메뉴 건너뛰기




Volumn 35, Issue , 2017, Pages 159-171

Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance

Author keywords

Cardiac cine magnetic resonance; Deep learning; Level set method; Segmentation of the left ventricle of the heart

Indexed keywords

AUTOMATION; DROP BREAKUP; EVOLUTIONARY ALGORITHMS; HEART; HYDROGELS; IMAGE SEGMENTATION; LEVEL MEASUREMENT; MAGNETIC LEVITATION VEHICLES; MAGNETIC RESONANCE; MAGNETISM; MEDICAL IMAGING; MEDICAL PROBLEMS; NUMERICAL METHODS;

EID: 84978204565     PISSN: 13618415     EISSN: 13618423     Source Type: Journal    
DOI: 10.1016/j.media.2016.05.009     Document Type: Article
Times cited : (309)

References (38)
  • 1
    • 36849072723 scopus 로고    scopus 로고
    • Predicting structured data
    • MIT Press
    • BakIr, G., Predicting structured data. 2007, MIT Press.
    • (2007)
    • BakIr, G.1
  • 2
    • 0022808786 scopus 로고
    • A computational approach to edge detection
    • Canny, J., A computational approach to edge detection. Pattern Anal. Mach. Intell. IEEE Trans.(6), 1986, 679–698.
    • (1986) Pattern Anal. Mach. Intell. IEEE Trans. , Issue.6 , pp. 679-698
    • Canny, J.1
  • 3
    • 84884546164 scopus 로고    scopus 로고
    • Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data
    • Carneiro, G., Nascimento, J.C., Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. Pattern Anal. Mach. Intell. IEEE Trans. 35:11 (2013), 2592–2607.
    • (2013) Pattern Anal. Mach. Intell. IEEE Trans. , vol.35 , Issue.11 , pp. 2592-2607
    • Carneiro, G.1    Nascimento, J.C.2
  • 4
    • 84857295176 scopus 로고    scopus 로고
    • The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods
    • Carneiro, G., Nascimento, J.C., Freitas, A., The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. Image Process. IEEE Trans. 21:3 (2012), 968–982.
    • (2012) Image Process. IEEE Trans. , vol.21 , Issue.3 , pp. 968-982
    • Carneiro, G.1    Nascimento, J.C.2    Freitas, A.3
  • 6
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden Markov models: theory and experiments with perceptron algorithms
    • Association for Computational Linguistics
    • Collins, M., Discriminative training methods for hidden Markov models: theory and experiments with perceptron algorithms. Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10, 2002, Association for Computational Linguistics, 1–8.
    • (2002) Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10 , pp. 1-8
    • Collins, M.1
  • 9
    • 34249753618 scopus 로고
    • Support vector machine
    • Cortes, C., Vapnik, V., Support vector machine. Mach. Learn. 20:3 (1995), 273–297.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 33744920320 scopus 로고    scopus 로고
    • Kernel density estimation and intrinsic alignment for shape priors in level set segmentation
    • Cremers, D., Osher, S.J., Soatto, S., Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int. J. Comput. Vis. 69:3 (2006), 335–351.
    • (2006) Int. J. Comput. Vis. , vol.69 , Issue.3 , pp. 335-351
    • Cremers, D.1    Osher, S.J.2    Soatto, S.3
  • 12
    • 78149478930 scopus 로고    scopus 로고
    • Deep belief networks for real-time extraction of tongue contours from ultrasound during speech
    • IEEE
    • Fasel, I., Berry, J., Deep belief networks for real-time extraction of tongue contours from ultrasound during speech. Pattern Recognition (ICPR), 2010 20th International Conference on, 2010, IEEE, 1493–1496.
    • (2010) Pattern Recognition (ICPR), 2010 20th International Conference on , pp. 1493-1496
    • Fasel, I.1    Berry, J.2
  • 13
    • 84983110889 scopus 로고
    • A desicion-theoretic generalization of on-line learning and an application to boosting
    • Springer
    • Freund, Y., Schapire, R.E., A desicion-theoretic generalization of on-line learning and an application to boosting. Computational Learning Theory, 1995, Springer, 23–37.
    • (1995) Computational Learning Theory , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2
  • 14
    • 24644437009 scopus 로고    scopus 로고
    • Databased-guided segmentation of anatomical structures with complex appearance
    • Georgescu, B., Zhou, X.S., Comaniciu, D., Gupta, A., Databased-guided segmentation of anatomical structures with complex appearance. CVPR, 2005.
    • (2005) CVPR
    • Georgescu, B.1    Zhou, X.S.2    Comaniciu, D.3    Gupta, A.4
  • 15
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G., Salakhutdinov, R., Reducing the dimensionality of data with neural networks. Science 313:5786 (2006), 504–507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 16
    • 84897703753 scopus 로고    scopus 로고
    • Hybrid segmentation of left ventricle in cardiac mri using gaussian-mixture model and region restricted dynamic programming
    • Hu, H., Liu, H., Gao, Z., Huang, L., Hybrid segmentation of left ventricle in cardiac mri using gaussian-mixture model and region restricted dynamic programming. Magn. Reson. Imag., 2012.
    • (2012) Magn. Reson. Imag.
    • Hu, H.1    Liu, H.2    Gao, Z.3    Huang, L.4
  • 18
    • 84911431843 scopus 로고    scopus 로고
    • Segmentation of the left ventricle from cine mr images using a comprehensive approach
    • Huang, S., Liu, J., Lee, L., Venkatesh, S., Teo, L., Au, C., Nowinski, W., Segmentation of the left ventricle from cine mr images using a comprehensive approach. MIDAS J., 49, 2009.
    • (2009) MIDAS J. , vol.49
    • Huang, S.1    Liu, J.2    Lee, L.3    Venkatesh, S.4    Teo, L.5    Au, C.6    Nowinski, W.7
  • 19
    • 80053925455 scopus 로고    scopus 로고
    • An image-based comprehensive approach for automatic segmentation of left ventricle from cardiac short axis cine mr images
    • Huang, S., Liu, J., Lee, L.C., Venkatesh, S.K., San Teo, L.L., Au, C., Nowinski, W.L., An image-based comprehensive approach for automatic segmentation of left ventricle from cardiac short axis cine mr images. J. Digit. Imag. 24:4 (2011), 598–608.
    • (2011) J. Digit. Imag. , vol.24 , Issue.4 , pp. 598-608
    • Huang, S.1    Liu, J.2    Lee, L.C.3    Venkatesh, S.K.4    San Teo, L.L.5    Au, C.6    Nowinski, W.L.7
  • 20
    • 84885815121 scopus 로고    scopus 로고
    • Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces
    • Jolly, M., Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces. MIDAS J., 49, 2009.
    • (2009) MIDAS J. , vol.49
    • Jolly, M.1
  • 22
    • 78649269028 scopus 로고    scopus 로고
    • Distance regularized level set evolution and its application to image segmentation
    • Li, C., Xu, C., Gui, C., Fox, M.D., Distance regularized level set evolution and its application to image segmentation. Image Process. IEEE Trans. 19:12 (2010), 3243–3254.
    • (2010) Image Process. IEEE Trans. , vol.19 , Issue.12 , pp. 3243-3254
    • Li, C.1    Xu, C.2    Gui, C.3    Fox, M.D.4
  • 23
    • 68849127950 scopus 로고    scopus 로고
    • Automatic image-driven segmentation of left ventricle in cardiac cine mri
    • Lu, Y., Radau, P., Connelly, K., Dick, A., Wright, G., Automatic image-driven segmentation of left ventricle in cardiac cine mri. MIDAS J., 49, 2009.
    • (2009) MIDAS J. , vol.49
    • Lu, Y.1    Radau, P.2    Connelly, K.3    Dick, A.4    Wright, G.5
  • 25
  • 26
    • 84911378353 scopus 로고    scopus 로고
    • Fully automated non-rigid segmentation with distance regularized level set evolution initialized and cosntrained by deep-structured inference
    • IEEE
    • Ngo, T.A., Carneiro, G., Fully automated non-rigid segmentation with distance regularized level set evolution initialized and cosntrained by deep-structured inference. Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, 2014, IEEE.
    • (2014) Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on
    • Ngo, T.A.1    Carneiro, G.2
  • 27
    • 79957629692 scopus 로고    scopus 로고
    • Segmenting the left ventricle in 3d using a coupled asm and a learned non-rigid spatial model
    • O'Brien, S., Ghita, O., Whelan, P., Segmenting the left ventricle in 3d using a coupled asm and a learned non-rigid spatial model. MIDAS J., 49, 2009.
    • (2009) MIDAS J. , vol.49
    • O'Brien, S.1    Ghita, O.2    Whelan, P.3
  • 28
    • 44749084234 scopus 로고
    • Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations
    • Osher, S., Sethian, J.A., Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79:1 (1988), 12–49.
    • (1988) J. Comput. Phys. , vol.79 , Issue.1 , pp. 12-49
    • Osher, S.1    Sethian, J.A.2
  • 29
    • 49349108623 scopus 로고
    • A threshold selection method from gray-level histograms
    • Otsu, N., A threshold selection method from gray-level histograms. Automatica 11:285-296 (1975), 23–27.
    • (1975) Automatica , vol.11 , Issue.285-296 , pp. 23-27
    • Otsu, N.1
  • 30
    • 79851510761 scopus 로고    scopus 로고
    • A review of segmentation methods in short axis cardiac mr images
    • Petitjean, C., Dacher, J.-N., A review of segmentation methods in short axis cardiac mr images. Med. Image Anal. 15:2 (2011), 169–184.
    • (2011) Med. Image Anal. , vol.15 , Issue.2 , pp. 169-184
    • Petitjean, C.1    Dacher, J.-N.2
  • 31
    • 84856187159 scopus 로고    scopus 로고
    • Evaluation framework for algorithms segmenting short axis cardiac MRI
    • Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A., Wright, G., Evaluation framework for algorithms segmenting short axis cardiac MRI. MIDAS J., 2009.
    • (2009) MIDAS J.
    • Radau, P.1    Lu, Y.2    Connelly, K.3    Paul, G.4    Dick, A.5    Wright, G.6
  • 32
    • 77954819006 scopus 로고    scopus 로고
    • A dynamic elastic model for segmentation and tracking of the heart in mr image sequences
    • Schaerer, J., Casta, C., Pousin, J., Clarysse, P., A dynamic elastic model for segmentation and tracking of the heart in mr image sequences. Med. Image Anal. 14:6 (2010), 738–749.
    • (2010) Med. Image Anal. , vol.14 , Issue.6 , pp. 738-749
    • Schaerer, J.1    Casta, C.2    Pousin, J.3    Clarysse, P.4
  • 36
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time face detection
    • Viola, P., Jones, M.J., Robust real-time face detection. Int. J. Comput. Vis. 57:2 (2004), 137–154.
    • (2004) Int. J. Comput. Vis. , vol.57 , Issue.2 , pp. 137-154
    • Viola, P.1    Jones, M.J.2
  • 37
    • 79957659612 scopus 로고    scopus 로고
    • Lv challenge IKEB contribution: fully automated myocardial contour detection
    • Wijnhout, J., Hendriksen, D., Assen, H., der Geest, R., Lv challenge IKEB contribution: fully automated myocardial contour detection. MIDAS J., 43, 2009.
    • (2009) MIDAS J. , vol.43
    • Wijnhout, J.1    Hendriksen, D.2    Assen, H.3    der Geest, R.4
  • 38
    • 54949104993 scopus 로고    scopus 로고
    • Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features
    • Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D., Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. Med. Imag. IEEE Trans. 27:11 (2008), 1668–1681.
    • (2008) Med. Imag. IEEE Trans. , vol.27 , Issue.11 , pp. 1668-1681
    • Zheng, Y.1    Barbu, A.2    Georgescu, B.3    Scheuering, M.4    Comaniciu, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.