메뉴 건너뛰기




Volumn 9901 LNCS, Issue , 2016, Pages 469-477

HeMIS: Hetero-modal image segmentation

Author keywords

Convolutional neural networks; Data abstraction; Data imputation; Deep learning; Multi modal; Segmentation

Indexed keywords

MEDICAL IMAGING; NEURAL NETWORKS; VECTOR SPACES;

EID: 84996504008     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46723-8_54     Document Type: Conference Paper
Times cited : (276)

References (14)
  • 1
    • 84951792755 scopus 로고    scopus 로고
    • Deep convolutional encoder networks for multiple sclerosis lesion segmentation
    • Navab,N.,Hornegger,J.,Wells,W.M.,Frangi,A.F. (eds.),Springer,Heidelberg
    • Brosch,T.,Yoo,Y.,Tang,L.Y.W.,Li,D.K.B.,Traboulsee,A.,Tam,R.: Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Navab,N.,Hornegger,J.,Wells,W.M.,Frangi,A.F. (eds.) MICCAI 2015. LNCS,vol. 9351,pp. 3-11. Springer,Heidelberg (2015). doi:10.1007/978-3-319-24574-4_1
    • (2015) MICCAI 2015. LNCS , vol.9351 , pp. 3-11
    • Brosch, T.1    Yoo, Y.2    Tang, L.Y.W.3    Li, D.K.B.4    Traboulsee, A.5    Tam, R.6
  • 6
    • 57349155316 scopus 로고    scopus 로고
    • MRI-based attenuation correction for PET/MRI: A novel approach combining pattern recognition and atlas registration
    • Hofmann,M.,Steinke,F.,Scheel,V.,Charpiat,G.,et al.: MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J. Nucl. Med. 49(11),1875-1883 (2008)
    • (2008) J. Nucl. Med , vol.49 , Issue.11 , pp. 1875-1883
    • Hofmann, M.1    Steinke, F.2    Scheel, V.3    Charpiat, G.4
  • 7
    • 84947567440 scopus 로고    scopus 로고
    • Scandent Tree: A random forest learning method for incomplete multimodal datasets
    • Navab,N.,Hornegger,J.,Wells,W.M.,Frangi,A.F. (eds.),Springer,Heidelberg
    • Hor,S.,Moradi,M.: Scandent Tree: a random forest learning method for incomplete multimodal datasets. In: Navab,N.,Hornegger,J.,Wells,W.M.,Frangi,A.F. (eds.) MICCAI 2015. LNCS,vol. 9349,pp. 694-701. Springer,Heidelberg (2015). doi:10.1007/978-3-319-24553-9
    • (2015) MICCAI 2015. LNCS , vol.9349 , pp. 694-701
    • Hor, S.1    Moradi, M.2
  • 11
    • 84947461520 scopus 로고    scopus 로고
    • Why does synthesized data improve multi-sequence classification?
    • Navab,N.,Hornegger,J.,Wells,W.M.,Frangi,A.F. (eds.),Springer,Heidelberg
    • Tulder,G.,Bruijne,M.: Why does synthesized data improve multi-sequence classification? In: Navab,N.,Hornegger,J.,Wells,W.M.,Frangi,A.F. (eds.) MICCAI 2015. LNCS,vol. 9349,pp. 531-538. Springer,Heidelberg (2015). doi:10.1007/ 978-3-319-24553-9_65
    • (2015) MICCAI 2015. LNCS , vol.9349 , pp. 531-538
    • Tulder, G.1    Bruijne, M.2
  • 12
    • 84929959025 scopus 로고    scopus 로고
    • Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (Simplified) with ANTsR
    • Tustison,N.J.,Shrinidhi,K.,Wintermark,M.,Durst,C.R.,Kandel,B.M.,Gee,J.C.,Grossman,M.C.,Avants,B.B.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13 (2),209-225 (2015)
    • (2015) Neuroinformatics , vol.13 , Issue.2 , pp. 209-225
    • Tustison, N.J.1    Shrinidhi, K.2    Wintermark, M.3    Durst, C.R.4    Kandel, B.M.5    Gee, J.C.6    Grossman, M.C.7    Avants, B.B.8
  • 14
    • 84885946838 scopus 로고    scopus 로고
    • Semi-automatic brain tumor segmentation by constrained MRFs using structural trajectories
    • Mori,K.,Sakuma,I.,Sato,Y.,Barillot,C.,Navab,N. (eds.),Springer,Heidelberg
    • Zhao,L.,Wu,W.,Corso,J.J.: Semi-automatic brain tumor segmentation by constrained MRFs using structural trajectories. In: Mori,K.,Sakuma,I.,Sato,Y.,Barillot,C.,Navab,N. (eds.) MICCAI 2013. LNCS,vol. 8151,pp. 567-575. Springer,Heidelberg (2013). doi:10.1007/978-3-642-40760-4_71
    • (2013) MICCAI 2013. LNCS , vol.8151 , pp. 567-575
    • Zhao, L.1    Wu, W.2    Corso, J.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.