-
1
-
-
79952232216
-
Global cancer statistics
-
A. Jemal et al., "Global cancer statistics," CA Cancer J. Clin., vol. 61, pp. 69-90, 2011.
-
(2011)
CA Cancer J. Clin.
, vol.61
, pp. 69-90
-
-
Jemal, A.1
-
2
-
-
84875804295
-
Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012
-
J. Ferlay et al., "Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012," Eur. J. Cancer, vol. 49, pp. 1374-1403, 2013.
-
(2013)
Eur. J. Cancer
, vol.49
, pp. 1374-1403
-
-
Ferlay, J.1
-
3
-
-
0031060766
-
The tabár classification of mammographic parenchymal patterns
-
I. T. Gram, E. Funkhouser, and L. Tabár, "The tabár classification of mammographic parenchymal patterns," Eur. J. Radiol., vol. 24, pp. 131-136, 1997.
-
(1997)
Eur. J. Radiol.
, vol.24
, pp. 131-136
-
-
Gram, I.T.1
Funkhouser, E.2
Tabár, L.3
-
4
-
-
33745683831
-
Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis
-
V. McCormack and I. dos Santos Silva, "Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis," Cancer Epidemiol. Biomarkers Prev., vol. 15, pp. 1159-1169, 2006.
-
(2006)
Cancer Epidemiol. Biomarkers Prev.
, vol.15
, pp. 1159-1169
-
-
McCormack, V.1
Dos Santos Silva, I.2
-
5
-
-
77955933965
-
Breast tissue composition and susceptibility to breast cancer
-
N. F. Boyd et al., "Breast tissue composition and susceptibility to breast cancer," J. Nat. Cancer Inst., vol. 102, pp. 1224-1237, 2010.
-
(2010)
J. Nat. Cancer Inst.
, vol.102
, pp. 1224-1237
-
-
Boyd, N.F.1
-
6
-
-
79955758418
-
Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: A nested case-control study
-
J. Cuzick et al., "Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: A nested case-control study," J. Nat. Cancer Inst., vol. 103, no. 9, pp. 744-752, 2011.
-
(2011)
J. Nat. Cancer Inst.
, vol.103
, Issue.9
, pp. 744-752
-
-
Cuzick, J.1
-
7
-
-
0017082939
-
Risk for breast cancer development determined by mammographic parenchymal pattern
-
J. N. Wolfe, "Risk for breast cancer development determined by mammographic parenchymal pattern," Cancer, vol. 37, pp. 2486-2492, 1976.
-
(1976)
Cancer
, vol.37
, pp. 2486-2492
-
-
Wolfe, J.N.1
-
8
-
-
0033178443
-
The natural history of breast carcinoma
-
L. Tabár, S. W. Duffy, B. Vitak, H.-H. Chen, and T. C. Prevost, "The natural history of breast carcinoma," Cancer, vol. 86, no. 3, pp. 449-462, 1999.
-
(1999)
Cancer
, vol.86
, Issue.3
, pp. 449-462
-
-
Tabár, L.1
Duffy, S.W.2
Vitak, B.3
Chen, H.-H.4
Prevost, T.C.5
-
9
-
-
0028129475
-
The quantitative analysis of mammographic densities
-
J. W. Byng, N. F. Boyd, E. Fishell, R. A. Jong, and M. J. Yaffe, "The quantitative analysis of mammographic densities," Phys. Med. Biol., vol. 39, pp. 1629-1638, 1994.
-
(1994)
Phys. Med. Biol.
, vol.39
, pp. 1629-1638
-
-
Byng, J.W.1
Boyd, N.F.2
Fishell, E.3
Jong, R.A.4
Yaffe, M.J.5
-
10
-
-
79954609832
-
Automatic breast density segmentation: An integration of different approaches
-
M. G. Kallenberg, M. Lokate, C. H. van Gils, and N. Karssemeijer, "Automatic breast density segmentation: An integration of different approaches," Phys. Med. Biol., vol. 56, pp. 2715-2729, 2011.
-
(2011)
Phys. Med. Biol.
, vol.56
, pp. 2715-2729
-
-
Kallenberg, M.G.1
Lokate, M.2
Van Gils, C.H.3
Karssemeijer, N.4
-
11
-
-
1542362354
-
Automatic classification of mammographic parenchymal patterns: A statistical approach
-
S. Petroudi, T. Kadir, and M. Brady, "Automatic classification of mammographic parenchymal patterns: A statistical approach," in Proc. 25th Annu. Int. Conf. IEEE EMBS, 2003, vol. 1, pp. 798-801.
-
(2003)
Proc. 25th Annu. Int. Conf. IEEE EMBS
, vol.1
, pp. 798-801
-
-
Petroudi, S.1
Kadir, T.2
Brady, M.3
-
12
-
-
55849111899
-
An automated approach for estimation of breast density
-
J. J. Heine et al., "An automated approach for estimation of breast density," Cancer Epidemiol. Biomarkers Prev., vol. 17, pp. 3090-3097, 2008.
-
(2008)
Cancer Epidemiol. Biomarkers Prev.
, vol.17
, pp. 3090-3097
-
-
Heine, J.J.1
-
13
-
-
77950319697
-
Classifying mammograms using texture information
-
A. Oliver, X. Llado, R. Marti, J. Freixenet, and R. Zwiggelaar, "Classifying mammograms using texture information," Med. Image Understand. Anal., pp. 223-227, 2007.
-
(2007)
Med. Image Understand. Anal.
, pp. 223-227
-
-
Oliver, A.1
Llado, X.2
Marti, R.3
Freixenet, J.4
Zwiggelaar, R.5
-
14
-
-
84864356747
-
High-throughput mammographic-density measurement: A tool for risk prediction of breast cancer
-
J. Li et al., "High-throughput mammographic-density measurement: A tool for risk prediction of breast cancer," Breast Cancer Res., vol. 14, p. R114, 2012.
-
(2012)
Breast Cancer Res.
, vol.14
, pp. R114
-
-
Li, J.1
-
15
-
-
84864655971
-
Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation
-
B. M. Keller et al., "Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation," Med. Phys., vol. 39, no. 8, pp. 4903-4917, 2012.
-
(2012)
Med. Phys.
, vol.39
, Issue.8
, pp. 4903-4917
-
-
Keller, B.M.1
-
16
-
-
44149128469
-
Power spectral analysis of mammographic parenchymal patterns for breast cancer risk assessment
-
H. Li, M. L. Giger, O. I. Olopade, and M. R. Chinander, "Power spectral analysis of mammographic parenchymal patterns for breast cancer risk assessment," J. Digit. Imag., vol. 21, pp. 145-152, 2008.
-
(2008)
J. Digit. Imag.
, vol.21
, pp. 145-152
-
-
Li, H.1
Giger, M.L.2
Olopade, O.I.3
Chinander, M.R.4
-
17
-
-
64549104287
-
Texture features from mammographic images and risk of breast cancer
-
A. Manduca et al., "Texture features from mammographic images and risk of breast cancer," Cancer Epidemiol. Biomarkers Prev., vol. 18, pp. 837-845, 2009.
-
(2009)
Cancer Epidemiol. Biomarkers Prev.
, vol.18
, pp. 837-845
-
-
Manduca, A.1
-
18
-
-
84860541464
-
Characterizing mammographic images by using generic texture features
-
L. Häberle et al., "Characterizing mammographic images by using generic texture features," Breast Cancer Res., vol. 14, no. 2, p. R59, 2012.
-
(2012)
Breast Cancer Res.
, vol.14
, Issue.2
, pp. R59
-
-
Häberle, L.1
-
19
-
-
79960572789
-
A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer
-
M. Nielsen et al., "A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer," Cancer Epidemiol., vol. 35, pp. 381-387, 2011.
-
(2011)
Cancer Epidemiol.
, vol.35
, pp. 381-387
-
-
Nielsen, M.1
-
20
-
-
84863974784
-
A novel automated mammographic density measure and breast cancer risk
-
J. J. Heine et al., "A novel automated mammographic density measure and breast cancer risk," J. Nat. Cancer Inst., vol. 104, pp. 1028-1037, 2012.
-
(2012)
J. Nat. Cancer Inst.
, vol.104
, pp. 1028-1037
-
-
Heine, J.J.1
-
21
-
-
84899472697
-
Mammographic texture resemblance generalizes as an independent risk factor for breast cancer
-
M. Nielsen et al., "Mammographic texture resemblance generalizes as an independent risk factor for breast cancer," Breast Cancer Res., vol. 16, p. R37, 2014.
-
(2014)
Breast Cancer Res.
, vol.16
, pp. R37
-
-
Nielsen, M.1
-
22
-
-
84935003842
-
Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment
-
Y. Zheng et al., "Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment," Med. Phys., vol. 42, no. 7, pp. 4149-4160, 2015.
-
(2015)
Med. Phys.
, vol.42
, Issue.7
, pp. 4149-4160
-
-
Zheng, Y.1
-
23
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
M. Ranzato, C. S. Poultney, S. Chopra, and Y. LeCun, "Efficient learning of sparse representations with an energy-based model," Adv. Neural Inf. Process. Syst., pp. 1137-1144, 2007.
-
(2007)
Adv. Neural Inf. Process. Syst.
, pp. 1137-1144
-
-
Ranzato, M.1
Poultney, C.S.2
Chopra, S.3
LeCun, Y.4
-
24
-
-
34948870900
-
Unsupervised learning of invariant feature hierarchies with applications to object recognition
-
M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, "Unsupervised learning of invariant feature hierarchies with applications to object recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2007, pp. 1-8.
-
(2007)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 1-8
-
-
Ranzato, M.1
Huang, F.J.2
Boureau, Y.-L.3
LeCun, Y.4
-
25
-
-
85020259406
-
Breast density scoring with multiscale denoising autoencoders
-
K. Petersen, K. Chernoff, M. Nielsen, and A. Ng, "Breast density scoring with multiscale denoising autoencoders," in Proc. Sparsity Tech. Med. Imag. Conjunction MICCAI 2012, 2012.
-
(2012)
Proc. Sparsity Tech. Med. Imag. Conjunction MICCAI 2012
-
-
Petersen, K.1
Chernoff, K.2
Nielsen, M.3
Ng, A.4
-
26
-
-
84903998168
-
Breast tissue segmentation and mammographic risk scoring using deep learning
-
Proc. 12th Int. Workshop, Breast Imag., H. Fujita, T. Hara, and C. Muramatsu, Eds.
-
K. Petersen, M. Nielsen, P. Diao, N. Karssemeijer, and M. Lillholm, "Breast tissue segmentation and mammographic risk scoring using deep learning," in Proc. 12th Int. Workshop, Breast Imag., H. Fujita, T. Hara, and C. Muramatsu, Eds., 2014, vol. 8539, LNCS, pp. 88-94.
-
(2014)
LNCS
, vol.8539
, pp. 88-94
-
-
Petersen, K.1
Nielsen, M.2
Diao, P.3
Karssemeijer, N.4
Lillholm, M.5
-
27
-
-
84961711940
-
A review on automatic mammographic density and parenchymal segmentation
-
W. He et al., "A review on automatic mammographic density and parenchymal segmentation," Int. J. Breast Cancer, 2015.
-
(2015)
Int. J. Breast Cancer
-
-
He, W.1
-
28
-
-
0034926028
-
Automatic segmentation of mammographic density
-
R. Sivaramakrishna, N. A. Obuchowski, W. A. Chilcote, and K. A. Powell, "Automatic segmentation of mammographic density," Acad. Radiol., vol. 8, no. 3, pp. 250-256, 2001.
-
(2001)
Acad. Radiol.
, vol.8
, Issue.3
, pp. 250-256
-
-
Sivaramakrishna, R.1
Obuchowski, N.A.2
Chilcote, W.A.3
Powell, K.A.4
-
29
-
-
50949132005
-
Breast density segmentation: A comparison of clustering and region based techniques
-
A. Torrent et al., "Breast density segmentation: A comparison of clustering and region based techniques," in Proc. 9th Int. Workshop Digital Mammogr., 2008, pp. 9-16.
-
(2008)
Proc. 9th Int. Workshop Digital Mammogr.
, pp. 9-16
-
-
Torrent, A.1
-
30
-
-
4243148629
-
Segmentation of the fibro-glandular disc in mammograms using Gaussian mixture modelling
-
R. J. Ferrari, R. M. Rangayyan, R. A. Borges, and A. F. Frère, "Segmentation of the fibro-glandular disc in mammograms using Gaussian mixture modelling," Med. Biol. Eng. Comput., vol. 42, pp. 378-387, 2004.
-
(2004)
Med. Biol. Eng. Comput.
, vol.42
, pp. 378-387
-
-
Ferrari, R.J.1
Rangayyan, R.M.2
Borges, R.A.3
Frère, A.F.4
-
32
-
-
33644610993
-
Volumetric breast density estimation from full-field digital mammograms
-
Mar
-
S. van Engeland, P. R. Snoeren, H. Huisman, C. Boetes, and N. Karssemeijer, "Volumetric breast density estimation from full-field digital mammograms," IEEE Trans. Med. Imag., vol. 25, no. 3, pp. 273-282, Mar. 2006.
-
(2006)
IEEE Trans. Med. Imag.
, vol.25
, Issue.3
, pp. 273-282
-
-
Van Engeland, S.1
Snoeren, P.R.2
Huisman, H.3
Boetes, C.4
Karssemeijer, N.5
-
33
-
-
0029974168
-
Automated analysis of mammographic densities
-
J. Byng, N. Boyd, E. Fishell, R. Jong, and M. Yaffe, "Automated analysis of mammographic densities," Phys. Med. Biol., vol. 41, no. 5, p. 909, 1996.
-
(1996)
Phys. Med. Biol.
, vol.41
, Issue.5
, pp. 909
-
-
Byng, J.1
Boyd, N.2
Fishell, E.3
Jong, R.4
Yaffe, M.5
-
34
-
-
0033957478
-
Computerized analysis of mammographic parenchymal patterns for breast cancer risk assessment: Feature selection
-
Z. Huo et al., "Computerized analysis of mammographic parenchymal patterns for breast cancer risk assessment: Feature selection," Med. Phys., vol. 27, pp. 4-12, 2000.
-
(2000)
Med. Phys.
, vol.27
, pp. 4-12
-
-
Huo, Z.1
-
35
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Aug
-
Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
36
-
-
84910651844
-
Deep learning in neural networks: An overview
-
J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Netw., vol. 61, pp. 85-117, 2015.
-
(2015)
Neural Netw.
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
37
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
38
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov
-
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
39
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Aug
-
C. Farabet, C. Couprie, L. Najman, and Y. LeCun, "Learning hierarchical features for scene labeling," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1915-1929, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
40
-
-
26444512083
-
Toward automatic phenotyping of developing embryos from videos
-
Sep
-
F. Ning et al., "Toward automatic phenotyping of developing embryos from videos," IEEE Trans. Image Process., vol. 14, no. 9, pp. 1360-1371, Sep. 2005.
-
(2005)
IEEE Trans. Image Process.
, vol.14
, Issue.9
, pp. 1360-1371
-
-
Ning, F.1
-
41
-
-
84877789057
-
Deep neural networks segment neuronal membranes in electron microscopy images
-
D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, "Deep neural networks segment neuronal membranes in electron microscopy images," Adv. Neural Inf. Process. Syst., pp. 2843-2851, 2012.
-
(2012)
Adv. Neural Inf. Process. Syst.
, pp. 2843-2851
-
-
Ciresan, D.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
42
-
-
77649302828
-
Convolutional networks can learn to generate affinity graphs for image segmentation
-
S. C. Turaga et al., "Convolutional networks can learn to generate affinity graphs for image segmentation," Neural Comput., vol. 22, no. 2, pp. 511-538, 2010.
-
(2010)
Neural Comput.
, vol.22
, Issue.2
, pp. 511-538
-
-
Turaga, S.C.1
-
43
-
-
0028996639
-
Detection of masses on mammograms using a convolutional neural network
-
D. Wei, B. Sahiner, H. Chan, and N. Petrick, "Detection of masses on mammograms using a convolutional neural network," Acoust., Speech Signal Process., vol. 5, pp. 3483-3486, 1995.
-
(1995)
Acoust., Speech Signal Process.
, vol.5
, pp. 3483-3486
-
-
Wei, D.1
Sahiner, B.2
Chan, H.3
Petrick, N.4
-
44
-
-
84948844104
-
Automatic breast density classification using a convolutional neural network architecture search procedure
-
P. Fonseca et al., "Automatic breast density classification using a convolutional neural network architecture search procedure," in Proc. SPIE Med. Imag., 2015, pp. 941 428-941 428.
-
(2015)
Proc. SPIE Med. Imag.
-
-
Fonseca, P.1
-
46
-
-
84874904675
-
Breast image feature learning with adaptive deconvolutional networks
-
A. R. Jamieson, K. Drukker, and M. L. Giger, "Breast image feature learning with adaptive deconvolutional networks," in Proc. SPIE Med. Imag., 2012, pp. 831 506-831 506.
-
(2012)
Proc. SPIE Med. Imag.
-
-
Jamieson, A.R.1
Drukker, K.2
Giger, M.L.3
-
47
-
-
50649114600
-
Supervised learning of image restoration with convolutional networks
-
V. Jain et al., "Supervised learning of image restoration with convolutional networks," in Proc. IEEE 11th Int. Conf. Comput. Vis., 2007, pp. 1-8.
-
(2007)
Proc. IEEE 11th Int. Conf. Comput. Vis.
, pp. 1-8
-
-
Jain, V.1
-
48
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, pp. 504-507, 2006.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
49
-
-
35348818718
-
Learning multiple layers of representation
-
G. E. Hinton, "Learning multiple layers of representation," Trends Cogn. Sci., vol. 11, no. 10, pp. 428-434, 2007.
-
(2007)
Trends Cogn. Sci.
, vol.11
, Issue.10
, pp. 428-434
-
-
Hinton, G.E.1
-
50
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, "Extracting and composing robust features with denoising autoencoders," in Proc. Int. Conf. Mach. Learn., 2008, pp. 1096-1103.
-
(2008)
Proc. Int. Conf. Mach. Learn.
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.A.4
-
51
-
-
79959353548
-
Stacked convolutional auto-encoders for hierarchical feature extraction
-
J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, "Stacked convolutional auto-encoders for hierarchical feature extraction," in Artif. Neural Netw. Mach. Learn., 2011, pp. 52-59.
-
(2011)
Artif. Neural Netw. Mach. Learn.
, pp. 52-59
-
-
Masci, J.1
Meier, U.2
Cireşan, D.3
Schmidhuber, J.4
-
52
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Q. Le et al., "Building high-level features using large scale unsupervised learning," in Proc. Int. Conf. Mach. Learn., 2012.
-
(2012)
Proc. Int. Conf. Mach. Learn.
-
-
Le, Q.1
-
54
-
-
0034264647
-
A spatio-frequency trade-off scale for scale-space filtering
-
Sep
-
L. Florack, "A spatio-frequency trade-off scale for scale-space filtering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 9, pp. 1050-1055, Sep. 2000.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, Issue.9
, pp. 1050-1055
-
-
Florack, L.1
-
55
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
B. A. Olshausen et al., "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature, vol. 381, no. 6583, pp. 607-609, 1996.
-
(1996)
Nature
, vol.381
, Issue.6583
, pp. 607-609
-
-
Olshausen, B.A.1
-
56
-
-
85161980001
-
Sparse deep belief net model for visual area V2
-
H. Lee, C. Ekanadham, and A. Y. Ng, "Sparse deep belief net model for visual area V2," Adv. Neural Inf. Process. Syst., pp. 873-880, 2008.
-
(2008)
Adv. Neural Inf. Process. Syst.
, pp. 873-880
-
-
Lee, H.1
Ekanadham, C.2
Ng, A.Y.3
-
57
-
-
77956509090
-
Rectified linear units improve restricted Boltzmann machines
-
V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," in Proc. Int. Conf. Mach. Learn., 2010, pp. 807-814.
-
(2010)
Proc. Int. Conf. Mach. Learn.
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
58
-
-
84868685948
-
The influence of mammogram acquisition on the mammographic density and breast cancer association in the Mayo mammography health study cohort
-
J. E. Olson et al., "The influence of mammogram acquisition on the mammographic density and breast cancer association in the Mayo mammography health study cohort," Breast Cancer Res., vol. 14, no. 6, p. R147, 2012.
-
(2012)
Breast Cancer Res.
, vol.14
, Issue.6
, pp. R147
-
-
Olson, J.E.1
-
59
-
-
84875298474
-
-
New York: Springer
-
Neural Networks: Tricks of the Trade, G. Montavon, G. Orr, and M. K, Eds. New York: Springer, 2012, vol. 7700.
-
(2012)
Neural Networks: Tricks of the Trade
, vol.7700
-
-
Montavon, G.1
Orr, G.2
K, M.3
-
60
-
-
0030129333
-
The Gaussian scale-space paradigm and the multiscale local jet
-
L. M. J. Florack, B. M. ter Haar Romeny, M. A. Viergever, and J. J. Koenderink, "The Gaussian scale-space paradigm and the multiscale local jet," Int. J. Comput. Vis., vol. 18, pp. 61-75, 1996.
-
(1996)
Int. J. Comput. Vis.
, vol.18
, pp. 61-75
-
-
Florack, L.M.J.1
Ter Haar Romeny, B.M.2
Viergever, M.A.3
Koenderink, J.J.4
-
61
-
-
85010748503
-
Autodensity: An automated method to measure mammographic breast density that predicts breast cancer risk and screening outcomes
-
C. Nickson et al., "Autodensity: An automated method to measure mammographic breast density that predicts breast cancer risk and screening outcomes," Breast Cancer Res., vol. 15, no. 5, p. R80, 2013.
-
(2013)
Breast Cancer Res.
, vol.15
, Issue.5
, pp. R80
-
-
Nickson, C.1
-
62
-
-
84958928345
-
Preliminary evaluation of the publicly available laboratory for breast radiodensity assessment (LIBRA) software tool: Comparison of fully automated area and volumetric density measures in a case-control study with digital mammography
-
B. M. Keller, J. Chen, D. Daye, E. F. Conant, and D. Kontos, "Preliminary evaluation of the publicly available laboratory for breast radiodensity assessment (LIBRA) software tool: Comparison of fully automated area and volumetric density measures in a case-control study with digital mammography," Breast Cancer Res., vol. 17, no. 1, pp. 1-17, 2015.
-
(2015)
Breast Cancer Res.
, vol.17
, Issue.1
, pp. 1-17
-
-
Keller, B.M.1
Chen, J.2
Daye, D.3
Conant, E.F.4
Kontos, D.5
-
63
-
-
84893526187
-
Learning convolutional neural networks from few samples
-
R. Wagner, M. Thom, R. Schweiger, G. Palm, and A. Rothermel, "Learning convolutional neural networks from few samples," in Proc. Int. Joint Conf. Neural Netw., 2013, pp. 1-7.
-
(2013)
Proc. Int. Joint Conf. Neural Netw.
, pp. 1-7
-
-
Wagner, R.1
Thom, M.2
Schweiger, R.3
Palm, G.4
Rothermel, A.5
-
65
-
-
84968620229
-
-
Available: arXiv:1412.6597, to be published
-
T. L. Paine, P. Khorrami, W. Han, and T. S. Huang, An analysis of unsupervised pre-training in light of recent advances 2014 [Online]. Available: arXiv:1412.6597, to be published
-
An Analysis of Unsupervised Pre-training in Light of Recent Advances 2014 [Online]
-
-
Paine, T.L.1
Khorrami, P.2
Han, W.3
Huang, T.S.4
-
66
-
-
84920912216
-
Gated autoencoders with tied input weights
-
A. Droniou and O. Sigaud, "Gated autoencoders with tied input weights," in Int. Conf. Mach. Lear., 2013, pp. 154-162.
-
(2013)
Int. Conf. Mach. Lear.
, pp. 154-162
-
-
Droniou, A.1
Sigaud, O.2
-
67
-
-
84892992299
-
-
Ph.D. dissertation, Stanford Univ., Stanford, CA
-
A. Coates, "Demystifying unsupervised feature learning," Ph.D. dissertation, Stanford Univ., Stanford, CA, 2012.
-
(2012)
Demystifying Unsupervised Feature Learning
-
-
Coates, A.1
|