complexity 1, 113-129 (1991)
    • (1991) Computational Complexity , vol.1 , pp. 113-129
    • Hastad, J.1    Goldmann, M.2
  • 58
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • Hinton, G.E.: Connectionist learning procedures. Artificial Intelligence 40, 185-234 (1989)
    • (1989) Artificial Intelligence , vol.40 , pp. 185-234
    • Hinton, G.E.1
  • 60
    • 84872506495 scopus 로고    scopus 로고
    • Montavon, G., Orr, G.B., Muller, K.-R. (eds.) NN: Tricks of the Trade, 2nd edn. LNCS Springer, Heidelberg
    • Hinton, G.E.: A Practical Guide to Training Restricted Boltzmann Machines. In: Montavon, G., Orr, G.B., Muller, K.-R. (eds.) NN: Tricks of the Trade, 2nd edn. LNCS, vol. 7700, pp. 599-619. Springer, Heidelberg (2012)
    • (2012) A Practical Guide to Training Restricted Boltzmann Machines , vol.7700 , pp. 599-619
    • Hinton, G.E.1
  • 61
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • DOI 10.1162/neco.2006.18.7.1527
    • Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Computation 18, 1527-1554 (2006) (Pubitemid 44024729)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 66
    • 59649113160 scopus 로고    scopus 로고
    • Flexible shaping: How learning in small steps helps
    • Krueger, K.A., Dayan, P.: Flexible shaping: How learning in small steps helps. Cognition 110, 380-394 (2009)
    • (2009) Cognition , vol.110 , pp. 380-394
    • Krueger, K.A.1    Dayan, P.2
  • 69
    • 56449110012 scopus 로고    scopus 로고
    • Classification using discriminative restricted Boltzmann machines
    • Larochelle, H., Bengio, Y.: Classification using discriminative restricted Boltzmann machines. In: ICML 2008 (2008)
    • (2008) ICML 2008
    • Larochelle, H.1    Bengio, Y.2
  • 75
    • 84872514178 scopus 로고    scopus 로고
    • A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets
    • arXiv: 1202.6258
    • Le Roux, N., Schmidt, M., Bach, F.: A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. Technical report, arXiv:1202.6258 (2012)
    • (2012) Technical report
    • Le Roux, N.1    Schmidt, M.2    Bach, F.3
  • 77
    • 0342898730 scopus 로고
    • Generalization and network design strategies
    • University of Toronto
    • LeCun, Y.: Generalization and network design strategies. Technical Report CRGTR-89-4, University of Toronto (1989)
    • (1989) Technical Report CRGTR-89-94
    • LeCun, Y.1
  • 79
    • 0001857994 scopus 로고    scopus 로고
    • Orr, G.B., Muller, K.-R. (eds.) NIPS-WS 1996. LNCS Springer, Heidelberg
    • LeCun, Y.A., Bottou, L., Orr, G.B., Muller, K.-R.: Efficient BackProp. In: Orr, G.B., Muller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 9-50. Springer, Heidelberg (1998a)
    • (1998) Efficient BackProp , vol.1524 , pp. 9-50
    • LeCun, Y.A.1    Bottou, L.2    Orr, G.B.3    Muller, K.-R.4
  • 81
    • 85161980001 scopus 로고    scopus 로고
    • Sparse deep belief net model for visual area V2
    • Lee, H., Ekanadham, C., Ng, A. (2008). Sparse deep belief net model for visual area V2. In: NIPS 2007 (2007)
    • (2008) NIPS 2007 , Issue.2007
    • Lee, H.1    Ekanadham, C.2    Ng, A.3
  • 82
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: ICML 2009 (2009)
    • (2009) ICML 2009
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 83
    • 77956541496 scopus 로고    scopus 로고
    • Deep learning via Hessian-free optimization
    • Martens, J.: Deep learning via Hessian-free optimization. In: ICML 2010, pp. 735-742 (2010)
    • (2010) ICML 2010 , pp. 735-742
    • Martens, J.1
  • 85
    • 84872588487 scopus 로고    scopus 로고
    • Deep Boltzmann machines as feedforward hierarchies
    • Montavon, G., Braun, M.L., Muller, K.-R.: Deep Boltzmann machines as feedforward hierarchies. In: AISTATS 2012 (2012)
    • (2012) AISTATS , Issue.2012
    • Montavon, G.1    Braun, M.L.2    Muller, K.-R.3
  • 86
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML 2010 (2010)
    • (2010) ICML 2010
    • Nair, V.1    Hinton, G.E.2
  • 88
    • 65249121279 scopus 로고    scopus 로고
    • Primal-dual subgradient methods for convex problems
    • Nesterov, Y.: Primal-dual subgradient methods for convex problems. Mathematical Programming 120(1), 221-259 (2009)
    • (2009) Mathematical Programming , vol.120 , Issue.1 , pp. 221-259
    • Nesterov, Y.1
  • 89
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • DOI 10.1016/S0042-6989(97)00169-7, PII S0042698997001697
    • Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research 37, 3311-3325 (1997) (Pubitemid 27493805)
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 90
    • 0000255539 scopus 로고
    • Fast exact multiplication by the Hessian
    • Pearlmutter, B.: Fast exact multiplication by the Hessian. Neural Computation 6(1), 147-160 (1994)
    • (1994) Neural Computation , vol.6 , Issue.1 , pp. 147-160
    • Pearlmutter, B.1
  • 91
    • 73449129720 scopus 로고    scopus 로고
    • A high-throughput screening approach to discovering good forms of biologically inspired visual representation
    • Pinto, N., Doukhan, D., DiCarlo, J.J., Cox, D.D.: A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput. Biol. 5(11), e1000579 (2009)
    • (2009) PLoS Comput. Biol. , vol.5 , Issue.11
    • Pinto, N.1    Doukhan, D.2    DiCarlo, J.J.3    Cox, D.D.4
  • 92
    • 0025519291 scopus 로고
    • Recursive distributed representations
    • Pollack, J.B.: Recursive distributed representations. Artificial Intelligence 46(1), 77-105 (1990)
    • (1990) Artificial Intelligence , vol.46 , Issue.1 , pp. 77-105
    • Pollack, J.B.1
  • 93
    • 0026899240 scopus 로고
    • Acceleration of stochastic approximation by averaging
    • Polyak, B., Juditsky, A.: Acceleration of stochastic approximation by averaging. SIAM J. Control and Optimization 30(4), 838-855 (1992)
    • (1992) SIAM J. Control and Optimization , vol.30 , Issue.4 , pp. 838-855
    • Polyak, B.1    Juditsky, A.2
  • 94
    • 84893414160 scopus 로고    scopus 로고
    • Deep learning made easier by linear transformations in perceptrons 2012
    • Raiko, T., Valpola, H., LeCun, Y. (2012). Deep learning made easier by linear transformations in perceptrons. In: AISTATS 2012 (2012)
    • (2012) AISTATS 2012
    • Raiko, T.1    Valpola, H.2    LeCun, Y.3
  • 95
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • Ranzato, M., Poultney, C., Chopra, S., LeCun, Y.: Efficient learning of sparse representations with an energy-based model. In: NIPS 2006 (2007)
    • (2007) NIPS 2006
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 96
    • 85161966246 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) (NIPS 2007) MIT Press, Cambridge
    • Ranzato, M., Boureau, Y.-L., LeCun, Y.: Sparse feature learning for deep belief networks. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems (NIPS 2007), vol. 20, pp. 1185-1192. MIT Press, Cambridge (2008a)
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 1185-1192
    • Ranzato, M.1    Boureau, Y.-L.2    LeCun, Y.3
  • 97
    • 85161966246 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • Ranzato, M., Boureau, Y., LeCun, Y.: Sparse feature learning for deep belief networks. In: NIPS 2007 (2008b)
    • (2008) NIPS 2007
    • Ranzato, M.1    Boureau, Y.2    LeCun, Y.3
  • 98
    • 32044466073 scopus 로고    scopus 로고
    • Markov logic networks
    • DOI 10.1007/s10994-006-5833-1
    • Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107-136 (2006) (Pubitemid 43202307)
    • (2006) Machine Learning , vol.62 , Issue.1-2 SPEC. ISS. , pp. 107-136
    • Richardson, M.1    Domingos, P.2
  • 99
    • 80053460450 scopus 로고    scopus 로고
    • Contracting autoencoders: Explicit invariance during feature extraction
    • Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contracting autoencoders: Explicit invariance during feature extraction. In: ICML 2011 (2011a)
    • (2011) ICML 2011
    • Rifai, S.1    Vincent, P.2    Muller, X.3    Glorot, X.4    Bengio, Y.5
  • 101
    • 84867136416 scopus 로고    scopus 로고
    • A generative process for sampling contractive auto-encoders
    • Rifai, S., Bengio, Y., Dauphin, Y., Vincent, P.: A generative process for sampling contractive auto-encoders. In: ICML 2012 (2012)
    • (2012) ICML 2012
    • Rifai, S.1    Bengio, Y.2    Dauphin, Y.3    Vincent, P.4
  • 103
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • Rumelhart, D.E., Hinton, G.E.,Williams, R.J.: Learning representations by backpropagating errors. Nature 323, 533-536 (1986)
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 107
    • 0038231917 scopus 로고    scopus 로고
    • Orr, G.B., Muller, K.-R. (eds.) NIPS-WS 1996. LNCS Springer, Heidelberg
    • Schraudolph, N.N.: Centering Neural Network Gradient Factors. In: Orr, G.B., Muller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 207-548. Springer, Heidelberg (1998)
    • (1998) Centering Neural Network Gradient Factors , vol.1524 , pp. 207-548
    • Schraudolph, N.N.1
  • 108
    • 80053438267 scopus 로고    scopus 로고
    • Parsing natural scenes and natural language with recursive neural networks
    • Socher, R., Manning, C., Ng, A.Y.: Parsing natural scenes and natural language with recursive neural networks. In: ICML 2011 (2011)
    • (2011) ICML 2011
    • Socher, R.1    Manning, C.2    Ng, A.Y.3
  • 109
    • 79952760123 scopus 로고    scopus 로고
    • Parameter screening and optimisation for ILP using designed experiments
    • Srinivasan, A., Ramakrishnan, G.: Parameter screening and optimisation for ILP using designed experiments. Journal of Machine Learning Research 12, 627-662 (2011)
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 627-662
    • Srinivasan, A.1    Ramakrishnan, G.2
  • 110
    • 77952681438 scopus 로고    scopus 로고
    • A tutorial on stochastic approximation algorithms for training restricted boltzmann machines and deep belief nets
    • Swersky, K., Chen, B., Marlin, B., de Freitas, N.: A tutorial on stochastic approximation algorithms for training restricted boltzmann machines and deep belief nets. In: Information Theory and Applications Workshop (2010)
    • (2010) Information Theory and Applications Workshop
    • Swersky, K.1    Chen, B.2    Marlin, B.3    De Freitas, N.4
  • 111
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • Tenenbaum, J., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319-2323 (2000) (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 112
    • 71149084943 scopus 로고    scopus 로고
    • Using fast weights to improve persistent contrastive divergence
    • Tieleman, T., Hinton, G.: Using fast weights to improve persistent contrastive divergence. In: ICML 2009 (2009)
    • (2009) ICML 2009
    • Tieleman, T.1    Hinton, G.2
  • 114
    • 79959575293 scopus 로고    scopus 로고
    • A connection between score matching and denoising autoencoders
    • Vincent, P.: A connection between score matching and denoising autoencoders. Neural Computation 23(7) (2011)
    • (2011) Neural Computation , vol.23 , Issue.7
    • Vincent, P.1
  • 115
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: ICML 2008 (2008)
    • (2008) ICML 2008
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 116
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Machine Learning Res. 11 (2010)
    • (2010) J. Machine Learning Res. , vol.11
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 117
    • 56449119888 scopus 로고    scopus 로고
    • Deep learning via semi-supervised embedding
    • Weston, J., Ratle, F., Collobert, R.: Deep learning via semi-supervised embedding. In: ICML 2008 (2008)
    • (2008) ICML 2008
    • Weston, J.1    Ratle, F.2    Collobert, R.3
  • 119
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • Wiskott, L., Sejnowski, T.J.: Slow feature analysis: Unsupervised learning of invariances. Neural Computation 14(4), 715-770 (2002)
    • (2002) Neural Computation , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.