메뉴 건너뛰기




Volumn 35, Issue 5, 2016, Pages 1322-1331

Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring

Author keywords

Breast cancer; deep learning; mammograms; prognosis; risk factor; segmentation; unsupervised feature learning

Indexed keywords

DISEASES; IMAGE SEGMENTATION; X RAY SCREENS;

EID: 84968572894     PISSN: 02780062     EISSN: 1558254X     Source Type: Journal    
DOI: 10.1109/TMI.2016.2532122     Document Type: Article
Times cited : (410)

References (67)
  • 1
    • 79952232216 scopus 로고    scopus 로고
    • Global cancer statistics
    • A. Jemal et al., "Global cancer statistics," CA Cancer J. Clin., vol. 61, pp. 69-90, 2011.
    • (2011) CA Cancer J. Clin. , vol.61 , pp. 69-90
    • Jemal, A.1
  • 2
    • 84875804295 scopus 로고    scopus 로고
    • Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012
    • J. Ferlay et al., "Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012," Eur. J. Cancer, vol. 49, pp. 1374-1403, 2013.
    • (2013) Eur. J. Cancer , vol.49 , pp. 1374-1403
    • Ferlay, J.1
  • 3
    • 0031060766 scopus 로고    scopus 로고
    • The tabár classification of mammographic parenchymal patterns
    • I. T. Gram, E. Funkhouser, and L. Tabár, "The tabár classification of mammographic parenchymal patterns," Eur. J. Radiol., vol. 24, pp. 131-136, 1997.
    • (1997) Eur. J. Radiol. , vol.24 , pp. 131-136
    • Gram, I.T.1    Funkhouser, E.2    Tabár, L.3
  • 4
    • 33745683831 scopus 로고    scopus 로고
    • Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis
    • V. McCormack and I. dos Santos Silva, "Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis," Cancer Epidemiol. Biomarkers Prev., vol. 15, pp. 1159-1169, 2006.
    • (2006) Cancer Epidemiol. Biomarkers Prev. , vol.15 , pp. 1159-1169
    • McCormack, V.1    Dos Santos Silva, I.2
  • 5
    • 77955933965 scopus 로고    scopus 로고
    • Breast tissue composition and susceptibility to breast cancer
    • N. F. Boyd et al., "Breast tissue composition and susceptibility to breast cancer," J. Nat. Cancer Inst., vol. 102, pp. 1224-1237, 2010.
    • (2010) J. Nat. Cancer Inst. , vol.102 , pp. 1224-1237
    • Boyd, N.F.1
  • 6
    • 79955758418 scopus 로고    scopus 로고
    • Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: A nested case-control study
    • J. Cuzick et al., "Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: A nested case-control study," J. Nat. Cancer Inst., vol. 103, no. 9, pp. 744-752, 2011.
    • (2011) J. Nat. Cancer Inst. , vol.103 , Issue.9 , pp. 744-752
    • Cuzick, J.1
  • 7
    • 0017082939 scopus 로고
    • Risk for breast cancer development determined by mammographic parenchymal pattern
    • J. N. Wolfe, "Risk for breast cancer development determined by mammographic parenchymal pattern," Cancer, vol. 37, pp. 2486-2492, 1976.
    • (1976) Cancer , vol.37 , pp. 2486-2492
    • Wolfe, J.N.1
  • 8
    • 0033178443 scopus 로고    scopus 로고
    • The natural history of breast carcinoma
    • L. Tabár, S. W. Duffy, B. Vitak, H.-H. Chen, and T. C. Prevost, "The natural history of breast carcinoma," Cancer, vol. 86, no. 3, pp. 449-462, 1999.
    • (1999) Cancer , vol.86 , Issue.3 , pp. 449-462
    • Tabár, L.1    Duffy, S.W.2    Vitak, B.3    Chen, H.-H.4    Prevost, T.C.5
  • 10
    • 79954609832 scopus 로고    scopus 로고
    • Automatic breast density segmentation: An integration of different approaches
    • M. G. Kallenberg, M. Lokate, C. H. van Gils, and N. Karssemeijer, "Automatic breast density segmentation: An integration of different approaches," Phys. Med. Biol., vol. 56, pp. 2715-2729, 2011.
    • (2011) Phys. Med. Biol. , vol.56 , pp. 2715-2729
    • Kallenberg, M.G.1    Lokate, M.2    Van Gils, C.H.3    Karssemeijer, N.4
  • 11
    • 1542362354 scopus 로고    scopus 로고
    • Automatic classification of mammographic parenchymal patterns: A statistical approach
    • S. Petroudi, T. Kadir, and M. Brady, "Automatic classification of mammographic parenchymal patterns: A statistical approach," in Proc. 25th Annu. Int. Conf. IEEE EMBS, 2003, vol. 1, pp. 798-801.
    • (2003) Proc. 25th Annu. Int. Conf. IEEE EMBS , vol.1 , pp. 798-801
    • Petroudi, S.1    Kadir, T.2    Brady, M.3
  • 12
    • 55849111899 scopus 로고    scopus 로고
    • An automated approach for estimation of breast density
    • J. J. Heine et al., "An automated approach for estimation of breast density," Cancer Epidemiol. Biomarkers Prev., vol. 17, pp. 3090-3097, 2008.
    • (2008) Cancer Epidemiol. Biomarkers Prev. , vol.17 , pp. 3090-3097
    • Heine, J.J.1
  • 14
    • 84864356747 scopus 로고    scopus 로고
    • High-throughput mammographic-density measurement: A tool for risk prediction of breast cancer
    • J. Li et al., "High-throughput mammographic-density measurement: A tool for risk prediction of breast cancer," Breast Cancer Res., vol. 14, p. R114, 2012.
    • (2012) Breast Cancer Res. , vol.14 , pp. R114
    • Li, J.1
  • 15
    • 84864655971 scopus 로고    scopus 로고
    • Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation
    • B. M. Keller et al., "Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation," Med. Phys., vol. 39, no. 8, pp. 4903-4917, 2012.
    • (2012) Med. Phys. , vol.39 , Issue.8 , pp. 4903-4917
    • Keller, B.M.1
  • 16
    • 44149128469 scopus 로고    scopus 로고
    • Power spectral analysis of mammographic parenchymal patterns for breast cancer risk assessment
    • H. Li, M. L. Giger, O. I. Olopade, and M. R. Chinander, "Power spectral analysis of mammographic parenchymal patterns for breast cancer risk assessment," J. Digit. Imag., vol. 21, pp. 145-152, 2008.
    • (2008) J. Digit. Imag. , vol.21 , pp. 145-152
    • Li, H.1    Giger, M.L.2    Olopade, O.I.3    Chinander, M.R.4
  • 17
    • 64549104287 scopus 로고    scopus 로고
    • Texture features from mammographic images and risk of breast cancer
    • A. Manduca et al., "Texture features from mammographic images and risk of breast cancer," Cancer Epidemiol. Biomarkers Prev., vol. 18, pp. 837-845, 2009.
    • (2009) Cancer Epidemiol. Biomarkers Prev. , vol.18 , pp. 837-845
    • Manduca, A.1
  • 18
    • 84860541464 scopus 로고    scopus 로고
    • Characterizing mammographic images by using generic texture features
    • L. Häberle et al., "Characterizing mammographic images by using generic texture features," Breast Cancer Res., vol. 14, no. 2, p. R59, 2012.
    • (2012) Breast Cancer Res. , vol.14 , Issue.2 , pp. R59
    • Häberle, L.1
  • 19
    • 79960572789 scopus 로고    scopus 로고
    • A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer
    • M. Nielsen et al., "A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer," Cancer Epidemiol., vol. 35, pp. 381-387, 2011.
    • (2011) Cancer Epidemiol. , vol.35 , pp. 381-387
    • Nielsen, M.1
  • 20
    • 84863974784 scopus 로고    scopus 로고
    • A novel automated mammographic density measure and breast cancer risk
    • J. J. Heine et al., "A novel automated mammographic density measure and breast cancer risk," J. Nat. Cancer Inst., vol. 104, pp. 1028-1037, 2012.
    • (2012) J. Nat. Cancer Inst. , vol.104 , pp. 1028-1037
    • Heine, J.J.1
  • 21
    • 84899472697 scopus 로고    scopus 로고
    • Mammographic texture resemblance generalizes as an independent risk factor for breast cancer
    • M. Nielsen et al., "Mammographic texture resemblance generalizes as an independent risk factor for breast cancer," Breast Cancer Res., vol. 16, p. R37, 2014.
    • (2014) Breast Cancer Res. , vol.16 , pp. R37
    • Nielsen, M.1
  • 22
    • 84935003842 scopus 로고    scopus 로고
    • Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment
    • Y. Zheng et al., "Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment," Med. Phys., vol. 42, no. 7, pp. 4149-4160, 2015.
    • (2015) Med. Phys. , vol.42 , Issue.7 , pp. 4149-4160
    • Zheng, Y.1
  • 26
    • 84903998168 scopus 로고    scopus 로고
    • Breast tissue segmentation and mammographic risk scoring using deep learning
    • Proc. 12th Int. Workshop, Breast Imag., H. Fujita, T. Hara, and C. Muramatsu, Eds.
    • K. Petersen, M. Nielsen, P. Diao, N. Karssemeijer, and M. Lillholm, "Breast tissue segmentation and mammographic risk scoring using deep learning," in Proc. 12th Int. Workshop, Breast Imag., H. Fujita, T. Hara, and C. Muramatsu, Eds., 2014, vol. 8539, LNCS, pp. 88-94.
    • (2014) LNCS , vol.8539 , pp. 88-94
    • Petersen, K.1    Nielsen, M.2    Diao, P.3    Karssemeijer, N.4    Lillholm, M.5
  • 27
    • 84961711940 scopus 로고    scopus 로고
    • A review on automatic mammographic density and parenchymal segmentation
    • W. He et al., "A review on automatic mammographic density and parenchymal segmentation," Int. J. Breast Cancer, 2015.
    • (2015) Int. J. Breast Cancer
    • He, W.1
  • 29
    • 50949132005 scopus 로고    scopus 로고
    • Breast density segmentation: A comparison of clustering and region based techniques
    • A. Torrent et al., "Breast density segmentation: A comparison of clustering and region based techniques," in Proc. 9th Int. Workshop Digital Mammogr., 2008, pp. 9-16.
    • (2008) Proc. 9th Int. Workshop Digital Mammogr. , pp. 9-16
    • Torrent, A.1
  • 30
    • 4243148629 scopus 로고    scopus 로고
    • Segmentation of the fibro-glandular disc in mammograms using Gaussian mixture modelling
    • R. J. Ferrari, R. M. Rangayyan, R. A. Borges, and A. F. Frère, "Segmentation of the fibro-glandular disc in mammograms using Gaussian mixture modelling," Med. Biol. Eng. Comput., vol. 42, pp. 378-387, 2004.
    • (2004) Med. Biol. Eng. Comput. , vol.42 , pp. 378-387
    • Ferrari, R.J.1    Rangayyan, R.M.2    Borges, R.A.3    Frère, A.F.4
  • 33
    • 0029974168 scopus 로고    scopus 로고
    • Automated analysis of mammographic densities
    • J. Byng, N. Boyd, E. Fishell, R. Jong, and M. Yaffe, "Automated analysis of mammographic densities," Phys. Med. Biol., vol. 41, no. 5, p. 909, 1996.
    • (1996) Phys. Med. Biol. , vol.41 , Issue.5 , pp. 909
    • Byng, J.1    Boyd, N.2    Fishell, E.3    Jong, R.4    Yaffe, M.5
  • 34
    • 0033957478 scopus 로고    scopus 로고
    • Computerized analysis of mammographic parenchymal patterns for breast cancer risk assessment: Feature selection
    • Z. Huo et al., "Computerized analysis of mammographic parenchymal patterns for breast cancer risk assessment: Feature selection," Med. Phys., vol. 27, pp. 4-12, 2000.
    • (2000) Med. Phys. , vol.27 , pp. 4-12
    • Huo, Z.1
  • 35
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug
    • Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 36
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Netw., vol. 61, pp. 85-117, 2015.
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 37
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 38
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov
    • Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 40
    • 26444512083 scopus 로고    scopus 로고
    • Toward automatic phenotyping of developing embryos from videos
    • Sep
    • F. Ning et al., "Toward automatic phenotyping of developing embryos from videos," IEEE Trans. Image Process., vol. 14, no. 9, pp. 1360-1371, Sep. 2005.
    • (2005) IEEE Trans. Image Process. , vol.14 , Issue.9 , pp. 1360-1371
    • Ning, F.1
  • 42
    • 77649302828 scopus 로고    scopus 로고
    • Convolutional networks can learn to generate affinity graphs for image segmentation
    • S. C. Turaga et al., "Convolutional networks can learn to generate affinity graphs for image segmentation," Neural Comput., vol. 22, no. 2, pp. 511-538, 2010.
    • (2010) Neural Comput. , vol.22 , Issue.2 , pp. 511-538
    • Turaga, S.C.1
  • 43
    • 0028996639 scopus 로고
    • Detection of masses on mammograms using a convolutional neural network
    • D. Wei, B. Sahiner, H. Chan, and N. Petrick, "Detection of masses on mammograms using a convolutional neural network," Acoust., Speech Signal Process., vol. 5, pp. 3483-3486, 1995.
    • (1995) Acoust., Speech Signal Process. , vol.5 , pp. 3483-3486
    • Wei, D.1    Sahiner, B.2    Chan, H.3    Petrick, N.4
  • 44
    • 84948844104 scopus 로고    scopus 로고
    • Automatic breast density classification using a convolutional neural network architecture search procedure
    • P. Fonseca et al., "Automatic breast density classification using a convolutional neural network architecture search procedure," in Proc. SPIE Med. Imag., 2015, pp. 941 428-941 428.
    • (2015) Proc. SPIE Med. Imag.
    • Fonseca, P.1
  • 45
    • 79955752000 scopus 로고    scopus 로고
    • Exploring deep parametric embeddings for breast CADx
    • A. R. Jamieson, R. Alam, and M. L. Giger, "Exploring deep parametric embeddings for breast CADx," in Proc. SPIE Med. Imag., 2011, pp. 79 630Y-79 630Y.
    • (2011) Proc. SPIE Med. Imag.
    • Jamieson, A.R.1    Alam, R.2    Giger, M.L.3
  • 46
    • 84874904675 scopus 로고    scopus 로고
    • Breast image feature learning with adaptive deconvolutional networks
    • A. R. Jamieson, K. Drukker, and M. L. Giger, "Breast image feature learning with adaptive deconvolutional networks," in Proc. SPIE Med. Imag., 2012, pp. 831 506-831 506.
    • (2012) Proc. SPIE Med. Imag.
    • Jamieson, A.R.1    Drukker, K.2    Giger, M.L.3
  • 47
    • 50649114600 scopus 로고    scopus 로고
    • Supervised learning of image restoration with convolutional networks
    • V. Jain et al., "Supervised learning of image restoration with convolutional networks," in Proc. IEEE 11th Int. Conf. Comput. Vis., 2007, pp. 1-8.
    • (2007) Proc. IEEE 11th Int. Conf. Comput. Vis. , pp. 1-8
    • Jain, V.1
  • 48
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, pp. 504-507, 2006.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 49
    • 35348818718 scopus 로고    scopus 로고
    • Learning multiple layers of representation
    • G. E. Hinton, "Learning multiple layers of representation," Trends Cogn. Sci., vol. 11, no. 10, pp. 428-434, 2007.
    • (2007) Trends Cogn. Sci. , vol.11 , Issue.10 , pp. 428-434
    • Hinton, G.E.1
  • 52
    • 84867135575 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • Q. Le et al., "Building high-level features using large scale unsupervised learning," in Proc. Int. Conf. Mach. Learn., 2012.
    • (2012) Proc. Int. Conf. Mach. Learn.
    • Le, Q.1
  • 54
    • 0034264647 scopus 로고    scopus 로고
    • A spatio-frequency trade-off scale for scale-space filtering
    • Sep
    • L. Florack, "A spatio-frequency trade-off scale for scale-space filtering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 9, pp. 1050-1055, Sep. 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.9 , pp. 1050-1055
    • Florack, L.1
  • 55
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen et al., "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature, vol. 381, no. 6583, pp. 607-609, 1996.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1
  • 57
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," in Proc. Int. Conf. Mach. Learn., 2010, pp. 807-814.
    • (2010) Proc. Int. Conf. Mach. Learn. , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 58
    • 84868685948 scopus 로고    scopus 로고
    • The influence of mammogram acquisition on the mammographic density and breast cancer association in the Mayo mammography health study cohort
    • J. E. Olson et al., "The influence of mammogram acquisition on the mammographic density and breast cancer association in the Mayo mammography health study cohort," Breast Cancer Res., vol. 14, no. 6, p. R147, 2012.
    • (2012) Breast Cancer Res. , vol.14 , Issue.6 , pp. R147
    • Olson, J.E.1
  • 61
    • 85010748503 scopus 로고    scopus 로고
    • Autodensity: An automated method to measure mammographic breast density that predicts breast cancer risk and screening outcomes
    • C. Nickson et al., "Autodensity: An automated method to measure mammographic breast density that predicts breast cancer risk and screening outcomes," Breast Cancer Res., vol. 15, no. 5, p. R80, 2013.
    • (2013) Breast Cancer Res. , vol.15 , Issue.5 , pp. R80
    • Nickson, C.1
  • 62
    • 84958928345 scopus 로고    scopus 로고
    • Preliminary evaluation of the publicly available laboratory for breast radiodensity assessment (LIBRA) software tool: Comparison of fully automated area and volumetric density measures in a case-control study with digital mammography
    • B. M. Keller, J. Chen, D. Daye, E. F. Conant, and D. Kontos, "Preliminary evaluation of the publicly available laboratory for breast radiodensity assessment (LIBRA) software tool: Comparison of fully automated area and volumetric density measures in a case-control study with digital mammography," Breast Cancer Res., vol. 17, no. 1, pp. 1-17, 2015.
    • (2015) Breast Cancer Res. , vol.17 , Issue.1 , pp. 1-17
    • Keller, B.M.1    Chen, J.2    Daye, D.3    Conant, E.F.4    Kontos, D.5
  • 66
    • 84920912216 scopus 로고    scopus 로고
    • Gated autoencoders with tied input weights
    • A. Droniou and O. Sigaud, "Gated autoencoders with tied input weights," in Int. Conf. Mach. Lear., 2013, pp. 154-162.
    • (2013) Int. Conf. Mach. Lear. , pp. 154-162
    • Droniou, A.1    Sigaud, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.