-
1
-
-
0028802746
-
A hierarchy of ATP-consuming processes in mammalian cells
-
Buttgereit F., Brand M.D. A hierarchy of ATP-consuming processes in mammalian cells. Biochem. J. 1995, 312(Pt. 1):163-167.
-
(1995)
Biochem. J.
, vol.312
, pp. 163-167
-
-
Buttgereit, F.1
Brand, M.D.2
-
2
-
-
60149091189
-
Regulation of translation initiation in eukaryotes: mechanisms and biological targets
-
Sonenberg N., Hinnebusch A.G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009, 136:731-745.
-
(2009)
Cell
, vol.136
, pp. 731-745
-
-
Sonenberg, N.1
Hinnebusch, A.G.2
-
3
-
-
79959812980
-
Comparative analysis of proteome and transcriptome variation in mouse
-
Ghazalpour A., Bennett B., Petyuk V.A., Orozco L., Hagopian R., Mungrue I.N., Farber C.R., Sinsheimer J., Kang H.M., Furlotte N., Park C.C., Wen P.Z., Brewer H., Weitz K., Camp D.G., Pan C., Yordanova R., Neuhaus I., Tilford C., Siemers N., Gargalovic P., Eskin E., Kirchgessner T., Smith D.J., Smith R.D., Lusis A.J. Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genet. 2011, 7:e1001393.
-
(2011)
PLoS Genet.
, vol.7
, pp. e1001393
-
-
Ghazalpour, A.1
Bennett, B.2
Petyuk, V.A.3
Orozco, L.4
Hagopian, R.5
Mungrue, I.N.6
Farber, C.R.7
Sinsheimer, J.8
Kang, H.M.9
Furlotte, N.10
Park, C.C.11
Wen, P.Z.12
Brewer, H.13
Weitz, K.14
Camp, D.G.15
Pan, C.16
Yordanova, R.17
Neuhaus, I.18
Tilford, C.19
Siemers, N.20
Gargalovic, P.21
Eskin, E.22
Kirchgessner, T.23
Smith, D.J.24
Smith, R.D.25
Lusis, A.J.26
more..
-
4
-
-
77956261738
-
Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line
-
Vogel C., Abreu Rde S., Ko D., Le S.Y., Shapiro B.A., Burns S.C., Sandhu D., Boutz D.R., Marcotte E.M., Penalva L.O. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol. Syst. Biol. 2010, 6:400.
-
(2010)
Mol. Syst. Biol.
, vol.6
, pp. 400
-
-
Vogel, C.1
Abreu Rde, S.2
Ko, D.3
Le, S.Y.4
Shapiro, B.A.5
Burns, S.C.6
Sandhu, D.7
Boutz, D.R.8
Marcotte, E.M.9
Penalva, L.O.10
-
6
-
-
75149196287
-
The mechanism of eukaryotic translation initiation and principles of its regulation
-
Jackson R.J., Hellen C.U., Pestova T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 2010, 11:113-127.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 113-127
-
-
Jackson, R.J.1
Hellen, C.U.2
Pestova, T.V.3
-
8
-
-
84867434398
-
MRNA translation and energy metabolism in cancer: the role of the MAPK and mTORC1 pathways
-
Topisirovic I., Sonenberg N. mRNA translation and energy metabolism in cancer: the role of the MAPK and mTORC1 pathways. Cold Spring Harb. Symp. Quant. Biol. 2011, 76:355-367.
-
(2011)
Cold Spring Harb. Symp. Quant. Biol.
, vol.76
, pp. 355-367
-
-
Topisirovic, I.1
Sonenberg, N.2
-
10
-
-
79955637310
-
The biological and therapeutic relevance of mRNA translation in cancer
-
Blagden S.P., Willis A.E. The biological and therapeutic relevance of mRNA translation in cancer. Nat. Rev. Clin. Oncol. 2011, 8:280-291.
-
(2011)
Nat. Rev. Clin. Oncol.
, vol.8
, pp. 280-291
-
-
Blagden, S.P.1
Willis, A.E.2
-
11
-
-
79960856696
-
Targeting translation dependence in cancer
-
Malina A., Cencic R., Pelletier J. Targeting translation dependence in cancer. Oncotarget 2011, 2:76-88.
-
(2011)
Oncotarget
, vol.2
, pp. 76-88
-
-
Malina, A.1
Cencic, R.2
Pelletier, J.3
-
12
-
-
0017224213
-
Capping of eucaryotic mRNAs
-
Shatkin A.J. Capping of eucaryotic mRNAs. Cell 1976, 9:645-653.
-
(1976)
Cell
, vol.9
, pp. 645-653
-
-
Shatkin, A.J.1
-
13
-
-
0023720048
-
Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA
-
Pelletier J., Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988, 334:320-325.
-
(1988)
Nature
, vol.334
, pp. 320-325
-
-
Pelletier, J.1
Sonenberg, N.2
-
14
-
-
35649001888
-
A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer
-
Braunstein S., Karpisheva K., Pola C., Goldberg J., Hochman T., Yee H., Cangiarella J., Arju R., Formenti S.C., Schneider R.J. A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol. Cell 2007, 28:501-512.
-
(2007)
Mol. Cell
, vol.28
, pp. 501-512
-
-
Braunstein, S.1
Karpisheva, K.2
Pola, C.3
Goldberg, J.4
Hochman, T.5
Yee, H.6
Cangiarella, J.7
Arju, R.8
Formenti, S.C.9
Schneider, R.J.10
-
15
-
-
67650080623
-
Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer
-
Silvera D., Arju R., Darvishian F., Levine P.H., Zolfaghari L., Goldberg J., Hochman T., Formenti S.C., Schneider R.J. Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat. Cell Biol. 2009, 11:903-908.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 903-908
-
-
Silvera, D.1
Arju, R.2
Darvishian, F.3
Levine, P.H.4
Zolfaghari, L.5
Goldberg, J.6
Hochman, T.7
Formenti, S.C.8
Schneider, R.J.9
-
16
-
-
79959324681
-
Cap and cap-binding proteins in the control of gene expression
-
Topisirovic I., Svitkin Y.V., Sonenberg N., Shatkin A.J. Cap and cap-binding proteins in the control of gene expression. Wires Rna 2011, 2:277-298.
-
(2011)
Wires Rna
, vol.2
, pp. 277-298
-
-
Topisirovic, I.1
Svitkin, Y.V.2
Sonenberg, N.3
Shatkin, A.J.4
-
17
-
-
0032834055
-
EIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation
-
Gingras A.C., Raught B., Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 1999, 68:913-963.
-
(1999)
Annu. Rev. Biochem.
, vol.68
, pp. 913-963
-
-
Gingras, A.C.1
Raught, B.2
Sonenberg, N.3
-
18
-
-
84892900333
-
Role of translation initiation factor 4G in lifespan regulation and age-related health
-
Howard A., Rogers A.N. Role of translation initiation factor 4G in lifespan regulation and age-related health. Ageing Res. Rev. 2014, 13:115-124.
-
(2014)
Ageing Res. Rev.
, vol.13
, pp. 115-124
-
-
Howard, A.1
Rogers, A.N.2
-
19
-
-
33748924333
-
EIF3: a versatile scaffold for translation initiation complexes
-
Hinnebusch A.G. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem. Sci. 2006, 31:553-562.
-
(2006)
Trends Biochem. Sci.
, vol.31
, pp. 553-562
-
-
Hinnebusch, A.G.1
-
20
-
-
78149240561
-
Regulation of protein synthesis and the role of eIF3 in cancer
-
Hershey J.W. Regulation of protein synthesis and the role of eIF3 in cancer. Braz. J. Med. Biol. Res. 2010, 43:920-930.
-
(2010)
Braz. J. Med. Biol. Res.
, vol.43
, pp. 920-930
-
-
Hershey, J.W.1
-
21
-
-
0026038913
-
The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency
-
Gallie D.R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 1991, 5:2108-2116.
-
(1991)
Genes Dev.
, vol.5
, pp. 2108-2116
-
-
Gallie, D.R.1
-
22
-
-
11844281461
-
Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms
-
Kahvejian A., Svitkin Y.V., Sukarieh R., M'Boutchou M.N., Sonenberg N. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev. 2005, 19:104-113.
-
(2005)
Genes Dev.
, vol.19
, pp. 104-113
-
-
Kahvejian, A.1
Svitkin, Y.V.2
Sukarieh, R.3
M'Boutchou, M.N.4
Sonenberg, N.5
-
23
-
-
0025176473
-
Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F
-
Rozen F., Edery I., Meerovitch K., Dever T.E., Merrick W.C., Sonenberg N. Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol. Cell. Biol. 1990, 10:1134-1144.
-
(1990)
Mol. Cell. Biol.
, vol.10
, pp. 1134-1144
-
-
Rozen, F.1
Edery, I.2
Meerovitch, K.3
Dever, T.E.4
Merrick, W.C.5
Sonenberg, N.6
-
24
-
-
0028197298
-
Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation
-
Pause A., Methot N., Svitkin Y., Merrick W.C., Sonenberg N. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J. 1994, 13:1205-1215.
-
(1994)
EMBO J.
, vol.13
, pp. 1205-1215
-
-
Pause, A.1
Methot, N.2
Svitkin, Y.3
Merrick, W.C.4
Sonenberg, N.5
-
25
-
-
80052742721
-
Molecular mechanism of scanning and start codon selection in eukaryotes
-
(first page of table of contents)
-
Hinnebusch A.G. Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol. Mol. Biol. Rev. 2011, 75:434-467. (first page of table of contents).
-
(2011)
Microbiol. Mol. Biol. Rev.
, vol.75
, pp. 434-467
-
-
Hinnebusch, A.G.1
-
26
-
-
79953052296
-
MRNA helicases: the tacticians of translational control
-
Parsyan A., Svitkin Y., Shahbazian D., Gkogkas C., Lasko P., Merrick W.C., Sonenberg N. mRNA helicases: the tacticians of translational control. Nat. Rev. Mol. Cell Biol. 2011, 12:235-245.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 235-245
-
-
Parsyan, A.1
Svitkin, Y.2
Shahbazian, D.3
Gkogkas, C.4
Lasko, P.5
Merrick, W.C.6
Sonenberg, N.7
-
27
-
-
84884353774
-
The eIF2alpha kinases: their structures and functions
-
Donnelly N., Gorman A.M., Gupta S., Samali A. The eIF2alpha kinases: their structures and functions. Cell. Mol. Life Sci. 2013, 70:3493-3511.
-
(2013)
Cell. Mol. Life Sci.
, vol.70
, pp. 3493-3511
-
-
Donnelly, N.1
Gorman, A.M.2
Gupta, S.3
Samali, A.4
-
28
-
-
84866782195
-
Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism
-
Baird T.D., Wek R.C. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv. Nutr. 2012, 3:307-321.
-
(2012)
Adv. Nutr.
, vol.3
, pp. 307-321
-
-
Baird, T.D.1
Wek, R.C.2
-
29
-
-
32544446451
-
Coping with stress: eIF2 kinases and translational control
-
Wek R.C., Jiang H.Y., Anthony T.G. Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 2006, 34:7-11.
-
(2006)
Biochem. Soc. Trans.
, vol.34
, pp. 7-11
-
-
Wek, R.C.1
Jiang, H.Y.2
Anthony, T.G.3
-
30
-
-
0028126506
-
PHAS-I as a link between mitogen-activated protein kinase and translation initiation
-
Lin T.A., Kong X., Haystead T.A., Pause A., Belsham G., Sonenberg N., Lawrence J.C. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 1994, 266:653-656.
-
(1994)
Science
, vol.266
, pp. 653-656
-
-
Lin, T.A.1
Kong, X.2
Haystead, T.A.3
Pause, A.4
Belsham, G.5
Sonenberg, N.6
Lawrence, J.C.7
-
31
-
-
0028034233
-
Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function
-
Pause A., Belsham G.J., Gingras A.C., Donze O., Lin T.A., Lawrence J.C., Sonenberg N. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function. Nature 1994, 371:762-767.
-
(1994)
Nature
, vol.371
, pp. 762-767
-
-
Pause, A.1
Belsham, G.J.2
Gingras, A.C.3
Donze, O.4
Lin, T.A.5
Lawrence, J.C.6
Sonenberg, N.7
-
32
-
-
0033152072
-
Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G
-
Marcotrigiano J., Gingras A.C., Sonenberg N., Burley S.K. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol. Cell 1999, 3:707-716.
-
(1999)
Mol. Cell
, vol.3
, pp. 707-716
-
-
Marcotrigiano, J.1
Gingras, A.C.2
Sonenberg, N.3
Burley, S.K.4
-
33
-
-
84907303445
-
4E-BPs require non-canonical 4E-binding motifs and a lateral surface of eIF4E to repress translation
-
Igreja C., Peter D., Weiler C., Izaurralde E. 4E-BPs require non-canonical 4E-binding motifs and a lateral surface of eIF4E to repress translation. Nat. Commun. 2014, 5:4790.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4790
-
-
Igreja, C.1
Peter, D.2
Weiler, C.3
Izaurralde, E.4
-
34
-
-
77952967459
-
MTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs
-
Dowling R.J., Topisirovic I., Alain T., Bidinosti M., Fonseca B.D., Petroulakis E., Wang X., Larsson O., Selvaraj A., Liu Y., Kozma S.C., Thomas G., Sonenberg N. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 2010, 328:1172-1176.
-
(2010)
Science
, vol.328
, pp. 1172-1176
-
-
Dowling, R.J.1
Topisirovic, I.2
Alain, T.3
Bidinosti, M.4
Fonseca, B.D.5
Petroulakis, E.6
Wang, X.7
Larsson, O.8
Selvaraj, A.9
Liu, Y.10
Kozma, S.C.11
Thomas, G.12
Sonenberg, N.13
-
35
-
-
65949111747
-
EIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival
-
Graff J.R., Konicek B.W., Lynch R.L., Dumstorf C.A., Dowless M.S., McNulty A.M., Parsons S.H., Brail L.H., Colligan B.M., Koop J.W., Hurst B.M., Deddens J.A., Neubauer B.L., Stancato L.F., Carter H.W., Douglass L.E., Carter J.H. eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival. Cancer Res. 2009, 69:3866-3873.
-
(2009)
Cancer Res.
, vol.69
, pp. 3866-3873
-
-
Graff, J.R.1
Konicek, B.W.2
Lynch, R.L.3
Dumstorf, C.A.4
Dowless, M.S.5
McNulty, A.M.6
Parsons, S.H.7
Brail, L.H.8
Colligan, B.M.9
Koop, J.W.10
Hurst, B.M.11
Deddens, J.A.12
Neubauer, B.L.13
Stancato, L.F.14
Carter, H.W.15
Douglass, L.E.16
Carter, J.H.17
-
36
-
-
72949083368
-
Common corruption of the mTOR signaling network in human tumors
-
Menon S., Manning B.D. Common corruption of the mTOR signaling network in human tumors. Oncogene 2008, 27(Suppl. 2):S43-S51.
-
(2008)
Oncogene
, vol.27
, pp. S43-S51
-
-
Menon, S.1
Manning, B.D.2
-
37
-
-
0033153166
-
Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism
-
Gingras A.C., Gygi S.P., Raught B., Polakiewicz R.D., Abraham R.T., Hoekstra M.F., Aebersold R., Sonenberg N. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 1999, 13:1422-1437.
-
(1999)
Genes Dev.
, vol.13
, pp. 1422-1437
-
-
Gingras, A.C.1
Gygi, S.P.2
Raught, B.3
Polakiewicz, R.D.4
Abraham, R.T.5
Hoekstra, M.F.6
Aebersold, R.7
Sonenberg, N.8
-
38
-
-
0035498939
-
Hierarchical phosphorylation of the translation inhibitor 4E-BP1
-
Gingras A.C., Raught B., Gygi S.P., Niedzwiecka A., Miron M., Burley S.K., Polakiewicz R.D., Wyslouch-Cieszynska A., Aebersold R., Sonenberg N. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 2001, 15:2852-2864.
-
(2001)
Genes Dev.
, vol.15
, pp. 2852-2864
-
-
Gingras, A.C.1
Raught, B.2
Gygi, S.P.3
Niedzwiecka, A.4
Miron, M.5
Burley, S.K.6
Polakiewicz, R.D.7
Wyslouch-Cieszynska, A.8
Aebersold, R.9
Sonenberg, N.10
-
39
-
-
84892685362
-
Casein kinase 1 epsilon promotes cell proliferation by regulating mRNA translation
-
Shin S., Wolgamott L., Roux P.P., Yoon S.O. Casein kinase 1 epsilon promotes cell proliferation by regulating mRNA translation. Cancer Res. 2014, 74:201-211.
-
(2014)
Cancer Res.
, vol.74
, pp. 201-211
-
-
Shin, S.1
Wolgamott, L.2
Roux, P.P.3
Yoon, S.O.4
-
40
-
-
84898014860
-
Glycogen synthase kinase-3beta positively regulates protein synthesis and cell proliferation through the regulation of translation initiation factor 4E-binding protein 1
-
Shin S., Wolgamott L., Tcherkezian J., Vallabhapurapu S., Yu Y., Roux P.P., Yoon S.O. Glycogen synthase kinase-3beta positively regulates protein synthesis and cell proliferation through the regulation of translation initiation factor 4E-binding protein 1. Oncogene 2014, 33:1690-1699.
-
(2014)
Oncogene
, vol.33
, pp. 1690-1699
-
-
Shin, S.1
Wolgamott, L.2
Tcherkezian, J.3
Vallabhapurapu, S.4
Yu, Y.5
Roux, P.P.6
Yoon, S.O.7
-
41
-
-
2942518250
-
Lost in translation: dysregulation of cap-dependent translation and cancer
-
Bjornsti M.A., Houghton P.J. Lost in translation: dysregulation of cap-dependent translation and cancer. Cancer Cell 2004, 5:519-523.
-
(2004)
Cancer Cell
, vol.5
, pp. 519-523
-
-
Bjornsti, M.A.1
Houghton, P.J.2
-
42
-
-
84863838830
-
Cap-dependent translation initiation factor eIF4E: an emerging anticancer drug target
-
Jia Y., Polunovsky V., Bitterman P.B., Wagner C.R. Cap-dependent translation initiation factor eIF4E: an emerging anticancer drug target. Med. Res. Rev. 2012, 32:786-814.
-
(2012)
Med. Res. Rev.
, vol.32
, pp. 786-814
-
-
Jia, Y.1
Polunovsky, V.2
Bitterman, P.B.3
Wagner, C.R.4
-
43
-
-
0025314596
-
Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap
-
Lazaris-Karatzas A., Montine K.S., Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap. Nature 1990, 345:544-547.
-
(1990)
Nature
, vol.345
, pp. 544-547
-
-
Lazaris-Karatzas, A.1
Montine, K.S.2
Sonenberg, N.3
-
44
-
-
2442648845
-
The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis
-
Ruggero D., Montanaro L., Ma L., Xu W., Londei P., Cordon-Cardo C., Pandolfi P.P. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat. Med. 2004, 10:484-486.
-
(2004)
Nat. Med.
, vol.10
, pp. 484-486
-
-
Ruggero, D.1
Montanaro, L.2
Ma, L.3
Xu, W.4
Londei, P.5
Cordon-Cardo, C.6
Pandolfi, P.P.7
-
45
-
-
0026723117
-
MRNAs containing extensive secondary structure in their 5' non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E
-
Koromilas A.E., Lazaris-Karatzas A., Sonenberg N. mRNAs containing extensive secondary structure in their 5' non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J. 1992, 11:4153-4158.
-
(1992)
EMBO J.
, vol.11
, pp. 4153-4158
-
-
Koromilas, A.E.1
Lazaris-Karatzas, A.2
Sonenberg, N.3
-
46
-
-
0030722085
-
Malignant transformation by overproduction of translation initiation factor eIF4G
-
Fukuchi-Shimogori T., Ishii I., Kashiwagi K., Mashiba H., Ekimoto H., Igarashi K. Malignant transformation by overproduction of translation initiation factor eIF4G. Cancer Res. 1997, 57:5041-5044.
-
(1997)
Cancer Res.
, vol.57
, pp. 5041-5044
-
-
Fukuchi-Shimogori, T.1
Ishii, I.2
Kashiwagi, K.3
Mashiba, H.4
Ekimoto, H.5
Igarashi, K.6
-
47
-
-
84877028141
-
Comprehensive molecular portraits of human breast tumours
-
N. Cancer Genome Atlas Comprehensive molecular portraits of human breast tumours. Nature 2012, 490:61-70.
-
(2012)
Nature
, vol.490
, pp. 61-70
-
-
-
48
-
-
84863922124
-
Comprehensive molecular characterization of human colon and rectal cancer
-
N. Cancer Genome Atlas Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487:330-337.
-
(2012)
Nature
, vol.487
, pp. 330-337
-
-
-
49
-
-
70350324640
-
Emerging common themes in regulation of PIKKs and PI3Ks
-
Lempiainen H., Halazonetis T.D. Emerging common themes in regulation of PIKKs and PI3Ks. EMBO J. 2009, 28:3067-3073.
-
(2009)
EMBO J.
, vol.28
, pp. 3067-3073
-
-
Lempiainen, H.1
Halazonetis, T.D.2
-
50
-
-
84878532557
-
Signal integration by mTORC1 coordinates nutrient input with biosynthetic output
-
Dibble C.C., Manning B.D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol. 2013, 15:555-564.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 555-564
-
-
Dibble, C.C.1
Manning, B.D.2
-
51
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
52
-
-
78650510609
-
MTOR: from growth signal integration to cancer, diabetes and ageing
-
Zoncu R., Efeyan A., Sabatini D.M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011, 12:21-35.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
-
53
-
-
79960470913
-
MTOR complex 2 signaling and functions
-
Oh W.J., Jacinto E. mTOR complex 2 signaling and functions. Cell Cycle 2011, 10:2305-2316.
-
(2011)
Cell Cycle
, vol.10
, pp. 2305-2316
-
-
Oh, W.J.1
Jacinto, E.2
-
54
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov D.D., Ali S.M., Kim D.H., Guertin D.A., Latek R.R., Erdjument-Bromage H., Tempst P., Sabatini D.M. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 2004, 14:1296-1302.
-
(2004)
Curr. Biol.
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.H.3
Guertin, D.A.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
55
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov D.D., Guertin D.A., Ali S.M., Sabatini D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005, 307:1098-1101.
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
56
-
-
58649092475
-
MTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1)
-
Garcia-Martinez J.M., Alessi D.R. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem. J. 2008, 416:375-385.
-
(2008)
Biochem. J.
, vol.416
, pp. 375-385
-
-
Garcia-Martinez, J.M.1
Alessi, D.R.2
-
57
-
-
79952293503
-
Activation of mTORC2 by association with the ribosome
-
Zinzalla V., Stracka D., Oppliger W., Hall M.N. Activation of mTORC2 by association with the ribosome. Cell 2011, 144:757-768.
-
(2011)
Cell
, vol.144
, pp. 757-768
-
-
Zinzalla, V.1
Stracka, D.2
Oppliger, W.3
Hall, M.N.4
-
58
-
-
78649712949
-
MTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide
-
Oh W.J., Wu C.C., Kim S.J., Facchinetti V., Julien L.A., Finlan M., Roux P.P., Su B., Jacinto E. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 2010, 29:3939-3951.
-
(2010)
EMBO J.
, vol.29
, pp. 3939-3951
-
-
Oh, W.J.1
Wu, C.C.2
Kim, S.J.3
Facchinetti, V.4
Julien, L.A.5
Finlan, M.6
Roux, P.P.7
Su, B.8
Jacinto, E.9
-
59
-
-
33751348056
-
Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1
-
Guertin D.A., Stevens D.M., Thoreen C.C., Burds A.A., Kalaany N.Y., Moffat J., Brown M., Fitzgerald K.J., Sabatini D.M. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 2006, 11:859-871.
-
(2006)
Dev. Cell
, vol.11
, pp. 859-871
-
-
Guertin, D.A.1
Stevens, D.M.2
Thoreen, C.C.3
Burds, A.A.4
Kalaany, N.Y.5
Moffat, J.6
Brown, M.7
Fitzgerald, K.J.8
Sabatini, D.M.9
-
60
-
-
67349241955
-
DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
-
Peterson T.R., Laplante M., Thoreen C.C., Sancak Y., Kang S.A., Kuehl W.M., Gray N.S., Sabatini D.M. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009, 137:873-886.
-
(2009)
Cell
, vol.137
, pp. 873-886
-
-
Peterson, T.R.1
Laplante, M.2
Thoreen, C.C.3
Sancak, Y.4
Kang, S.A.5
Kuehl, W.M.6
Gray, N.S.7
Sabatini, D.M.8
-
61
-
-
78650647490
-
A comprehensive map of the mTOR signaling network
-
Caron E., Ghosh S., Matsuoka Y., Ashton-Beaucage D., Therrien M., Lemieux S., Perreault C., Roux P.P., Kitano H. A comprehensive map of the mTOR signaling network. Mol. Syst. Biol. 2011, 6:453.
-
(2011)
Mol. Syst. Biol.
, vol.6
, pp. 453
-
-
Caron, E.1
Ghosh, S.2
Matsuoka, Y.3
Ashton-Beaucage, D.4
Therrien, M.5
Lemieux, S.6
Perreault, C.7
Roux, P.P.8
Kitano, H.9
-
62
-
-
0037117409
-
Identification of a conserved motif required for mTOR signaling
-
Schalm S.S., Blenis J. Identification of a conserved motif required for mTOR signaling. Curr. Biol. 2002, 12:632-639.
-
(2002)
Curr. Biol.
, vol.12
, pp. 632-639
-
-
Schalm, S.S.1
Blenis, J.2
-
63
-
-
0037718389
-
TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function
-
Schalm S.S., Fingar D.C., Sabatini D.M., Blenis J. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol. 2003, 13:797-806.
-
(2003)
Curr. Biol.
, vol.13
, pp. 797-806
-
-
Schalm, S.S.1
Fingar, D.C.2
Sabatini, D.M.3
Blenis, J.4
-
64
-
-
68149096799
-
The pharmacology of mTOR inhibition
-
Guertin D.A., Sabatini D.M. The pharmacology of mTOR inhibition. Sci. Signal. 2009, 2:e24.
-
(2009)
Sci. Signal.
, vol.2
, pp. e24
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
65
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov D.D., Ali S.M., Sengupta S., Sheen J.H., Hsu P.P., Bagley A.F., Markhard A.L., Sabatini D.M. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 2006, 22:159-168.
-
(2006)
Mol. Cell
, vol.22
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
Sheen, J.H.4
Hsu, P.P.5
Bagley, A.F.6
Markhard, A.L.7
Sabatini, D.M.8
-
66
-
-
77953091045
-
Structure of the human mTOR complex I and its implications for rapamycin inhibition
-
Yip C.K., Murata K., Walz T., Sabatini D.M., Kang S.A. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 2010, 38:768-774.
-
(2010)
Mol. Cell
, vol.38
, pp. 768-774
-
-
Yip, C.K.1
Murata, K.2
Walz, T.3
Sabatini, D.M.4
Kang, S.A.5
-
67
-
-
77950900079
-
MTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action
-
Soliman G.A., Acosta-Jaquez H.A., Dunlop E.A., Ekim B., Maj N.E., Tee A.R., Fingar D.C. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. J. Biol. Chem. 2010, 285:7866-7879.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 7866-7879
-
-
Soliman, G.A.1
Acosta-Jaquez, H.A.2
Dunlop, E.A.3
Ekim, B.4
Maj, N.E.5
Tee, A.R.6
Fingar, D.C.7
-
68
-
-
61449235398
-
Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy
-
Choo A.Y., Blenis J. Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle 2009, 8:567-572.
-
(2009)
Cell Cycle
, vol.8
, pp. 567-572
-
-
Choo, A.Y.1
Blenis, J.2
-
69
-
-
56249147509
-
Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation
-
Choo A.Y., Yoon S.O., Kim S.G., Roux P.P., Blenis J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:17414-17419.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 17414-17419
-
-
Choo, A.Y.1
Yoon, S.O.2
Kim, S.G.3
Roux, P.P.4
Blenis, J.5
-
70
-
-
67650228579
-
Rapamycin inhibits mTORC1, but not completely
-
Thoreen C.C., Sabatini D.M. Rapamycin inhibits mTORC1, but not completely. Autophagy 2009, 5:725-726.
-
(2009)
Autophagy
, vol.5
, pp. 725-726
-
-
Thoreen, C.C.1
Sabatini, D.M.2
-
71
-
-
80155142474
-
Rapamycin passes the torch: a new generation of mTOR inhibitors
-
Benjamin D., Colombi M., Moroni C., Hall M.N. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat. Rev. Drug Discov. 2011, 10:868-880.
-
(2011)
Nat. Rev. Drug Discov.
, vol.10
, pp. 868-880
-
-
Benjamin, D.1
Colombi, M.2
Moroni, C.3
Hall, M.N.4
-
72
-
-
79953298958
-
Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy
-
Wander S.A., Hennessy B.T., Slingerland J.M. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J. Clin. Invest. 2011, 121:1231-1241.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 1231-1241
-
-
Wander, S.A.1
Hennessy, B.T.2
Slingerland, J.M.3
-
73
-
-
67650312583
-
Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR)
-
Garcia-Martinez J.M., Moran J., Clarke R.G., Gray A., Cosulich S.C., Chresta C.M., Alessi D.R. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem. J. 2009, 421:29-42.
-
(2009)
Biochem. J.
, vol.421
, pp. 29-42
-
-
Garcia-Martinez, J.M.1
Moran, J.2
Clarke, R.G.3
Gray, A.4
Cosulich, S.C.5
Chresta, C.M.6
Alessi, D.R.7
-
74
-
-
76549107351
-
Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2
-
Yu K., Shi C., Toral-Barza L., Lucas J., Shor B., Kim J.E., Zhang W.G., Mahoney R., Gaydos C., Tardio L., Kim S.K., Conant R., Curran K., Kaplan J., Verheijen J., Ayral-Kaloustian S., Mansour T.S., Abraham R.T., Zask A., Gibbons J.J. Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res. 2010, 70:621-631.
-
(2010)
Cancer Res.
, vol.70
, pp. 621-631
-
-
Yu, K.1
Shi, C.2
Toral-Barza, L.3
Lucas, J.4
Shor, B.5
Kim, J.E.6
Zhang, W.G.7
Mahoney, R.8
Gaydos, C.9
Tardio, L.10
Kim, S.K.11
Conant, R.12
Curran, K.13
Kaplan, J.14
Verheijen, J.15
Ayral-Kaloustian, S.16
Mansour, T.S.17
Abraham, R.T.18
Zask, A.19
Gibbons, J.J.20
more..
-
75
-
-
79952216582
-
Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors
-
Falcon B.L., Barr S., Gokhale P.C., Chou J., Fogarty J., Depeille P., Miglarese M., Epstein D.M., McDonald D.M. Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors. Cancer Res. 2011, 71:1573-1583.
-
(2011)
Cancer Res.
, vol.71
, pp. 1573-1583
-
-
Falcon, B.L.1
Barr, S.2
Gokhale, P.C.3
Chou, J.4
Fogarty, J.5
Depeille, P.6
Miglarese, M.7
Epstein, D.M.8
McDonald, D.M.9
-
76
-
-
84880566446
-
A growing role for mTOR in promoting anabolic metabolism
-
Howell J.J., Ricoult S.J., Ben-Sahra I., Manning B.D. A growing role for mTOR in promoting anabolic metabolism. Biochem. Soc. Trans. 2013, 41:906-912.
-
(2013)
Biochem. Soc. Trans.
, vol.41
, pp. 906-912
-
-
Howell, J.J.1
Ricoult, S.J.2
Ben-Sahra, I.3
Manning, B.D.4
-
77
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
-
Sengupta S., Peterson T.R., Sabatini D.M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 2010, 40:310-322.
-
(2010)
Mol. Cell
, vol.40
, pp. 310-322
-
-
Sengupta, S.1
Peterson, T.R.2
Sabatini, D.M.3
-
79
-
-
84896109407
-
TBC1D7 mutations are associated with intellectual disability, macrocrania, patellar dislocation, and celiac disease
-
Alfaiz A.A., Micale L., Mandriani B., Augello B., Pellico M.T., Chrast J., Xenarios I., Zelante L., Merla G., Reymond A. TBC1D7 mutations are associated with intellectual disability, macrocrania, patellar dislocation, and celiac disease. Hum. Mutat. 2014, 35:447-451.
-
(2014)
Hum. Mutat.
, vol.35
, pp. 447-451
-
-
Alfaiz, A.A.1
Micale, L.2
Mandriani, B.3
Augello, B.4
Pellico, M.T.5
Chrast, J.6
Xenarios, I.7
Zelante, L.8
Merla, G.9
Reymond, A.10
-
80
-
-
84890134229
-
Disruption of TBC1D7, a subunit of the TSC1-TSC2 protein complex, in intellectual disability and megalencephaly
-
Capo-Chichi J.M., Tcherkezian J., Hamdan F.F., Decarie J.C., Dobrzeniecka S., Patry L., Nadon M.A., Mucha B.E., Major P., Shevell M., Bencheikh B.O., Joober R., Samuels M.E., Rouleau G.A., Roux P.P., Michaud J.L. Disruption of TBC1D7, a subunit of the TSC1-TSC2 protein complex, in intellectual disability and megalencephaly. J. Med. Genet. 2013, 50:740-744.
-
(2013)
J. Med. Genet.
, vol.50
, pp. 740-744
-
-
Capo-Chichi, J.M.1
Tcherkezian, J.2
Hamdan, F.F.3
Decarie, J.C.4
Dobrzeniecka, S.5
Patry, L.6
Nadon, M.A.7
Mucha, B.E.8
Major, P.9
Shevell, M.10
Bencheikh, B.O.11
Joober, R.12
Samuels, M.E.13
Rouleau, G.A.14
Roux, P.P.15
Michaud, J.L.16
-
81
-
-
84865371057
-
TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
-
Dibble C.C., Elis W., Menon S., Qin W., Klekota J., Asara J.M., Finan P.M., Kwiatkowski D.J., Murphy L.O., Manning B.D. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 2012, 47:535-546.
-
(2012)
Mol. Cell
, vol.47
, pp. 535-546
-
-
Dibble, C.C.1
Elis, W.2
Menon, S.3
Qin, W.4
Klekota, J.5
Asara, J.M.6
Finan, P.M.7
Kwiatkowski, D.J.8
Murphy, L.O.9
Manning, B.D.10
-
82
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
Inoki K., Li Y., Xu T., Guan K.L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003, 17:1829-1834.
-
(2003)
Genes Dev.
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.L.4
-
83
-
-
0042701991
-
Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
-
Tee A.R., Manning B.D., Roux P.P., Cantley L.C., Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 2003, 13:1259-1268.
-
(2003)
Curr. Biol.
, vol.13
, pp. 1259-1268
-
-
Tee, A.R.1
Manning, B.D.2
Roux, P.P.3
Cantley, L.C.4
Blenis, J.5
-
84
-
-
33745307617
-
Ras, PI(3)K and mTOR signalling controls tumour cell growth
-
Shaw R.J., Cantley L.C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006, 441:424-430.
-
(2006)
Nature
, vol.441
, pp. 424-430
-
-
Shaw, R.J.1
Cantley, L.C.2
-
85
-
-
59749091850
-
A complex interplay between Akt, TSC2 and the two mTOR complexes
-
Huang J., Manning B.D. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem. Soc. Trans. 2009, 37:217-222.
-
(2009)
Biochem. Soc. Trans.
, vol.37
, pp. 217-222
-
-
Huang, J.1
Manning, B.D.2
-
86
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki K., Li Y., Zhu T., Wu J., Guan K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 2002, 4:648-657.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.L.5
-
87
-
-
0036342294
-
Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway
-
Manning B.D., Tee A.R., Logsdon M.N., Blenis J., Cantley L.C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 2002, 10:151-162.
-
(2002)
Mol. Cell
, vol.10
, pp. 151-162
-
-
Manning, B.D.1
Tee, A.R.2
Logsdon, M.N.3
Blenis, J.4
Cantley, L.C.5
-
88
-
-
0036714127
-
Akt regulates growth by directly phosphorylating Tsc2
-
Potter C.J., Pedraza L.G., Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 2002, 4:658-665.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 658-665
-
-
Potter, C.J.1
Pedraza, L.G.2
Xu, T.3
-
89
-
-
4544384577
-
Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase
-
Roux P.P., Ballif B.A., Anjum R., Gygi S.P., Blenis J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:13489-13494.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 13489-13494
-
-
Roux, P.P.1
Ballif, B.A.2
Anjum, R.3
Gygi, S.P.4
Blenis, J.5
-
90
-
-
17444431201
-
Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis
-
Ma L., Chen Z., Erdjument-Bromage H., Tempst P., Pandolfi P.P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005, 121:179-193.
-
(2005)
Cell
, vol.121
, pp. 179-193
-
-
Ma, L.1
Chen, Z.2
Erdjument-Bromage, H.3
Tempst, P.4
Pandolfi, P.P.5
-
91
-
-
14144254701
-
Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors
-
Ballif B.A., Roux P.P., Gerber S.A., MacKeigan J.P., Blenis J., Gygi S.P. Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:667-672.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 667-672
-
-
Ballif, B.A.1
Roux, P.P.2
Gerber, S.A.3
MacKeigan, J.P.4
Blenis, J.5
Gygi, S.P.6
-
92
-
-
18044381192
-
Rheb binds and regulates the mTOR kinase
-
Long X., Lin Y., Ortiz-Vega S., Yonezawa K., Avruch J. Rheb binds and regulates the mTOR kinase. Curr. Biol. 2005, 15:702-713.
-
(2005)
Curr. Biol.
, vol.15
, pp. 702-713
-
-
Long, X.1
Lin, Y.2
Ortiz-Vega, S.3
Yonezawa, K.4
Avruch, J.5
-
93
-
-
34347220473
-
Defining the role of mTOR in cancer
-
Guertin D.A., Sabatini D.M. Defining the role of mTOR in cancer. Cancer Cell 2007, 12:9-22.
-
(2007)
Cancer Cell
, vol.12
, pp. 9-22
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
94
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y., Thoreen C.C., Peterson T.R., Lindquist R.A., Kang S.A., Spooner E., Carr S.A., Sabatini D.M. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 2007, 25:903-915.
-
(2007)
Mol. Cell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
Lindquist, R.A.4
Kang, S.A.5
Spooner, E.6
Carr, S.A.7
Sabatini, D.M.8
-
95
-
-
33847397874
-
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
-
Vander Haar E., Lee S.I., Bandhakavi S., Griffin T.J., Kim D.H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 2007, 9:316-323.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 316-323
-
-
Vander Haar, E.1
Lee, S.I.2
Bandhakavi, S.3
Griffin, T.J.4
Kim, D.H.5
-
96
-
-
34547099855
-
PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
-
Wang L., Harris T.E., Roth R.A., Lawrence J.C. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J. Biol. Chem. 2007, 282:20036-20044.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 20036-20044
-
-
Wang, L.1
Harris, T.E.2
Roth, R.A.3
Lawrence, J.C.4
-
97
-
-
47049127002
-
Regulation of proline-rich Akt substrate of 40kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation
-
Wang L., Harris T.E., Lawrence J.C. Regulation of proline-rich Akt substrate of 40kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J. Biol. Chem. 2008, 283:15619-15627.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 15619-15627
-
-
Wang, L.1
Harris, T.E.2
Lawrence, J.C.3
-
98
-
-
51049083138
-
Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation
-
Carriere A., Cargnello M., Julien L.A., Gao H., Bonneil E., Thibault P., Roux P.P. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr. Biol. 2008, 18:1269-1277.
-
(2008)
Curr. Biol.
, vol.18
, pp. 1269-1277
-
-
Carriere, A.1
Cargnello, M.2
Julien, L.A.3
Gao, H.4
Bonneil, E.5
Thibault, P.6
Roux, P.P.7
-
99
-
-
78650943298
-
ERK1/2 phosphorylate raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1)
-
Carriere A., Romeo Y., Acosta-Jaquez H.A., Moreau J., Bonneil E., Thibault P., Fingar D.C., Roux P.P. ERK1/2 phosphorylate raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). J. Biol. Chem. 2011, 286:567-577.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 567-577
-
-
Carriere, A.1
Romeo, Y.2
Acosta-Jaquez, H.A.3
Moreau, J.4
Bonneil, E.5
Thibault, P.6
Fingar, D.C.7
Roux, P.P.8
-
100
-
-
81855167585
-
DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy
-
Zhao Y., Xiong X., Sun Y. DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol. Cell 2011, 44:304-316.
-
(2011)
Mol. Cell
, vol.44
, pp. 304-316
-
-
Zhao, Y.1
Xiong, X.2
Sun, Y.3
-
101
-
-
0032486268
-
Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism
-
Hara K., Yonezawa K., Weng Q.P., Kozlowski M.T., Belham C., Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 1998, 273:14484-14494.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 14484-14494
-
-
Hara, K.1
Yonezawa, K.2
Weng, Q.P.3
Kozlowski, M.T.4
Belham, C.5
Avruch, J.6
-
102
-
-
0032528917
-
Amino acid availability regulates p70 S6 kinase and multiple translation factors
-
Wang X., Campbell L.E., Miller C.M., Proud C.G. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem. J. 1998, 334(Pt 1):261-267.
-
(1998)
Biochem. J.
, vol.334
, pp. 261-267
-
-
Wang, X.1
Campbell, L.E.2
Miller, C.M.3
Proud, C.G.4
-
103
-
-
59049087460
-
Bidirectional transport of amino acids regulates mTOR and autophagy
-
Nicklin P., Bergman P., Zhang B., Triantafellow E., Wang H., Nyfeler B., Yang H., Hild M., Kung C., Wilson C., Myer V.E., MacKeigan J.P., Porter J.A., Wang Y.K., Cantley L.C., Finan P.M., Murphy L.O. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009, 136:521-534.
-
(2009)
Cell
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
Bergman, P.2
Zhang, B.3
Triantafellow, E.4
Wang, H.5
Nyfeler, B.6
Yang, H.7
Hild, M.8
Kung, C.9
Wilson, C.10
Myer, V.E.11
MacKeigan, J.P.12
Porter, J.A.13
Wang, Y.K.14
Cantley, L.C.15
Finan, P.M.16
Murphy, L.O.17
-
104
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
Zoncu R., Bar-Peled L., Efeyan A., Wang S., Sancak Y., Sabatini D.M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011, 334:678-683.
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
105
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y., Peterson T.R., Shaul Y.D., Lindquist R.A., Thoreen C.C., Bar-Peled L., Sabatini D.M. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320:1496-1501.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
106
-
-
0035831451
-
Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B
-
Sekiguchi T., Hirose E., Nakashima N., Ii M., Nishimoto T. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J. Biol. Chem. 2001, 276:7246-7257.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 7246-7257
-
-
Sekiguchi, T.1
Hirose, E.2
Nakashima, N.3
Ii, M.4
Nishimoto, T.5
-
107
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim E., Goraksha-Hicks P., Li L., Neufeld T.P., Guan K.L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 2008, 10:935-945.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
108
-
-
84866431363
-
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
-
Bar-Peled L., Schweitzer L.D., Zoncu R., Sabatini D.M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012, 150:1196-1208.
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
109
-
-
84878357685
-
A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
-
Bar-Peled L., Chantranupong L., Cherniack A.D., Chen W.W., Ottina K.A., Grabiner B.C., Spear E.D., Carter S.L., Meyerson M., Sabatini D.M. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013, 340:1100-1106.
-
(2013)
Science
, vol.340
, pp. 1100-1106
-
-
Bar-Peled, L.1
Chantranupong, L.2
Cherniack, A.D.3
Chen, W.W.4
Ottina, K.A.5
Grabiner, B.C.6
Spear, E.D.7
Carter, S.L.8
Meyerson, M.9
Sabatini, D.M.10
-
110
-
-
84878353147
-
Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1
-
Panchaud N., Peli-Gulli M.P., De Virgilio C. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci. Signal. 2013, 6:ra42.
-
(2013)
Sci. Signal.
, vol.6
, pp. ra42
-
-
Panchaud, N.1
Peli-Gulli, M.P.2
De Virgilio, C.3
-
111
-
-
84888200442
-
The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
-
Tsun Z.Y., Bar-Peled L., Chantranupong L., Zoncu R., Wang T., Kim C., Spooner E., Sabatini D.M. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 2013, 52:495-505.
-
(2013)
Mol. Cell
, vol.52
, pp. 495-505
-
-
Tsun, Z.Y.1
Bar-Peled, L.2
Chantranupong, L.3
Zoncu, R.4
Wang, T.5
Kim, C.6
Spooner, E.7
Sabatini, D.M.8
-
112
-
-
84886871016
-
Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases
-
Petit C.S., Roczniak-Ferguson A., Ferguson S.M. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J. Cell Biol. 2013, 202:1107-1122.
-
(2013)
J. Cell Biol.
, vol.202
, pp. 1107-1122
-
-
Petit, C.S.1
Roczniak-Ferguson, A.2
Ferguson, S.M.3
-
113
-
-
84894212463
-
Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
-
Demetriades C., Doumpas N., Teleman A.A. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 2014, 156:786-799.
-
(2014)
Cell
, vol.156
, pp. 786-799
-
-
Demetriades, C.1
Doumpas, N.2
Teleman, A.A.3
-
114
-
-
84894114029
-
Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
-
Menon S., Dibble C.C., Talbott G., Hoxhaj G., Valvezan A.J., Takahashi H., Cantley L.C., Manning B.D. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014, 156:771-785.
-
(2014)
Cell
, vol.156
, pp. 771-785
-
-
Menon, S.1
Dibble, C.C.2
Talbott, G.3
Hoxhaj, G.4
Valvezan, A.J.5
Takahashi, H.6
Cantley, L.C.7
Manning, B.D.8
-
115
-
-
63849149937
-
LKB1 and AMP-activated protein kinase control of mTOR signalling and growth
-
Shaw R.J. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol. 2009, 196:65-80.
-
(2009)
Acta Physiol.
, vol.196
, pp. 65-80
-
-
Shaw, R.J.1
-
116
-
-
20844451123
-
AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism
-
Kahn B.B., Alquier T., Carling D., Hardie D.G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005, 1:15-25.
-
(2005)
Cell Metab.
, vol.1
, pp. 15-25
-
-
Kahn, B.B.1
Alquier, T.2
Carling, D.3
Hardie, D.G.4
-
117
-
-
84907519033
-
The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
-
Zhang C.S., Jiang B., Li M., Zhu M., Peng Y., Zhang Y.L., Wu Y.Q., Li T.Y., Liang Y., Lu Z., Lian G., Liu Q., Guo H., Yin Z., Ye Z., Han J., Wu J.W., Yin H., Lin S.Y., Lin S.C. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 2014, 20:526-540.
-
(2014)
Cell Metab.
, vol.20
, pp. 526-540
-
-
Zhang, C.S.1
Jiang, B.2
Li, M.3
Zhu, M.4
Peng, Y.5
Zhang, Y.L.6
Wu, Y.Q.7
Li, T.Y.8
Liang, Y.9
Lu, Z.10
Lian, G.11
Liu, Q.12
Guo, H.13
Yin, Z.14
Ye, Z.15
Han, J.16
Wu, J.W.17
Yin, H.18
Lin, S.Y.19
Lin, S.C.20
more..
-
118
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K., Zhu T., Guan K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115:577-590.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
119
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn D.M., Shackelford D.B., Egan D.F., Mihaylova M.M., Mery A., Vasquez D.S., Turk B.E., Shaw R.J. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 2008, 30:214-226.
-
(2008)
Mol. Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
120
-
-
10044276783
-
Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex
-
Brugarolas J., Lei K., Hurley R.L., Manning B.D., Reiling J.H., Hafen E., Witters L.A., Ellisen L.W., Kaelin W.G. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004, 18:2893-2904.
-
(2004)
Genes Dev.
, vol.18
, pp. 2893-2904
-
-
Brugarolas, J.1
Lei, K.2
Hurley, R.L.3
Manning, B.D.4
Reiling, J.H.5
Hafen, E.6
Witters, L.A.7
Ellisen, L.W.8
Kaelin, W.G.9
-
121
-
-
84939884427
-
MTORC1 drives HIF-1alpha and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3
-
(Epub ahead of print)
-
Dodd K.M., Yang J., Shen M.H., Sampson J.R., Tee A.R. mTORC1 drives HIF-1alpha and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene 2014, (Epub ahead of print).
-
(2014)
Oncogene
-
-
Dodd, K.M.1
Yang, J.2
Shen, M.H.3
Sampson, J.R.4
Tee, A.R.5
-
122
-
-
38349056675
-
Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling
-
DeYoung M.P., Horak P., Sofer A., Sgroi D., Ellisen L.W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008, 22:239-251.
-
(2008)
Genes Dev.
, vol.22
, pp. 239-251
-
-
DeYoung, M.P.1
Horak, P.2
Sofer, A.3
Sgroi, D.4
Ellisen, L.W.5
-
123
-
-
58149524838
-
ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression
-
Whitney M.L., Jefferson L.S., Kimball S.R. ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression. Biochem. Biophys. Res. Commun. 2009, 379:451-455.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.379
, pp. 451-455
-
-
Whitney, M.L.1
Jefferson, L.S.2
Kimball, S.R.3
-
124
-
-
48449101433
-
P53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling
-
Budanov A.V., Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008, 134:451-460.
-
(2008)
Cell
, vol.134
, pp. 451-460
-
-
Budanov, A.V.1
Karin, M.2
-
125
-
-
79959764729
-
Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1
-
Ben Sahra I., Regazzetti C., Robert G., Laurent K., Le Marchand-Brustel Y., Auberger P., Tanti J.F., Giorgetti-Peraldi S., Bost F. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res. 2011, 71:4366-4372.
-
(2011)
Cancer Res.
, vol.71
, pp. 4366-4372
-
-
Ben Sahra, I.1
Regazzetti, C.2
Robert, G.3
Laurent, K.4
Le Marchand-Brustel, Y.5
Auberger, P.6
Tanti, J.F.7
Giorgetti-Peraldi, S.8
Bost, F.9
-
126
-
-
79958696694
-
The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
-
Hsu P.P., Kang S.A., Rameseder J., Zhang Y., Ottina K.A., Lim D., Peterson T.R., Choi Y., Gray N.S., Yaffe M.B., Marto J.A., Sabatini D.M. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011, 332:1317-1322.
-
(2011)
Science
, vol.332
, pp. 1317-1322
-
-
Hsu, P.P.1
Kang, S.A.2
Rameseder, J.3
Zhang, Y.4
Ottina, K.A.5
Lim, D.6
Peterson, T.R.7
Choi, Y.8
Gray, N.S.9
Yaffe, M.B.10
Marto, J.A.11
Sabatini, D.M.12
-
127
-
-
79958696336
-
Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
-
Yu Y., Yoon S.O., Poulogiannis G., Yang Q., Ma X.M., Villen J., Kubica N., Hoffman G.R., Cantley L.C., Gygi S.P., Blenis J. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011, 332:1322-1326.
-
(2011)
Science
, vol.332
, pp. 1322-1326
-
-
Yu, Y.1
Yoon, S.O.2
Poulogiannis, G.3
Yang, Q.4
Ma, X.M.5
Villen, J.6
Kubica, N.7
Hoffman, G.R.8
Cantley, L.C.9
Gygi, S.P.10
Blenis, J.11
-
128
-
-
0035312747
-
Regulation of translation initiation by FRAP/mTOR
-
Gingras A.C., Raught B., Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001, 15:807-826.
-
(2001)
Genes Dev.
, vol.15
, pp. 807-826
-
-
Gingras, A.C.1
Raught, B.2
Sonenberg, N.3
-
129
-
-
0942298123
-
Activated eIF4E-binding protein slows G1 progression and blocks transformation by c-myc without inhibiting cell growth
-
Lynch M., Fitzgerald C., Johnston K.A., Wang S., Schmidt E.V. Activated eIF4E-binding protein slows G1 progression and blocks transformation by c-myc without inhibiting cell growth. J. Biol. Chem. 2004, 279:3327-3339.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 3327-3339
-
-
Lynch, M.1
Fitzgerald, C.2
Johnston, K.A.3
Wang, S.4
Schmidt, E.V.5
-
130
-
-
70350494540
-
P53-dependent translational control of senescence and transformation via 4E-BPs
-
Petroulakis E., Parsyan A., Dowling R.J., LeBacquer O., Martineau Y., Bidinosti M., Larsson O., Alain T., Rong L., Mamane Y., Paquet M., Furic L., Topisirovic I., Shahbazian D., Livingstone M., Costa-Mattioli M., Teodoro J.G., Sonenberg N. p53-dependent translational control of senescence and transformation via 4E-BPs. Cancer Cell 2009, 16:439-446.
-
(2009)
Cancer Cell
, vol.16
, pp. 439-446
-
-
Petroulakis, E.1
Parsyan, A.2
Dowling, R.J.3
LeBacquer, O.4
Martineau, Y.5
Bidinosti, M.6
Larsson, O.7
Alain, T.8
Rong, L.9
Mamane, Y.10
Paquet, M.11
Furic, L.12
Topisirovic, I.13
Shahbazian, D.14
Livingstone, M.15
Costa-Mattioli, M.16
Teodoro, J.G.17
Sonenberg, N.18
-
131
-
-
41149133368
-
Translational control of the innate immune response through IRF-7
-
Colina R., Costa-Mattioli M., Dowling R.J., Jaramillo M., Tai L.H., Breitbach C.J., Martineau Y., Larsson O., Rong L., Svitkin Y.V., Makrigiannis A.P., Bell J.C., Sonenberg N. Translational control of the innate immune response through IRF-7. Nature 2008, 452:323-328.
-
(2008)
Nature
, vol.452
, pp. 323-328
-
-
Colina, R.1
Costa-Mattioli, M.2
Dowling, R.J.3
Jaramillo, M.4
Tai, L.H.5
Breitbach, C.J.6
Martineau, Y.7
Larsson, O.8
Rong, L.9
Svitkin, Y.V.10
Makrigiannis, A.P.11
Bell, J.C.12
Sonenberg, N.13
-
132
-
-
2342489456
-
EIF-4E expression and its role in malignancies and metastases
-
De Benedetti A., Graff J.R. eIF-4E expression and its role in malignancies and metastases. Oncogene 2004, 23:3189-3199.
-
(2004)
Oncogene
, vol.23
, pp. 3189-3199
-
-
De Benedetti, A.1
Graff, J.R.2
-
133
-
-
0029166967
-
Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels
-
Rosenwald I.B., Kaspar R., Rousseau D., Gehrke L., Leboulch P., Chen J.J., Schmidt E.V., Sonenberg N., London I.M. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J. Biol. Chem. 1995, 270:21176-21180.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 21176-21180
-
-
Rosenwald, I.B.1
Kaspar, R.2
Rousseau, D.3
Gehrke, L.4
Leboulch, P.5
Chen, J.J.6
Schmidt, E.V.7
Sonenberg, N.8
London, I.M.9
-
134
-
-
0026012413
-
Translational control of ornithine aminotransferase. Modulation by initiation factor eIF-4E
-
Fagan R.J., Lazaris-Karatzas A., Sonenberg N., Rozen R. Translational control of ornithine aminotransferase. Modulation by initiation factor eIF-4E. J. Biol. Chem. 1991, 266:16518-16523.
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 16518-16523
-
-
Fagan, R.J.1
Lazaris-Karatzas, A.2
Sonenberg, N.3
Rozen, R.4
-
135
-
-
0029967638
-
Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis
-
Kevil C.G., De Benedetti A., Payne D.K., Coe L.L., Laroux F.S., Alexander J.S. Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int. J. Cancer 1996, 65:785-790.
-
(1996)
Int. J. Cancer
, vol.65
, pp. 785-790
-
-
Kevil, C.G.1
De Benedetti, A.2
Payne, D.K.3
Coe, L.L.4
Laroux, F.S.5
Alexander, J.S.6
-
136
-
-
0033854863
-
Translational control of malignancy: the mRNA cap-binding protein, eIF-4E, as a central regulator of tumor formation, growth, invasion and metastasis
-
Zimmer S.G., DeBenedetti A., Graff J.R. Translational control of malignancy: the mRNA cap-binding protein, eIF-4E, as a central regulator of tumor formation, growth, invasion and metastasis. Anticancer Res. 2000, 20:1343-1351.
-
(2000)
Anticancer Res.
, vol.20
, pp. 1343-1351
-
-
Zimmer, S.G.1
DeBenedetti, A.2
Graff, J.R.3
-
137
-
-
84887415150
-
MTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
-
Morita M., Gravel S.P., Chenard V., Sikstrom K., Zheng L., Alain T., Gandin V., Avizonis D., Arguello M., Zakaria C., McLaughlan S., Nouet Y., Pause A., Pollak M., Gottlieb E., Larsson O., St-Pierre J., Topisirovic I., Sonenberg N. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 2013, 18:698-711.
-
(2013)
Cell Metab.
, vol.18
, pp. 698-711
-
-
Morita, M.1
Gravel, S.P.2
Chenard, V.3
Sikstrom, K.4
Zheng, L.5
Alain, T.6
Gandin, V.7
Avizonis, D.8
Arguello, M.9
Zakaria, C.10
McLaughlan, S.11
Nouet, Y.12
Pause, A.13
Pollak, M.14
Gottlieb, E.15
Larsson, O.16
St-Pierre, J.17
Topisirovic, I.18
Sonenberg, N.19
-
138
-
-
20044392290
-
Atrophy of S6K1(-/-) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control
-
Ohanna M., Sobering A.K., Lapointe T., Lorenzo L., Praud C., Petroulakis E., Sonenberg N., Kelly P.A., Sotiropoulos A., Pende M. Atrophy of S6K1(-/-) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat. Cell Biol. 2005, 7:286-294.
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 286-294
-
-
Ohanna, M.1
Sobering, A.K.2
Lapointe, T.3
Lorenzo, L.4
Praud, C.5
Petroulakis, E.6
Sonenberg, N.7
Kelly, P.A.8
Sotiropoulos, A.9
Pende, M.10
-
139
-
-
11144356304
-
S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway
-
Pende M., Um S.H., Mieulet V., Sticker M., Goss V.L., Mestan J., Mueller M., Fumagalli S., Kozma S.C., Thomas G. S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol. Cell. Biol. 2004, 24:3112-3124.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 3112-3124
-
-
Pende, M.1
Um, S.H.2
Mieulet, V.3
Sticker, M.4
Goss, V.L.5
Mestan, J.6
Mueller, M.7
Fumagalli, S.8
Kozma, S.C.9
Thomas, G.10
-
140
-
-
0036385637
-
Coordinate regulation of translation by the PI 3-kinase and mTOR pathways
-
Martin K.A., Blenis J. Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv. Cancer Res. 2002, 86:1-39.
-
(2002)
Adv. Cancer Res.
, vol.86
, pp. 1-39
-
-
Martin, K.A.1
Blenis, J.2
-
141
-
-
0345732640
-
MTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E
-
Fingar D.C., Richardson C.J., Tee A.R., Cheatham L., Tsou C., Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell. Biol. 2004, 24:200-216.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 200-216
-
-
Fingar, D.C.1
Richardson, C.J.2
Tee, A.R.3
Cheatham, L.4
Tsou, C.5
Blenis, J.6
-
142
-
-
0025986847
-
Cloning and expression of two human p70 S6 kinase polypeptides differing only at their amino termini
-
Grove J.R., Banerjee P., Balasubramanyam A., Coffer P.J., Price D.J., Avruch J., Woodgett J.R. Cloning and expression of two human p70 S6 kinase polypeptides differing only at their amino termini. Mol. Cell. Biol. 1991, 11:5541-5550.
-
(1991)
Mol. Cell. Biol.
, vol.11
, pp. 5541-5550
-
-
Grove, J.R.1
Banerjee, P.2
Balasubramanyam, A.3
Coffer, P.J.4
Price, D.J.5
Avruch, J.6
Woodgett, J.R.7
-
143
-
-
0032514924
-
Molecular cloning and characterization of a novel p70 S6 kinase, p70 S6 kinase beta containing a proline-rich region
-
Gout I., Minami T., Hara K., Tsujishita Y., Filonenko V., Waterfield M.D., Yonezawa K. Molecular cloning and characterization of a novel p70 S6 kinase, p70 S6 kinase beta containing a proline-rich region. J. Biol. Chem. 1998, 273:30061-30064.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 30061-30064
-
-
Gout, I.1
Minami, T.2
Hara, K.3
Tsujishita, Y.4
Filonenko, V.5
Waterfield, M.D.6
Yonezawa, K.7
-
144
-
-
78650239404
-
Functions and regulation of the 70kDa ribosomal S6 kinases
-
Fenton T.R., Gout I.T. Functions and regulation of the 70kDa ribosomal S6 kinases. Int. J. Biochem. Cell Biol. 2011, 43:47-59.
-
(2011)
Int. J. Biochem. Cell Biol.
, vol.43
, pp. 47-59
-
-
Fenton, T.R.1
Gout, I.T.2
-
145
-
-
0035882103
-
The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB
-
Biondi R.M., Kieloch A., Currie R.A., Deak M., Alessi D.R. The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO J. 2001, 20:4380-4390.
-
(2001)
EMBO J.
, vol.20
, pp. 4380-4390
-
-
Biondi, R.M.1
Kieloch, A.2
Currie, R.A.3
Deak, M.4
Alessi, D.R.5
-
146
-
-
82755187773
-
Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation
-
Shin S., Wolgamott L., Yu Y., Blenis J., Yoon S.O. Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:E1204-E1213.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. E1204-E1213
-
-
Shin, S.1
Wolgamott, L.2
Yu, Y.3
Blenis, J.4
Yoon, S.O.5
-
147
-
-
37549028779
-
Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function
-
Jastrzebski K., Hannan K.M., Tchoubrieva E.B., Hannan R.D., Pearson R.B. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors 2007, 25:209-226.
-
(2007)
Growth Factors
, vol.25
, pp. 209-226
-
-
Jastrzebski, K.1
Hannan, K.M.2
Tchoubrieva, E.B.3
Hannan, R.D.4
Pearson, R.B.5
-
148
-
-
84896629473
-
Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program
-
Chauvin C., Koka V., Nouschi A., Mieulet V., Hoareau-Aveilla C., Dreazen A., Cagnard N., Carpentier W., Kiss T., Meyuhas O., Pende M. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene 2014, 33:474-483.
-
(2014)
Oncogene
, vol.33
, pp. 474-483
-
-
Chauvin, C.1
Koka, V.2
Nouschi, A.3
Mieulet, V.4
Hoareau-Aveilla, C.5
Dreazen, A.6
Cagnard, N.7
Carpentier, W.8
Kiss, T.9
Meyuhas, O.10
Pende, M.11
-
149
-
-
0025016341
-
Molecular structure of a major insulin/mitogen-activated 70-kDa S6 protein kinase
-
Banerjee P., Ahmad M.F., Grove J.R., Kozlosky C., Price D.J., Avruch J. Molecular structure of a major insulin/mitogen-activated 70-kDa S6 protein kinase. Proc. Natl. Acad. Sci. U. S. A. 1990, 87:8550-8554.
-
(1990)
Proc. Natl. Acad. Sci. U. S. A.
, vol.87
, pp. 8550-8554
-
-
Banerjee, P.1
Ahmad, M.F.2
Grove, J.R.3
Kozlosky, C.4
Price, D.J.5
Avruch, J.6
-
150
-
-
0025029035
-
Cloning of the mitogen-activated S6 kinase from rat liver reveals an enzyme of the second messenger subfamily
-
Kozma S.C., Ferrari S., Bassand P., Siegmann M., Totty N., Thomas G. Cloning of the mitogen-activated S6 kinase from rat liver reveals an enzyme of the second messenger subfamily. Proc. Natl. Acad. Sci. U. S. A. 1990, 87:7365-7369.
-
(1990)
Proc. Natl. Acad. Sci. U. S. A.
, vol.87
, pp. 7365-7369
-
-
Kozma, S.C.1
Ferrari, S.2
Bassand, P.3
Siegmann, M.4
Totty, N.5
Thomas, G.6
-
151
-
-
52049103675
-
Physiological roles of ribosomal protein S6: one of its kind
-
Meyuhas O. Physiological roles of ribosomal protein S6: one of its kind. Int. Rev. Cell Mol. Biol. 2008, 268:1-37.
-
(2008)
Int. Rev. Cell Mol. Biol.
, vol.268
, pp. 1-37
-
-
Meyuhas, O.1
-
152
-
-
36148994348
-
Human ribosomal protein S13 regulates expression of its own gene at the splicing step by a feedback mechanism
-
Malygin A.A., Parakhnevitch N.M., Ivanov A.V., Eperon I.C., Karpova G.G. Human ribosomal protein S13 regulates expression of its own gene at the splicing step by a feedback mechanism. Nucleic Acids Res. 2007, 35:6414-6423.
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 6414-6423
-
-
Malygin, A.A.1
Parakhnevitch, N.M.2
Ivanov, A.V.3
Eperon, I.C.4
Karpova, G.G.5
-
153
-
-
77951235652
-
Ribosomal protein L11 associates with c-Myc at 5 S rRNA and tRNA genes and regulates their expression
-
Dai M.S., Sun X.X., Lu H. Ribosomal protein L11 associates with c-Myc at 5 S rRNA and tRNA genes and regulates their expression. J. Biol. Chem. 2010, 285:12587-12594.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 12587-12594
-
-
Dai, M.S.1
Sun, X.X.2
Lu, H.3
-
154
-
-
0038506040
-
Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus
-
Grummt I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 2003, 17:1691-1702.
-
(2003)
Genes Dev.
, vol.17
, pp. 1691-1702
-
-
Grummt, I.1
-
155
-
-
0242637318
-
MTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF
-
Hannan K.M., Brandenburger Y., Jenkins A., Sharkey K., Cavanaugh A., Rothblum L., Moss T., Poortinga G., McArthur G.A., Pearson R.B., Hannan R.D. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol. Cell. Biol. 2003, 23:8862-8877.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 8862-8877
-
-
Hannan, K.M.1
Brandenburger, Y.2
Jenkins, A.3
Sharkey, K.4
Cavanaugh, A.5
Rothblum, L.6
Moss, T.7
Poortinga, G.8
McArthur, G.A.9
Pearson, R.B.10
Hannan, R.D.11
-
156
-
-
78651265161
-
Ribosomal biogenesis induction by high glucose requires activation of upstream binding factor in kidney glomerular epithelial cells
-
Mariappan M.M., D'Silva K., Lee M.J., Sataranatarajan K., Barnes J.L., Choudhury G.G., Kasinath B.S. Ribosomal biogenesis induction by high glucose requires activation of upstream binding factor in kidney glomerular epithelial cells. Am. J. Physiol. Renal Physiol. 2011, 300:F219-F230.
-
(2011)
Am. J. Physiol. Renal Physiol.
, vol.300
, pp. F219-F230
-
-
Mariappan, M.M.1
D'Silva, K.2
Lee, M.J.3
Sataranatarajan, K.4
Barnes, J.L.5
Choudhury, G.G.6
Kasinath, B.S.7
-
157
-
-
0035200856
-
Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation
-
Tang H., Hornstein E., Stolovich M., Levy G., Livingstone M., Templeton D., Avruch J., Meyuhas O. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol. Cell. Biol. 2001, 21:8671-8683.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 8671-8683
-
-
Tang, H.1
Hornstein, E.2
Stolovich, M.3
Levy, G.4
Livingstone, M.5
Templeton, D.6
Avruch, J.7
Meyuhas, O.8
-
158
-
-
84893912480
-
Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5'TOP mRNA translation
-
Tcherkezian J., Cargnello M., Romeo Y., Huttlin E.L., Lavoie G., Gygi S.P., Roux P.P. Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5'TOP mRNA translation. Genes Dev. 2014, 28:357-371.
-
(2014)
Genes Dev.
, vol.28
, pp. 357-371
-
-
Tcherkezian, J.1
Cargnello, M.2
Romeo, Y.3
Huttlin, E.L.4
Lavoie, G.5
Gygi, S.P.6
Roux, P.P.7
-
159
-
-
33750325725
-
S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth
-
Dorrello N.V., Peschiaroli A., Guardavaccaro D., Colburn N.H., Sherman N.E., Pagano M. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 2006, 314:467-471.
-
(2006)
Science
, vol.314
, pp. 467-471
-
-
Dorrello, N.V.1
Peschiaroli, A.2
Guardavaccaro, D.3
Colburn, N.H.4
Sherman, N.E.5
Pagano, M.6
-
160
-
-
2442574729
-
Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases
-
Raught B., Peiretti F., Gingras A.C., Livingstone M., Shahbazian D., Mayeur G.L., Polakiewicz R.D., Sonenberg N., Hershey J.W. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J. 2004, 23:1761-1769.
-
(2004)
EMBO J.
, vol.23
, pp. 1761-1769
-
-
Raught, B.1
Peiretti, F.2
Gingras, A.C.3
Livingstone, M.4
Shahbazian, D.5
Mayeur, G.L.6
Polakiewicz, R.D.7
Sonenberg, N.8
Hershey, J.W.9
-
161
-
-
33745570504
-
The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity
-
Shahbazian D., Roux P.P., Mieulet V., Cohen M.S., Raught B., Taunton J., Hershey J.W., Blenis J., Pende M., Sonenberg N. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J. 2006, 25:2781-2791.
-
(2006)
EMBO J.
, vol.25
, pp. 2781-2791
-
-
Shahbazian, D.1
Roux, P.P.2
Mieulet, V.3
Cohen, M.S.4
Raught, B.5
Taunton, J.6
Hershey, J.W.7
Blenis, J.8
Pende, M.9
Sonenberg, N.10
-
162
-
-
0036384266
-
DUG is a novel homologue of translation initiation factor 4G that binds eIF4A
-
Goke A., Goke R., Knolle A., Trusheim H., Schmidt H., Wilmen A., Carmody R., Goke B., Chen Y.H. DUG is a novel homologue of translation initiation factor 4G that binds eIF4A. Biochem. Biophys. Res. Commun. 2002, 297:78-82.
-
(2002)
Biochem. Biophys. Res. Commun.
, vol.297
, pp. 78-82
-
-
Goke, A.1
Goke, R.2
Knolle, A.3
Trusheim, H.4
Schmidt, H.5
Wilmen, A.6
Carmody, R.7
Goke, B.8
Chen, Y.H.9
-
163
-
-
0037216626
-
The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation
-
Yang H.S., Jansen A.P., Komar A.A., Zheng X., Merrick W.C., Costes S., Lockett S.J., Sonenberg N., Colburn N.H. The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol. Cell. Biol. 2003, 23:26-37.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 26-37
-
-
Yang, H.S.1
Jansen, A.P.2
Komar, A.A.3
Zheng, X.4
Merrick, W.C.5
Costes, S.6
Lockett, S.J.7
Sonenberg, N.8
Colburn, N.H.9
-
164
-
-
84904671815
-
Phosphoproteomic analysis identifies the tumor suppressor PDCD4 as a RSK substrate negatively regulated by 14-3-3
-
Galan J.A., Geraghty K.M., Lavoie G., Kanshin E., Tcherkezian J., Calabrese V., Jeschke G.R., Turk B.E., Ballif B.A., Blenis J., Thibault P., Roux P.P. Phosphoproteomic analysis identifies the tumor suppressor PDCD4 as a RSK substrate negatively regulated by 14-3-3. Proc. Natl. Acad. Sci. U. S. A. 2014, 111:E2918-E2927.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. E2918-E2927
-
-
Galan, J.A.1
Geraghty, K.M.2
Lavoie, G.3
Kanshin, E.4
Tcherkezian, J.5
Calabrese, V.6
Jeschke, G.R.7
Turk, B.E.8
Ballif, B.A.9
Blenis, J.10
Thibault, P.11
Roux, P.P.12
-
165
-
-
27744569843
-
MTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events
-
Holz M.K., Ballif B.A., Gygi S.P., Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 2005, 123:569-580.
-
(2005)
Cell
, vol.123
, pp. 569-580
-
-
Holz, M.K.1
Ballif, B.A.2
Gygi, S.P.3
Blenis, J.4
-
166
-
-
0021270173
-
RNA-stimulated ATPase activity of eukaryotic initiation factors
-
Grifo J.A., Abramson R.D., Satler C.A., Merrick W.C. RNA-stimulated ATPase activity of eukaryotic initiation factors. J. Biol. Chem. 1984, 259:8648-8654.
-
(1984)
J. Biol. Chem.
, vol.259
, pp. 8648-8654
-
-
Grifo, J.A.1
Abramson, R.D.2
Satler, C.A.3
Merrick, W.C.4
-
167
-
-
0032571398
-
Purification and characterization of a new eukaryotic protein translation factor. Eukaryotic initiation factor 4H
-
Richter-Cook N.J., Dever T.E., Hensold J.O., Merrick W.C. Purification and characterization of a new eukaryotic protein translation factor. Eukaryotic initiation factor 4H. J. Biol. Chem. 1998, 273:7579-7587.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 7579-7587
-
-
Richter-Cook, N.J.1
Dever, T.E.2
Hensold, J.O.3
Merrick, W.C.4
-
168
-
-
0035903136
-
Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F
-
Rogers G.W., Richter N.J., Lima W.F., Merrick W.C. Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. J. Biol. Chem. 2001, 276:30914-30922.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 30914-30922
-
-
Rogers, G.W.1
Richter, N.J.2
Lima, W.F.3
Merrick, W.C.4
-
169
-
-
77749323441
-
Control of cell survival and proliferation by mammalian eukaryotic initiation factor 4B
-
Shahbazian D., Parsyan A., Petroulakis E., Topisirovic I., Martineau Y., Gibbs B.F., Svitkin Y., Sonenberg N. Control of cell survival and proliferation by mammalian eukaryotic initiation factor 4B. Mol. Cell. Biol. 2010, 30:1478-1485.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 1478-1485
-
-
Shahbazian, D.1
Parsyan, A.2
Petroulakis, E.3
Topisirovic, I.4
Martineau, Y.5
Gibbs, B.F.6
Svitkin, Y.7
Sonenberg, N.8
-
170
-
-
58149328932
-
AGC kinases regulate phosphorylation and activation of eukaryotic translation initiation factor 4B
-
van Gorp A.G., van der Vos K.E., Brenkman A.B., Bremer A., van den Broek N., Zwartkruis F., Hershey J.W., Burgering B.M., Calkhoven C.F., Coffer P.J. AGC kinases regulate phosphorylation and activation of eukaryotic translation initiation factor 4B. Oncogene 2009, 28:95-106.
-
(2009)
Oncogene
, vol.28
, pp. 95-106
-
-
van Gorp, A.G.1
van der Vos, K.E.2
Brenkman, A.B.3
Bremer, A.4
van den Broek, N.5
Zwartkruis, F.6
Hershey, J.W.7
Burgering, B.M.8
Calkhoven, C.F.9
Coffer, P.J.10
-
171
-
-
79953728453
-
Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation
-
Kaul G., Pattan G., Rafeequi T. Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation. Cell Biochem. Funct. 2011, 29:227-234.
-
(2011)
Cell Biochem. Funct.
, vol.29
, pp. 227-234
-
-
Kaul, G.1
Pattan, G.2
Rafeequi, T.3
-
172
-
-
0035881470
-
Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase
-
Wang X., Li W., Williams M., Terada N., Alessi D.R., Proud C.G. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J. 2001, 20:4370-4379.
-
(2001)
EMBO J.
, vol.20
, pp. 4370-4379
-
-
Wang, X.1
Li, W.2
Williams, M.3
Terada, N.4
Alessi, D.R.5
Proud, C.G.6
-
173
-
-
4644303065
-
SKAR is a specific target of S6 kinase 1 in cell growth control
-
Richardson C.J., Broenstrup M., Fingar D.C., Julich K., Ballif B.A., Gygi S., Blenis J. SKAR is a specific target of S6 kinase 1 in cell growth control. Curr. Biol. 2004, 14:1540-1549.
-
(2004)
Curr. Biol.
, vol.14
, pp. 1540-1549
-
-
Richardson, C.J.1
Broenstrup, M.2
Fingar, D.C.3
Julich, K.4
Ballif, B.A.5
Gygi, S.6
Blenis, J.7
-
174
-
-
41949101770
-
SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs
-
Ma X.M., Yoon S.O., Richardson C.J., Julich K., Blenis J. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 2008, 133:303-313.
-
(2008)
Cell
, vol.133
, pp. 303-313
-
-
Ma, X.M.1
Yoon, S.O.2
Richardson, C.J.3
Julich, K.4
Blenis, J.5
-
175
-
-
0034141942
-
Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI
-
Raught B., Gingras A.C., Gygi S.P., Imataka H., Morino S., Gradi A., Aebersold R., Sonenberg N. Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J. 2000, 19:434-444.
-
(2000)
EMBO J.
, vol.19
, pp. 434-444
-
-
Raught, B.1
Gingras, A.C.2
Gygi, S.P.3
Imataka, H.4
Morino, S.5
Gradi, A.6
Aebersold, R.7
Sonenberg, N.8
-
176
-
-
84912533536
-
MTORC1 signaling controls multiple steps in ribosome biogenesis
-
Iadevaia V., Liu R., Proud C.G. mTORC1 signaling controls multiple steps in ribosome biogenesis. Semin. Cell Dev. Biol. 2014, 36C:113-120.
-
(2014)
Semin. Cell Dev. Biol.
, vol.36C
, pp. 113-120
-
-
Iadevaia, V.1
Liu, R.2
Proud, C.G.3
-
177
-
-
1542343973
-
MTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability
-
Mayer C., Zhao J., Yuan X., Grummt I. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev. 2004, 18:423-434.
-
(2004)
Genes Dev.
, vol.18
, pp. 423-434
-
-
Mayer, C.1
Zhao, J.2
Yuan, X.3
Grummt, I.4
-
178
-
-
77952036652
-
Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells
-
Shor B., Wu J., Shakey Q., Toral-Barza L., Shi C., Follettie M., Yu K. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J. Biol. Chem. 2010, 285:15380-15392.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 15380-15392
-
-
Shor, B.1
Wu, J.2
Shakey, Q.3
Toral-Barza, L.4
Shi, C.5
Follettie, M.6
Yu, K.7
-
179
-
-
0032928614
-
Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human
-
Widmann C., Gibson S., Jarpe M.B., Johnson G.L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 1999, 79:143-180.
-
(1999)
Physiol. Rev.
, vol.79
, pp. 143-180
-
-
Widmann, C.1
Gibson, S.2
Jarpe, M.B.3
Johnson, G.L.4
-
180
-
-
0035413618
-
MAP kinases
-
Chen Z., Gibson T.B., Robinson F., Silvestro L., Pearson G., Xu B., Wright A., Vanderbilt C., Cobb M.H. MAP kinases. Chem. Rev. 2001, 101:2449-2476.
-
(2001)
Chem. Rev.
, vol.101
, pp. 2449-2476
-
-
Chen, Z.1
Gibson, T.B.2
Robinson, F.3
Silvestro, L.4
Pearson, G.5
Xu, B.6
Wright, A.7
Vanderbilt, C.8
Cobb, M.H.9
-
181
-
-
0035066383
-
Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation
-
Kyriakis J.M., Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 2001, 81:807-869.
-
(2001)
Physiol. Rev.
, vol.81
, pp. 807-869
-
-
Kyriakis, J.M.1
Avruch, J.2
-
182
-
-
0034997845
-
Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions
-
Pearson G., Robinson F., Beers Gibson T., Xu B.E., Karandikar M., Berman K., Cobb M.H. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 2001, 22:153-183.
-
(2001)
Endocr. Rev.
, vol.22
, pp. 153-183
-
-
Pearson, G.1
Robinson, F.2
Beers Gibson, T.3
Xu, B.E.4
Karandikar, M.5
Berman, K.6
Cobb, M.H.7
-
183
-
-
79952435349
-
Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases
-
Cargnello M., Roux P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011, 75:50-83.
-
(2011)
Microbiol. Mol. Biol. Rev.
, vol.75
, pp. 50-83
-
-
Cargnello, M.1
Roux, P.P.2
-
184
-
-
33244471768
-
MAPKAP kinases - MKs - two's company, three's a crowd
-
Gaestel M. MAPKAP kinases - MKs - two's company, three's a crowd. Nat. Rev. Mol. Cell Biol. 2006, 7:120-130.
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 120-130
-
-
Gaestel, M.1
-
185
-
-
52049108016
-
Specificity of signaling from MAPKs to MAPKAPKs: kinases' tango nuevo
-
Gaestel M. Specificity of signaling from MAPKs to MAPKAPKs: kinases' tango nuevo. Front. Biosci. 2008, 13:6050-6059.
-
(2008)
Front. Biosci.
, vol.13
, pp. 6050-6059
-
-
Gaestel, M.1
-
186
-
-
84555189440
-
Regulation and function of the RSK family of protein kinases
-
Romeo Y., Zhang X., Roux P.P. Regulation and function of the RSK family of protein kinases. Biochem. J. 2012, 441:553-569.
-
(2012)
Biochem. J.
, vol.441
, pp. 553-569
-
-
Romeo, Y.1
Zhang, X.2
Roux, P.P.3
-
187
-
-
52049088725
-
The Mnks: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases)
-
Buxade M., Parra-Palau J.L., Proud C.G. The Mnks: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases). Front. Biosci. 2008, 13:5359-5373.
-
(2008)
Front. Biosci.
, vol.13
, pp. 5359-5373
-
-
Buxade, M.1
Parra-Palau, J.L.2
Proud, C.G.3
-
188
-
-
2942530310
-
ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions
-
Roux P.P., Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 2004, 68:320-344.
-
(2004)
Microbiol. Mol. Biol. Rev.
, vol.68
, pp. 320-344
-
-
Roux, P.P.1
Blenis, J.2
-
189
-
-
0030977269
-
Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2
-
Waskiewicz A.J., Flynn A., Proud C.G., Cooper J.A. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 1997, 16:1909-1920.
-
(1997)
EMBO J.
, vol.16
, pp. 1909-1920
-
-
Waskiewicz, A.J.1
Flynn, A.2
Proud, C.G.3
Cooper, J.A.4
-
190
-
-
0030977270
-
MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates
-
Fukunaga R., Hunter T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 1997, 16:1921-1933.
-
(1997)
EMBO J.
, vol.16
, pp. 1921-1933
-
-
Fukunaga, R.1
Hunter, T.2
-
191
-
-
4444258507
-
Identification and molecular characterization of Mnk1b, a splice variant of human MAP kinase-interacting kinase Mnk1
-
O'Loghlen A., Gonzalez V.M., Pineiro D., Perez-Morgado M.I., Salinas M., Martin M.E. Identification and molecular characterization of Mnk1b, a splice variant of human MAP kinase-interacting kinase Mnk1. Exp. Cell Res. 2004, 299:343-355.
-
(2004)
Exp. Cell Res.
, vol.299
, pp. 343-355
-
-
O'Loghlen, A.1
Gonzalez, V.M.2
Pineiro, D.3
Perez-Morgado, M.I.4
Salinas, M.5
Martin, M.E.6
-
192
-
-
0034306706
-
Identification of the human Mnk2 gene (MKNK2) through protein interaction with estrogen receptor beta
-
Slentz-Kesler K., Moore J.T., Lombard M., Zhang J., Hollingsworth R., Weiner M.P. Identification of the human Mnk2 gene (MKNK2) through protein interaction with estrogen receptor beta. Genomics 2000, 69:63-71.
-
(2000)
Genomics
, vol.69
, pp. 63-71
-
-
Slentz-Kesler, K.1
Moore, J.T.2
Lombard, M.3
Zhang, J.4
Hollingsworth, R.5
Weiner, M.P.6
-
193
-
-
0035133659
-
The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells
-
Scheper G.C., Morrice N.A., Kleijn M., Proud C.G. The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells. Mol. Cell. Biol. 2001, 21:743-754.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 743-754
-
-
Scheper, G.C.1
Morrice, N.A.2
Kleijn, M.3
Proud, C.G.4
-
194
-
-
0033521535
-
Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E
-
Pyronnet S., Imataka H., Gingras A.C., Fukunaga R., Hunter T., Sonenberg N. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J. 1999, 18:270-279.
-
(1999)
EMBO J.
, vol.18
, pp. 270-279
-
-
Pyronnet, S.1
Imataka, H.2
Gingras, A.C.3
Fukunaga, R.4
Hunter, T.5
Sonenberg, N.6
-
195
-
-
0034928792
-
Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2
-
Knauf U., Tschopp C., Gram H. Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2. Mol. Cell. Biol. 2001, 21:5500-5511.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 5500-5511
-
-
Knauf, U.1
Tschopp, C.2
Gram, H.3
-
196
-
-
0036178103
-
Phosphorylation of eukaryotic translation initiation factor 4E is critical for growth
-
Lachance P.E., Miron M., Raught B., Sonenberg N., Lasko P. Phosphorylation of eukaryotic translation initiation factor 4E is critical for growth. Mol. Cell. Biol. 2002, 22:1656-1663.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 1656-1663
-
-
Lachance, P.E.1
Miron, M.2
Raught, B.3
Sonenberg, N.4
Lasko, P.5
-
197
-
-
3242719457
-
Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development
-
Ueda T., Watanabe-Fukunaga R., Fukuyama H., Nagata S., Fukunaga R. Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol. Cell. Biol. 2004, 24:6539-6549.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 6539-6549
-
-
Ueda, T.1
Watanabe-Fukunaga, R.2
Fukuyama, H.3
Nagata, S.4
Fukunaga, R.5
-
198
-
-
77956275419
-
EIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression
-
Furic L., Rong L., Larsson O., Koumakpayi I.H., Yoshida K., Brueschke A., Petroulakis E., Robichaud N., Pollak M., Gaboury L.A., Pandolfi P.P., Saad F., Sonenberg N. eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:14134-14139.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 14134-14139
-
-
Furic, L.1
Rong, L.2
Larsson, O.3
Koumakpayi, I.H.4
Yoshida, K.5
Brueschke, A.6
Petroulakis, E.7
Robichaud, N.8
Pollak, M.9
Gaboury, L.A.10
Pandolfi, P.P.11
Saad, F.12
Sonenberg, N.13
-
199
-
-
0030728936
-
Cocrystal structure of the messenger RNA 5' cap-binding protein (eIF4E) bound to 7-methyl-GDP
-
Marcotrigiano J., Gingras A.C., Sonenberg N., Burley S.K. Cocrystal structure of the messenger RNA 5' cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 1997, 89:951-961.
-
(1997)
Cell
, vol.89
, pp. 951-961
-
-
Marcotrigiano, J.1
Gingras, A.C.2
Sonenberg, N.3
Burley, S.K.4
-
200
-
-
0030826444
-
Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein
-
Matsuo H., Li H., McGuire A.M., Fletcher C.M., Gingras A.C., Sonenberg N., Wagner G. Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat. Struct. Biol. 1997, 4:717-724.
-
(1997)
Nat. Struct. Biol.
, vol.4
, pp. 717-724
-
-
Matsuo, H.1
Li, H.2
McGuire, A.M.3
Fletcher, C.M.4
Gingras, A.C.5
Sonenberg, N.6
Wagner, G.7
-
201
-
-
0036479313
-
Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA
-
Scheper G.C., van Kollenburg B., Hu J., Luo Y., Goss D.J., Proud C.G. Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA. J. Biol. Chem. 2002, 277:3303-3309.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 3303-3309
-
-
Scheper, G.C.1
van Kollenburg, B.2
Hu, J.3
Luo, Y.4
Goss, D.J.5
Proud, C.G.6
-
202
-
-
33744961739
-
Stopped-flow kinetic analysis of eIF4E and phosphorylated eIF4E binding to cap analogs and capped oligoribonucleotides: evidence for a one-step binding mechanism
-
Slepenkov S.V., Darzynkiewicz E., Rhoads R.E. Stopped-flow kinetic analysis of eIF4E and phosphorylated eIF4E binding to cap analogs and capped oligoribonucleotides: evidence for a one-step binding mechanism. J. Biol. Chem. 2006, 281:14927-14938.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 14927-14938
-
-
Slepenkov, S.V.1
Darzynkiewicz, E.2
Rhoads, R.E.3
-
203
-
-
1842831274
-
Phosphorylation of eIF4E by Mnk-1 enhances HSV-1 translation and replication in quiescent cells
-
Walsh D., Mohr I. Phosphorylation of eIF4E by Mnk-1 enhances HSV-1 translation and replication in quiescent cells. Genes Dev. 2004, 18:660-672.
-
(2004)
Genes Dev.
, vol.18
, pp. 660-672
-
-
Walsh, D.1
Mohr, I.2
-
204
-
-
19944428048
-
The serine-threonine kinase MNK1 is post-translationally stabilized by PML-RARalpha and regulates differentiation of hematopoietic cells
-
Worch J., Tickenbrock L., Schwable J., Steffen B., Cauvet T., Mlody B., Buerger H., Koeffler H.P., Berdel W.E., Serve H., Muller-Tidow C. The serine-threonine kinase MNK1 is post-translationally stabilized by PML-RARalpha and regulates differentiation of hematopoietic cells. Oncogene 2004, 23:9162-9172.
-
(2004)
Oncogene
, vol.23
, pp. 9162-9172
-
-
Worch, J.1
Tickenbrock, L.2
Schwable, J.3
Steffen, B.4
Cauvet, T.5
Mlody, B.6
Buerger, H.7
Koeffler, H.P.8
Berdel, W.E.9
Serve, H.10
Muller-Tidow, C.11
-
205
-
-
0025219615
-
Simultaneous cytoplasmic redistribution of ribosomal protein L32 mRNA and phosphorylation of eukaryotic initiation factor 4E after mitogenic stimulation of Swiss 3T3 cells
-
Kaspar R.L., Rychlik W., White M.W., Rhoads R.E., Morris D.R. Simultaneous cytoplasmic redistribution of ribosomal protein L32 mRNA and phosphorylation of eukaryotic initiation factor 4E after mitogenic stimulation of Swiss 3T3 cells. J. Biol. Chem. 1990, 265:3619-3622.
-
(1990)
J. Biol. Chem.
, vol.265
, pp. 3619-3622
-
-
Kaspar, R.L.1
Rychlik, W.2
White, M.W.3
Rhoads, R.E.4
Morris, D.R.5
-
206
-
-
0025834130
-
Insulin induction of ornithine decarboxylase. Importance of mRNA secondary structure and phosphorylation of eucaryotic initiation factors eIF-4B and eIF-4E
-
Manzella J.M., Rychlik W., Rhoads R.E., Hershey J.W., Blackshear P.J. Insulin induction of ornithine decarboxylase. Importance of mRNA secondary structure and phosphorylation of eucaryotic initiation factors eIF-4B and eIF-4E. J. Biol. Chem. 1991, 266:2383-2389.
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 2383-2389
-
-
Manzella, J.M.1
Rychlik, W.2
Rhoads, R.E.3
Hershey, J.W.4
Blackshear, P.J.5
-
207
-
-
0037031845
-
Phosphorylation of eukaryotic initiation factor (eIF) 4E is not required for de novo protein synthesis following recovery from hypertonic stress in human kidney cells
-
Morley S.J., Naegele S. Phosphorylation of eukaryotic initiation factor (eIF) 4E is not required for de novo protein synthesis following recovery from hypertonic stress in human kidney cells. J. Biol. Chem. 2002, 277:32855-32859.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 32855-32859
-
-
Morley, S.J.1
Naegele, S.2
-
208
-
-
8544278060
-
Molecular cross-talk between MEK1/2 and mTOR signaling during recovery of 293 cells from hypertonic stress
-
Naegele S., Morley S.J. Molecular cross-talk between MEK1/2 and mTOR signaling during recovery of 293 cells from hypertonic stress. J. Biol. Chem. 2004, 279:46023-46034.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 46023-46034
-
-
Naegele, S.1
Morley, S.J.2
-
209
-
-
77956275194
-
Mnk earmarks eIF4E for cancer therapy
-
Hay N. Mnk earmarks eIF4E for cancer therapy. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:13975-13976.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 13975-13976
-
-
Hay, N.1
-
210
-
-
37249042829
-
Dissecting eIF4E action in tumorigenesis
-
Wendel H.G., Silva R.L., Malina A., Mills J.R., Zhu H., Ueda T., Watanabe-Fukunaga R., Fukunaga R., Teruya-Feldstein J., Pelletier J., Lowe S.W. Dissecting eIF4E action in tumorigenesis. Genes Dev. 2007, 21:3232-3237.
-
(2007)
Genes Dev.
, vol.21
, pp. 3232-3237
-
-
Wendel, H.G.1
Silva, R.L.2
Malina, A.3
Mills, J.R.4
Zhu, H.5
Ueda, T.6
Watanabe-Fukunaga, R.7
Fukunaga, R.8
Teruya-Feldstein, J.9
Pelletier, J.10
Lowe, S.W.11
-
211
-
-
9244228003
-
Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities
-
Topisirovic I., Ruiz-Gutierrez M., Borden K.L. Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res. 2004, 64:8639-8642.
-
(2004)
Cancer Res.
, vol.64
, pp. 8639-8642
-
-
Topisirovic, I.1
Ruiz-Gutierrez, M.2
Borden, K.L.3
-
212
-
-
84929372129
-
Phosphorylation of eIF4E promotes EMT and metastasis via translational control of SNAIL and MMP-3
-
(Epub ahead of print)
-
Robichaud N., Del Rincon S.V., Huor B., Alain T., Petruccelli L.A., Hearnden J., Goncalves C., Grotegut S., Spruck C.H., Furic L., Larsson O., Muller W.J., Miller W.H., Sonenberg N. Phosphorylation of eIF4E promotes EMT and metastasis via translational control of SNAIL and MMP-3. Oncogene 2014, (Epub ahead of print).
-
(2014)
Oncogene
-
-
Robichaud, N.1
Del Rincon, S.V.2
Huor, B.3
Alain, T.4
Petruccelli, L.A.5
Hearnden, J.6
Goncalves, C.7
Grotegut, S.8
Spruck, C.H.9
Furic, L.10
Larsson, O.11
Muller, W.J.12
Miller, W.H.13
Sonenberg, N.14
-
213
-
-
0030063435
-
Evidence for two catalytically active kinase domains in pp90rsk
-
Fisher T.L., Blenis J. Evidence for two catalytically active kinase domains in pp90rsk. Mol. Cell. Biol. 1996, 16:1212-1219.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 1212-1219
-
-
Fisher, T.L.1
Blenis, J.2
-
214
-
-
0344737208
-
A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kinases
-
Jones S.W., Erikson E., Blenis J., Maller J.L., Erikson R.L. A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kinases. Proc. Natl. Acad. Sci. U. S. A. 1988, 85:3377-3381.
-
(1988)
Proc. Natl. Acad. Sci. U. S. A.
, vol.85
, pp. 3377-3381
-
-
Jones, S.W.1
Erikson, E.2
Blenis, J.3
Maller, J.L.4
Erikson, R.L.5
-
215
-
-
0036848266
-
Expression analysis of RSK gene family members: the RSK2 gene, mutated in Coffin-Lowry syndrome, is prominently expressed in brain structures essential for cognitive function and learning
-
Zeniou M., Ding T., Trivier E., Hanauer A. Expression analysis of RSK gene family members: the RSK2 gene, mutated in Coffin-Lowry syndrome, is prominently expressed in brain structures essential for cognitive function and learning. Hum. Mol. Genet. 2002, 11:2929-2940.
-
(2002)
Hum. Mol. Genet.
, vol.11
, pp. 2929-2940
-
-
Zeniou, M.1
Ding, T.2
Trivier, E.3
Hanauer, A.4
-
216
-
-
0004905963
-
A protein kinase from Xenopus eggs specific for ribosomal protein S6
-
Erikson E., Maller J.L. A protein kinase from Xenopus eggs specific for ribosomal protein S6. Proc. Natl. Acad. Sci. U. S. A. 1985, 82:742-746.
-
(1985)
Proc. Natl. Acad. Sci. U. S. A.
, vol.82
, pp. 742-746
-
-
Erikson, E.1
Maller, J.L.2
-
217
-
-
0022649274
-
Purification and characterization of a protein kinase from Xenopus eggs highly specific for ribosomal protein S6
-
Erikson E., Maller J.L. Purification and characterization of a protein kinase from Xenopus eggs highly specific for ribosomal protein S6. J. Biol. Chem. 1986, 261:350-355.
-
(1986)
J. Biol. Chem.
, vol.261
, pp. 350-355
-
-
Erikson, E.1
Maller, J.L.2
-
218
-
-
0026659046
-
Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70kD S6 protein kinases
-
Chung J., Kuo C.J., Crabtree G.R., Blenis J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70kD S6 protein kinases. Cell 1992, 69:1227-1236.
-
(1992)
Cell
, vol.69
, pp. 1227-1236
-
-
Chung, J.1
Kuo, C.J.2
Crabtree, G.R.3
Blenis, J.4
-
219
-
-
34347242470
-
RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation
-
Roux P.P., Shahbazian D., Vu H., Holz M.K., Cohen M.S., Taunton J., Sonenberg N., Blenis J. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J. Biol. Chem. 2007, 282:14056-14064.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 14056-14064
-
-
Roux, P.P.1
Shahbazian, D.2
Vu, H.3
Holz, M.K.4
Cohen, M.S.5
Taunton, J.6
Sonenberg, N.7
Blenis, J.8
-
220
-
-
0037291736
-
ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth
-
Zhao J., Yuan X., Frodin M., Grummt I. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol. Cell 2003, 11:405-413.
-
(2003)
Mol. Cell
, vol.11
, pp. 405-413
-
-
Zhao, J.1
Yuan, X.2
Frodin, M.3
Grummt, I.4
-
221
-
-
0020356106
-
Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex
-
Etchison D., Milburn S.C., Edery I., Sonenberg N., Hershey J.W. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J. Biol. Chem. 1982, 257:14806-14810.
-
(1982)
J. Biol. Chem.
, vol.257
, pp. 14806-14810
-
-
Etchison, D.1
Milburn, S.C.2
Edery, I.3
Sonenberg, N.4
Hershey, J.W.5
-
222
-
-
0039799706
-
A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3
-
Methot N., Song M.S., Sonenberg N. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol. Cell. Biol. 1996, 16:5328-5334.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 5328-5334
-
-
Methot, N.1
Song, M.S.2
Sonenberg, N.3
-
223
-
-
0032409988
-
Metabotropic glutamate receptor-initiated translocation of protein kinase p90rsk to polyribosomes: a possible factor regulating synaptic protein synthesis
-
Angenstein F., Greenough W.T., Weiler I.J. Metabotropic glutamate receptor-initiated translocation of protein kinase p90rsk to polyribosomes: a possible factor regulating synaptic protein synthesis. Proc. Natl. Acad. Sci. U. S. A. 1998, 95:15078-15083.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, pp. 15078-15083
-
-
Angenstein, F.1
Greenough, W.T.2
Weiler, I.J.3
-
224
-
-
0027515127
-
Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling
-
Sutherland C., Leighton I.A., Cohen P. Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem. J. 1993, 296(Pt. 1):15-19.
-
(1993)
Biochem. J.
, vol.296
, pp. 15-19
-
-
Sutherland, C.1
Leighton, I.A.2
Cohen, P.3
-
225
-
-
0032967514
-
Glycogen synthase kinase-3 is the predominant insulin-regulated eukaryotic initiation factor 2B kinase in skeletal muscle
-
Jefferson L.S., Fabian J.R., Kimball S.R. Glycogen synthase kinase-3 is the predominant insulin-regulated eukaryotic initiation factor 2B kinase in skeletal muscle. Int. J. Biochem. Cell Biol. 1999, 31:191-200.
-
(1999)
Int. J. Biochem. Cell Biol.
, vol.31
, pp. 191-200
-
-
Jefferson, L.S.1
Fabian, J.R.2
Kimball, S.R.3
-
226
-
-
0037109062
-
Evidence that the dephosphorylation of Ser(535) in the epsilon-subunit of eukaryotic initiation factor (eIF) 2B is insufficient for the activation of eIF2B by insulin
-
Wang X., Janmaat M., Beugnet A., Paulin F.E., Proud C.G. Evidence that the dephosphorylation of Ser(535) in the epsilon-subunit of eukaryotic initiation factor (eIF) 2B is insufficient for the activation of eIF2B by insulin. Biochem. J. 2002, 367:475-481.
-
(2002)
Biochem. J.
, vol.367
, pp. 475-481
-
-
Wang, X.1
Janmaat, M.2
Beugnet, A.3
Paulin, F.E.4
Proud, C.G.5
-
227
-
-
33748153690
-
TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
-
Inoki K., Ouyang H., Zhu T., Lindvall C., Wang Y., Zhang X., Yang Q., Bennett C., Harada Y., Stankunas K., Wang C.Y., He X., MacDougald O.A., You M., Williams B.O., Guan K.L. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006, 126:955-968.
-
(2006)
Cell
, vol.126
, pp. 955-968
-
-
Inoki, K.1
Ouyang, H.2
Zhu, T.3
Lindvall, C.4
Wang, Y.5
Zhang, X.6
Yang, Q.7
Bennett, C.8
Harada, Y.9
Stankunas, K.10
Wang, C.Y.11
He, X.12
MacDougald, O.A.13
You, M.14
Williams, B.O.15
Guan, K.L.16
-
228
-
-
0033031044
-
Expression of the eukaryotic translation initiation factors 4E and 2alpha in non-Hodgkin's lymphomas
-
Wang S., Rosenwald I.B., Hutzler M.J., Pihan G.A., Savas L., Chen J.J., Woda B.A. Expression of the eukaryotic translation initiation factors 4E and 2alpha in non-Hodgkin's lymphomas. Am. J. Pathol. 1999, 155:247-255.
-
(1999)
Am. J. Pathol.
, vol.155
, pp. 247-255
-
-
Wang, S.1
Rosenwald, I.B.2
Hutzler, M.J.3
Pihan, G.A.4
Savas, L.5
Chen, J.J.6
Woda, B.A.7
-
229
-
-
0033052411
-
Amplification and overexpression of p40 subunit of eukaryotic translation initiation factor 3 in breast and prostate cancer
-
Nupponen N.N., Porkka K., Kakkola L., Tanner M., Persson K., Borg A., Isola J., Visakorpi T. Amplification and overexpression of p40 subunit of eukaryotic translation initiation factor 3 in breast and prostate cancer. Am. J. Pathol. 1999, 154:1777-1783.
-
(1999)
Am. J. Pathol.
, vol.154
, pp. 1777-1783
-
-
Nupponen, N.N.1
Porkka, K.2
Kakkola, L.3
Tanner, M.4
Persson, K.5
Borg, A.6
Isola, J.7
Visakorpi, T.8
-
230
-
-
34247467477
-
Frequent overexpression of the genes FXR1, CLAPM1 and EIF4G located on amplicon 3q26-27 in squamous cell carcinoma of the lung
-
Comtesse N., Keller A., Diesinger I., Bauer C., Kayser K., Huwer H., Lenhof H.P., Meese E. Frequent overexpression of the genes FXR1, CLAPM1 and EIF4G located on amplicon 3q26-27 in squamous cell carcinoma of the lung. Int. J. Cancer 2007, 120:2538-2544.
-
(2007)
Int. J. Cancer
, vol.120
, pp. 2538-2544
-
-
Comtesse, N.1
Keller, A.2
Diesinger, I.3
Bauer, C.4
Kayser, K.5
Huwer, H.6
Lenhof, H.P.7
Meese, E.8
-
231
-
-
84904110996
-
Decreased expression of EIF4A1 after preoperative brachytherapy predicts better tumor-specific survival in cervical cancer
-
Liang S., Zhou Y., Chen Y., Ke G., Wen H., Wu X. Decreased expression of EIF4A1 after preoperative brachytherapy predicts better tumor-specific survival in cervical cancer. Int. J. Gynecol. Cancer 2014, 24:908-915.
-
(2014)
Int. J. Gynecol. Cancer
, vol.24
, pp. 908-915
-
-
Liang, S.1
Zhou, Y.2
Chen, Y.3
Ke, G.4
Wen, H.5
Wu, X.6
-
232
-
-
84899944860
-
A role for eukaryotic initiation factor 4B overexpression in the pathogenesis of diffuse large B-cell lymphoma
-
Horvilleur E., Sbarrato T., Hill K., Spriggs R.V., Screen M., Goodrem P.J., Sawicka K., Chaplin L.C., Touriol C., Packham G., Potter K.N., Dirnhofer S., Tzankov A., Dyer M.J., Bushell M., MacFarlane M., Willis A.E. A role for eukaryotic initiation factor 4B overexpression in the pathogenesis of diffuse large B-cell lymphoma. Leukemia 2014, 28:1092-1102.
-
(2014)
Leukemia
, vol.28
, pp. 1092-1102
-
-
Horvilleur, E.1
Sbarrato, T.2
Hill, K.3
Spriggs, R.V.4
Screen, M.5
Goodrem, P.J.6
Sawicka, K.7
Chaplin, L.C.8
Touriol, C.9
Packham, G.10
Potter, K.N.11
Dirnhofer, S.12
Tzankov, A.13
Dyer, M.J.14
Bushell, M.15
MacFarlane, M.16
Willis, A.E.17
-
233
-
-
0030940199
-
Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast carcinoma
-
Li B.D., Liu L., Dawson M., De Benedetti A. Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast carcinoma. Cancer 1997, 79:2385-2390.
-
(1997)
Cancer
, vol.79
, pp. 2385-2390
-
-
Li, B.D.1
Liu, L.2
Dawson, M.3
De Benedetti, A.4
-
234
-
-
0030808698
-
Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer
-
Nathan C.O., Liu L., Li B.D., Abreo F.W., Nandy I., De Benedetti A. Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer. Oncogene 1997, 15:579-584.
-
(1997)
Oncogene
, vol.15
, pp. 579-584
-
-
Nathan, C.O.1
Liu, L.2
Li, B.D.3
Abreo, F.W.4
Nandy, I.5
De Benedetti, A.6
-
235
-
-
84876414952
-
Overexpression of CK20, MAP3K8 and EIF5A correlates with poor prognosis in early-onset colorectal cancer patients
-
Tunca B., Tezcan G., Cecener G., Egeli U., Zorluoglu A., Yilmazlar T., Ak S., Yerci O., Ozturk E., Umut G., Evrensel T. Overexpression of CK20, MAP3K8 and EIF5A correlates with poor prognosis in early-onset colorectal cancer patients. J. Cancer Res. Clin. Oncol. 2013, 139:691-702.
-
(2013)
J. Cancer Res. Clin. Oncol.
, vol.139
, pp. 691-702
-
-
Tunca, B.1
Tezcan, G.2
Cecener, G.3
Egeli, U.4
Zorluoglu, A.5
Yilmazlar, T.6
Ak, S.7
Yerci, O.8
Ozturk, E.9
Umut, G.10
Evrensel, T.11
|