메뉴 건너뛰기




Volumn 15, Issue 6, 2013, Pages 555-564

Signal integration by mTORC1 coordinates nutrient input with biosynthetic output

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; ADENYLATE KINASE; AMINO ACID; CARBAMOYL PHOSPHATE SYNTHASE; EPIDERMAL GROWTH FACTOR; G PROTEIN COUPLED RECEPTOR; GLUCOSE; GLUCOSE 6 PHOSPHATE DEHYDROGENASE; HYPOXIA INDUCIBLE FACTOR 1ALPHA; INITIATION FACTOR 4E; INOSITOL POLYPHOSPHATE; MAMMALIAN TARGET OF RAPAMYCIN; MECHANISTIC TARGET OF RAPAMYCIN COMPLEX 1; OXYGEN; PHOSPHATIDYLINOSITOL 3 PHOSPHATE; PHOSPHOLIPASE D; PLATELET DERIVED GROWTH FACTOR; PROTEIN KINASE B; PROTEIN P14; PROTEIN P18; PROTEIN P62; PROTEIN TYROSINE KINASE; RHEB PROTEIN; SOMATOMEDIN; STEROL REGULATORY ELEMENT BINDING PROTEIN 1; STEROL REGULATORY ELEMENT BINDING PROTEIN 2; SYNAPTOPHYSIN; UNCLASSIFIED DRUG; VASCULOTROPIN; VON HIPPEL LINDAU PROTEIN;

EID: 84878532557     PISSN: 14657392     EISSN: 14764679     Source Type: Journal    
DOI: 10.1038/ncb2763     Document Type: Review
Times cited : (585)

References (147)
  • 1
    • 72949083368 scopus 로고    scopus 로고
    • Common corruption of the MTOR signaling network in human tumors
    • Menon, S. Manning, B.D. Common corruption of the mTOR signaling network in human tumors. Oncogene 27, S43-S51 (2009).
    • (2009) Oncogene , vol.27
    • Menon, S.1    Manning, B.D.2
  • 2
    • 79952104568 scopus 로고    scopus 로고
    • MTOR couples cellular nutrient sensing to organismal metabolic homeostasis
    • Howell, J.J. Manning, B.D. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol. Metab. 22, 94-102 (2011).
    • (2011) Trends Endocrinol. Metab , vol.22 , pp. 94-102
    • Howell, J.J.1    Manning, B.D.2
  • 3
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante, M. Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149, 274-293 (2012).
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 4
    • 65449135649 scopus 로고    scopus 로고
    • The multiple facets of MTOR in immunity
    • Weichhart, T. Saemann, M.D. The multiple facets of mTOR in immunity. Trends Immunol. 30, 218-226 (2009).
    • (2009) Trends Immunol , vol.30 , pp. 218-226
    • Weichhart, T.1    Saemann, M.D.2
  • 5
    • 83455177213 scopus 로고    scopus 로고
    • Target of Rapamycin (TOR) in nutrient signaling and growth control
    • Loewith, R. Hall, M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189, 1177-1201 (2011).
    • (2011) Genetics , vol.189 , pp. 1177-1201
    • Loewith, R.1    Hall, M.N.2
  • 6
    • 0033429204 scopus 로고    scopus 로고
    • Nutrients differentially regulate multiple translation factors and their control by insulin
    • Campbell, L.E., Wang, X. Proud, C.G. Nutrients differentially regulate multiple translation factors and their control by insulin. Biochem. J. 344, 433-441 (1999).
    • (1999) Biochem. J. , vol.344 , pp. 433-441
    • Campbell, L.E.1    Wang, X.2    Proud, C.G.3
  • 7
    • 0032486268 scopus 로고    scopus 로고
    • Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism
    • Hara, K. et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273, 14484-14494 (1998).
    • (1998) J. Biol. Chem. , vol.273 , pp. 14484-14494
    • Hara, K.1
  • 8
    • 79955779584 scopus 로고    scopus 로고
    • MTOR links oncogenic signaling to tumor cell metabolism
    • Yecies, J.L. Manning, B.D. mTOR links oncogenic signaling to tumor cell metabolism. J. Mol. Med. 89, 221-228 (2011).
    • (2011) J. Mol. Med. , vol.89 , pp. 221-228
    • Yecies, J.L.1    Manning, B.D.2
  • 9
    • 84862908818 scopus 로고    scopus 로고
    • AMPK and MTOR in cellular energy homeostasis and drug targets
    • Inoki, K., Kim, J. Guan, K.L. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52, 381-400 (2012).
    • (2012) Annu. Rev. Pharmacol. Toxicol , vol.52 , pp. 381-400
    • Inoki, K.1    Kim, J.2    Guan, K.L.3
  • 10
    • 84874655800 scopus 로고    scopus 로고
    • The multifaceted role of mTORC1 in the control of lipid metabolism
    • Ricoult, S.J. Manning, B.D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 14, 242-251 (2013).
    • (2013) EMBO Rep. , vol.14 , pp. 242-251
    • Ricoult, S.J.1    Manning, B.D.2
  • 11
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma, X.M. Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307-318 (2009).
    • (2009) Nat. Rev. Mol. Cell Biol , vol.10 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 12
    • 0028207001 scopus 로고
    • Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family
    • Jefferies, H.B., Reinhard, C., Kozma, S.C. Thomas, G. Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family. Proc. Natl Acad. Sci. USA 91, 4441-4445 (1994).
    • (1994) Proc. Natl Acad. Sci. USA , vol.91 , pp. 4441-4445
    • Jefferies, H.B.1    Reinhard, C.2    Kozma, S.C.3    Thomas, G.4
  • 13
    • 84860527756 scopus 로고    scopus 로고
    • A unifying model for MTORC1-mediated regulation of MRNA translation
    • Thoreen, C.C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109-113 (2012).
    • (2012) Nature , vol.485 , pp. 109-113
    • Thoreen, C.C.1
  • 14
    • 84862777192 scopus 로고    scopus 로고
    • The translational landscape of MTOR signalling steers cancer initiation and metastasis
    • Hsieh, A.C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55-61 (2012).
    • (2012) Nature , vol.485 , pp. 55-61
    • Hsieh, A.C.1
  • 15
    • 84863045210 scopus 로고    scopus 로고
    • Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis
    • Iadevaia, V., Huo, Y., Zhang, Z., Foster, L.J. Proud, C.G. Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis. Biochem. Soc. Trans. 40, 168-172 (2012).
    • (2012) Biochem. Soc. Trans , vol.40 , pp. 168-172
    • Iadevaia, V.1    Huo, Y.2    Zhang, Z.3    Foster, L.J.4    Proud, C.G.5
  • 16
    • 79954576972 scopus 로고    scopus 로고
    • Transcriptional control of cellular metabolism by mTOR signalling
    • Yecies, J.L. Manning, B.D. Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res. 71, 2815-2820 (2011).
    • (2011) Cancer Res. , vol.71 , pp. 2815-2820
    • Yecies, J.L.1    Manning, B.D.2
  • 17
    • 84874995247 scopus 로고    scopus 로고
    • Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
    • Ben-Sahra, I., Howell, J.J., Asara, J.M. Manning, B.D. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323-1328 (2013).
    • (2013) Science , vol.339 , pp. 1323-1328
    • Ben-Sahra, I.1    Howell, J.J.2    Asara, J.M.3    Manning, B.D.4
  • 18
    • 84874961313 scopus 로고    scopus 로고
    • Quantitative phosphoproteomics reveal MTORC1 activates denovo pyrimidine synthesis
    • Robitaille, A.M. et al. Quantitative phosphoproteomics reveal mTORC1 activates denovo pyrimidine synthesis. Science 339, 1320-1323 (2013).
    • (2013) Science , vol.339 , pp. 1320-1323
    • Robitaille, A.M.1
  • 19
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of MTOR complex 1
    • Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1.Mol. Cell 39, 171-183 (2010).
    • (2010) Mol. Cell , vol.39 , pp. 171-183
    • Duvel, K.1
  • 20
    • 0028068606 scopus 로고
    • Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1
    • Semenza, G.L., Roth, P.H., Fang, H.M. Wang, G.L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1.J. Biol. Chem 269, 23757-23763 (1994).
    • (1994) J. Biol. Chem , vol.269 , pp. 23757-23763
    • Semenza, G.L.1    Roth, P.H.2    Fang, H.M.3    Wang, G.L.4
  • 21
    • 0035012605 scopus 로고    scopus 로고
    • HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: Novel mechanism for HIF 2011;1 2011;mediated vascular endothelial growth factor expression
    • Laughner, E., Taghavi, P., Chiles, K., Mahon, P.C. Semenza, G.L. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF 2011;1 2011;mediated vascular endothelial growth factor expression. Mol. Cell Biol. 21, 3995-4004 (2001).
    • (2001) Mol. Cell Biol , vol.21 , pp. 3995-4004
    • Laughner, E.1    Taghavi, P.2    Chiles, K.3    Mahon, P.C.4    Semenza, G.L.5
  • 22
    • 0036789574 scopus 로고    scopus 로고
    • Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin
    • Hudson, C.C. et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell Biol. 22, 7004-7014 (2002).
    • (2002) Mol. Cell Biol , vol.22 , pp. 7004-7014
    • Hudson, C.C.1
  • 23
    • 0345491599 scopus 로고    scopus 로고
    • Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation
    • Hu, C.J., Wang, L.Y., Chodosh, L.A., Keith, B. Simon, M.C. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol. Cell Biol. 23, 9361-9374 (2003).
    • (2003) Mol. Cell Biol , vol.23 , pp. 9361-9374
    • Hu, C.J.1    Wang, L.Y.2    Chodosh, L.A.3    Keith, B.4    Simon, M.C.5
  • 25
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
    • Lunt, S.Y. Vander Heiden, M.G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441-464 (2011).
    • (2011) Annu. Rev. Cell Dev. Biol , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 26
    • 0036251153 scopus 로고    scopus 로고
    • SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver
    • Horton, J.D., Goldstein, J.L. Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125-1131 (2002).
    • (2002) J. Clin. Invest , vol.109 , pp. 1125-1131
    • Horton, J.D.1    Goldstein, J.L.2    Brown, M.S.3
  • 27
    • 50049116472 scopus 로고    scopus 로고
    • SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
    • Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224-236 (2008).
    • (2008) Cell Metab , vol.8 , pp. 224-236
    • Porstmann, T.1
  • 28
    • 79961165137 scopus 로고    scopus 로고
    • MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
    • Peterson, T.R. et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146, 408-420 (2011).
    • (2011) Cell , vol.146 , pp. 408-420
    • Peterson, T.R.1
  • 29
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz, J.D. White, E. Autophagy and metabolism. Science 330, 1344-1348 (2010).
    • (2010) Science , vol.330 , pp. 1344-1348
    • Rabinowitz, J.D.1    White, E.2
  • 30
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1 2011;Atg13 2011;FIP200 complex required for autophagy
    • Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1 2011;Atg13 2011;FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981-1991 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1981-1991
    • Hosokawa, N.1
  • 31
    • 65249176304 scopus 로고    scopus 로고
    • ULK 2011; Atg13 2011; FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung, C.H. et al. ULK 2011;Atg13 2011;FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992-2003 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1
  • 32
    • 66449083078 scopus 로고    scopus 로고
    • ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
    • Ganley, I.G. et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297-12305 (2009).
    • (2009) J. Biol. Chem , vol.284 , pp. 12297-12305
    • Ganley, I.G.1
  • 33
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and MTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim, J., Kundu, M., Viollet, B. Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132-141 (2011).
    • (2011) Nat. Cell Biol , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 34
    • 84857997408 scopus 로고    scopus 로고
    • A lysosome 2011;to 2011;nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
    • Settembre, C. et al. A lysosome 2011;to 2011;nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095-1108 (2012).
    • (2012) EMBO J. , vol.31 , pp. 1095-1108
    • Settembre, C.1
  • 36
    • 75749114797 scopus 로고    scopus 로고
    • MTOR signaling: At the crossroads of plasticity, memory and disease
    • Hoeffer, C.A. Klann, E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 33, 67-75 (2010).
    • (2010) Trends Neurosci , vol.33 , pp. 67-75
    • Hoeffer, C.A.1    Klann, E.2
  • 37
    • 78650848337 scopus 로고    scopus 로고
    • MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
    • Sengupta, S., Peterson, T.R., Laplante, M., Oh, S. Sabatini, D.M. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468, 1100-1104 (2010).
    • (2010) Nature , vol.468 , pp. 1100-1104
    • Sengupta, S.1    Peterson, T.R.2    Laplante, M.3    Oh, S.4    Sabatini, D.M.5
  • 38
    • 0038433304 scopus 로고    scopus 로고
    • Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
    • Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2.Mol. Cell 11, 1457-1466 (2003).
    • (2003) Mol. Cell , vol.11 , pp. 1457-1466
    • Garami, A.1
  • 39
    • 0043127125 scopus 로고    scopus 로고
    • Rheb GTPase is a direct target of TSC2 GAP activity and regulates MTOR signalling
    • Inoki, K., Li, Y., Xu, T. Guan, K.L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829-1834 (2003).
    • (2003) Genes Dev , vol.17 , pp. 1829-1834
    • Inoki, K.1    Li, Y.2    Xu, T.3    Guan, K.L.4
  • 40
    • 0042701991 scopus 로고    scopus 로고
    • Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
    • Tee, A.R., Manning, B.D., Roux, P.P., Cantley, L.C. Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259-1268 (2003).
    • (2003) Curr. Biol. , vol.13 , pp. 1259-1268
    • Tee, A.R.1    Manning, B.D.2    Roux, P.P.3    Cantley, L.C.4    Blenis, J.5
  • 41
    • 0038304516 scopus 로고    scopus 로고
    • Rheb is an essential regulator of S6K in controlling cell growth in Drosophila
    • Stocker, H. et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat. Cell Biol. 5, 559-565 (2003).
    • (2003) Nat. Cell Biol , vol.5 , pp. 559-565
    • Stocker, H.1
  • 42
    • 0038643484 scopus 로고    scopus 로고
    • Rheb promotes cell growth as a component of the insulin/TOR signalling network
    • Saucedo, L.J. et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 5, 566-571 (2003).
    • (2003) Nat. Cell Biol , vol.5 , pp. 566-571
    • Saucedo, L.J.1
  • 43
    • 0038141979 scopus 로고    scopus 로고
    • Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
    • Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5, 578-581 (2003).
    • (2003) Nat. Cell Biol , vol.5 , pp. 578-581
    • Zhang, Y.1
  • 44
    • 33947264077 scopus 로고    scopus 로고
    • PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
    • Sancak, Y. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903-915 (2007).
    • (2007) Mol. Cell , vol.25 , pp. 903-915
    • Sancak, Y.1
  • 45
    • 84865371057 scopus 로고    scopus 로고
    • TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
    • Dibble, C.C. et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 47, 535-546 (2012).
    • (2012) Mol. Cell , vol.47 , pp. 535-546
    • Dibble, C.C.1
  • 46
    • 0036342294 scopus 로고    scopus 로고
    • Identification of the tuberous sclerosis complex 2011;2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3 2011;kinase/akt pathway
    • Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J. Cantley, L.C. Identification of the tuberous sclerosis complex 2011;2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3 2011;kinase/akt pathway. Mol. Cell 10, 151-162 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 151-162
    • Manning, B.D.1    Tee, A.R.2    Logsdon, M.N.3    Blenis, J.4    Cantley, L.C.5
  • 47
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by akt and suppresses MTOR signalling
    • Inoki, K., Li, Y., Zhu, T., Wu, J. Guan, K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648-657 (2002).
    • (2002) Nat. Cell Biol , vol.4 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3    Wu, J.4    Guan, K.L.5
  • 48
    • 0036714127 scopus 로고    scopus 로고
    • Akt regulates growth by directly phosphorylating Tsc2
    • Potter, C.J., Pedraza, L.G. Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4, 658-665 (2002).
    • (2002) Nat. Cell Biol , vol.4 , pp. 658-665
    • Potter, C.J.1    Pedraza, L.G.2    Xu, T.3
  • 49
    • 4544384577 scopus 로고    scopus 로고
    • Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase
    • Roux, P.P., Ballif, B.A., Anjum, R., Gygi, S.P. Blenis, J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl Acad. Sci USA 101, 13489-13494 (2004).
    • (2004) Proc. Natl Acad. Sci USA , vol.101 , pp. 13489-13494
    • Roux, P.P.1    Ballif, B.A.2    Anjum, R.3    Gygi, S.P.4    Blenis, J.5
  • 50
    • 17444431201 scopus 로고    scopus 로고
    • Phosphorylation and functional inactivation of TSC2 by erk implications for tuberous sclerosis and cancer pathogenesis
    • Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. Pandolfi, P.P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179-193 (2005).
    • (2005) Cell , vol.121 , pp. 179-193
    • Ma, L.1    Chen, Z.2    Erdjument-Bromage, H.3    Tempst, P.4    Pandolfi, P.P.5
  • 51
    • 33646111903 scopus 로고    scopus 로고
    • Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning
    • Cai, S.L. et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J. Cell Biol. 173, 279-289 (2006).
    • (2006) J. Cell Biol , vol.173 , pp. 279-289
    • Cai, S.L.1
  • 53
    • 51049083138 scopus 로고    scopus 로고
    • Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation
    • Carriere, A. et al. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr. Biol. 18, 1269-1277 (2008).
    • (2008) Curr. Biol , vol.18 , pp. 1269-1277
    • Carriere, A.1
  • 54
    • 73649098283 scopus 로고    scopus 로고
    • Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation
    • Foster, K.G. et al. Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation. J. Biol. Chem. 285, 80-94 (2010).
    • (2010) J. Biol. Chem , vol.285 , pp. 80-94
    • Foster, K.G.1
  • 55
    • 78650943298 scopus 로고    scopus 로고
    • ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1)
    • Carriere, A. et al. ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). J. Biol. Chem. 286, 567-577 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 567-577
    • Carriere, A.1
  • 56
    • 44449161481 scopus 로고    scopus 로고
    • The TSC1-TSC2 complex: A molecular switchboard controlling cell growth
    • Huang, J. Manning, B.D. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179-190 (2008).
    • (2008) Biochem. J. , vol.412 , pp. 179-190
    • Huang, J.1    Manning, B.D.2
  • 57
    • 0028899789 scopus 로고
    • Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes
    • Blommaart, E.F., Luiken, J.J., Blommaart, P.J., van Woerkom, G.M. Meijer, A.J. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J. Biol. Chem. 270, 2320-2326 (1995).
    • (1995) J. Biol. Chem. , vol.270 , pp. 2320-2326
    • Blommaart, E.F.1    Luiken, J.J.2    Blommaart, P.J.3    Van Woerkom, G.M.4    Meijer, A.J.5
  • 58
    • 59049087460 scopus 로고    scopus 로고
    • Bidirectional transport of amino acids regulates MTOR and autophagy
    • Nicklin, P. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521-534 (2009).
    • (2009) Cell , vol.136 , pp. 521-534
    • Nicklin, P.1
  • 59
    • 21244456553 scopus 로고    scopus 로고
    • Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency
    • Long, X., Ortiz-Vega, S., Lin, Y. Avruch, J. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J. Biol. Chem. 280, 23433-23436 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 23433-23436
    • Long, X.1    Ortiz-Vega, S.2    Lin, Y.3    Avruch, J.4
  • 60
    • 21244480367 scopus 로고    scopus 로고
    • The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses
    • Smith, E.M., Finn, S.G., Tee, A.R., Browne, G.J. Proud, C.G. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J. Biol. Chem. 280, 18717-18727 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 18717-18727
    • Smith, E.M.1    Finn, S.G.2    Tee, A.R.3    Browne, G.J.4    Proud, C.G.5
  • 61
    • 21244448694 scopus 로고    scopus 로고
    • The TOR and EGO protein complexes orchestrate microautophagy in yeast
    • Dubouloz, F., Deloche, O., Wanke, V., Cameroni, E. De Virgilio, C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell 19, 15-26 (2005).
    • (2005) Mol. Cell , vol.19 , pp. 15-26
    • Dubouloz, F.1    Deloche, O.2    Wanke, V.3    Cameroni, E.4    De Virgilio, C.5
  • 63
    • 45849105156 scopus 로고    scopus 로고
    • The rag GTPases bind raptor and mediate amino acid signaling to MTORC1
    • Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501 (2008).
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1
  • 65
    • 84873665112 scopus 로고    scopus 로고
    • Regulation of MTORC1 by the rag GTPases is necessary for neonatal autophagy and survival
    • Efeyan, A. et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493, 679-683 (2013).
    • (2013) Nature , vol.493 , pp. 679-683
    • Efeyan, A.1
  • 66
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-rag complex targets MTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303 (2010).
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1
  • 67
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled, L., Schweitzer, L.D., Zoncu, R. Sabatini, D.M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196-1208 (2012).
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 68
    • 80051873144 scopus 로고    scopus 로고
    • Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation
    • Gong, R. et al. Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Genes Dev. 25, 1668-1673 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 1668-1673
    • Gong, R.1
  • 69
    • 80555143078 scopus 로고    scopus 로고
    • MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
    • Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334, 678-683 (2011).
    • (2011) Science , vol.334 , pp. 678-683
    • Zoncu, R.1
  • 70
    • 84859704385 scopus 로고    scopus 로고
    • Leucyl-tRNA synthetase controls TORC1 via the EGO complex
    • Bonfils, G. et al. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol. Cell 46, 105-110 (2012).
    • (2012) Mol. Cell , vol.46 , pp. 105-110
    • Bonfils, G.1
  • 71
    • 84862777407 scopus 로고    scopus 로고
    • Leucyl-tRNA synthetase is an intracellular leucine sensor for the mtorc1-signaling pathway
    • Han, J.M. et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410-424 (2012).
    • (2012) Cell , vol.149 , pp. 410-424
    • Han, J.M.1
  • 72
    • 80053586265 scopus 로고    scopus 로고
    • P62 is a key regulator of nutrient sensing in the MTORC1 pathway
    • Duran, A. et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol. Cell 44, 134-146 (2011).
    • (2011) Mol. Cell , vol.44 , pp. 134-146
    • Duran, A.1
  • 73
    • 34147141941 scopus 로고    scopus 로고
    • A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling
    • Findlay, G.M., Yan, L., Procter, J., Mieulet, V. Lamb, R.F. A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem. J. 403, 13-20 (2007).
    • (2007) Biochem. J. , vol.403 , pp. 13-20
    • Findlay, G.M.1    Yan, L.2    Procter, J.3    Mieulet, V.4    Lamb, R.F.5
  • 74
    • 77649269312 scopus 로고    scopus 로고
    • PP2A T61 epsilon is an inhibitor of MAP4K3 in nutrient signaling to mTOR
    • Yan, L. et al. PP2A T61 epsilon is an inhibitor of MAP4K3 in nutrient signaling to mTOR. Mol. Cell 37, 633-642 (2010).
    • (2010) Mol. Cell , vol.37 , pp. 633-642
    • Yan, L.1
  • 75
    • 77955055166 scopus 로고    scopus 로고
    • MAP4K3 regulates body size and metabolism in Drosophila
    • Bryk, B., Hahn, K., Cohen, S.M. Teleman, A.A. MAP4K3 regulates body size and metabolism in Drosophila. Dev. Biol. 344, 150-157 (2010).
    • (2010) Dev. Biol. , vol.344 , pp. 150-157
    • Bryk, B.1    Hahn, K.2    Cohen, S.M.3    Teleman, A.A.4
  • 76
    • 84864931233 scopus 로고    scopus 로고
    • Glutaminolysis activates Rag-mTORC1 signaling
    • Duran, R.V. et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell 47, 349-358 (2012).
    • (2012) Mol. Cell , vol.47 , pp. 349-358
    • Duran, R.V.1
  • 77
    • 84863009605 scopus 로고    scopus 로고
    • SH3BP4 is a negative regulator of amino acid-Rag GTPase-mTORC1 signaling
    • Kim, Y.M. et al. SH3BP4 is a negative regulator of amino acid-Rag GTPase-mTORC1 signaling. Mol. Cell 46, 833-846 (2012).
    • (2012) Mol. Cell , vol.46 , pp. 833-846
    • Kim, Y.M.1
  • 78
    • 84866846953 scopus 로고    scopus 로고
    • The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy
    • Wauson, E.M. et al. The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy. Mol. Cell 47, 851-862 (2012).
    • (2012) Mol. Cell , vol.47 , pp. 851-862
    • Wauson, E.M.1
  • 79
    • 79551565620 scopus 로고    scopus 로고
    • Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase
    • Kim, S. et al. Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase. Cell Metab. 13, 215-221 (2011).
    • (2011) Cell Metab , vol.13 , pp. 215-221
    • Kim, S.1
  • 80
    • 0030888163 scopus 로고    scopus 로고
    • The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation
    • Clark, G.J. et al. The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation. J. Biol. Chem. 272, 10608-10615 (1997).
    • (1997) J. Biol. Chem , vol.272 , pp. 10608-10615
    • Clark, G.J.1
  • 81
    • 25444450400 scopus 로고    scopus 로고
    • Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3 2011;kinase/mTOR pathway
    • Takahashi, K., Nakagawa, M., Young, S.G. Yamanaka, S. Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3 2011;kinase/mTOR pathway. J. Biol. Chem. 280, 32768-32774 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 32768-32774
    • Takahashi, K.1    Nakagawa, M.2    Young, S.G.3    Yamanaka, S.4
  • 82
    • 33646143793 scopus 로고    scopus 로고
    • Localization of Rheb to the endomembrane is critical for its signaling function
    • Buerger, C., DeVries, B. Stambolic, V. Localization of Rheb to the endomembrane is critical for its signaling function. Biochem. Biophys. Res. Commun. 344, 869-880 (2006).
    • (2006) Biochem. Biophys. Res. Commun , vol.344 , pp. 869-880
    • Buerger, C.1    Devries, B.2    Stambolic, V.3
  • 83
    • 0041356888 scopus 로고    scopus 로고
    • Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin-and farnesylation-dependent manner
    • Castro, A.F., Rebhun, J.F., Clark, G.J. Quilliam, L.A. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin-and farnesylation-dependent manner. J. Biol. Chem. 278, 32493-32496 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 32493-32496
    • Castro, A.F.1    Rebhun, J.F.2    Clark, G.J.3    Quilliam, L.A.4
  • 84
    • 0035447688 scopus 로고    scopus 로고
    • Glucose exerts a permissive effect on the regulation of the initiation factor 4e binding protein 4E-BP1
    • Patel, J., Wang, X. Proud, C.G. Glucose exerts a permissive effect on the regulation of the initiation factor 4E binding protein 4E-BP1. Biochem. J. 358, 497-503 (2001).
    • (2001) Biochem. J. , vol.358 , pp. 497-503
    • Patel, J.1    Wang, X.2    Proud, C.G.3
  • 85
    • 0035798097 scopus 로고    scopus 로고
    • Mammalian TOR: A homeostatic ATP sensor
    • Dennis, P.B. et al. Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102-1105 (2001).
    • (2001) Science , vol.294 , pp. 1102-1105
    • Dennis, P.B.1
  • 86
    • 0042031047 scopus 로고    scopus 로고
    • A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets
    • Arsham, A.M., Howell, J.J. Simon, M.C. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J. Biol. Chem. 278, 29655-29660 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 29655-29660
    • Arsham, A.M.1    Howell, J.J.2    Simon, M.C.3
  • 87
    • 80052511813 scopus 로고    scopus 로고
    • The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
    • Mihaylova, M.M. Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016-1023 (2011).
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1016-1023
    • Mihaylova, M.M.1    Shaw, R.J.2
  • 88
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan, D.F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461 (2011).
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1
  • 89
    • 84872586081 scopus 로고    scopus 로고
    • Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
    • Kim, J. et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290-303 (2013).
    • (2013) Cell , vol.152 , pp. 290-303
    • Kim, J.1
  • 90
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki, K., Zhu, T. Guan, K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590 (2003).
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 91
    • 33748153690 scopus 로고    scopus 로고
    • TSC2 integrates wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
    • Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955-968 (2006).
    • (2006) Cell , vol.126 , pp. 955-968
    • Inoki, K.1
  • 92
    • 3142594193 scopus 로고    scopus 로고
    • The LKB1 tumor suppressor negatively regulates MTOR signalling
    • Shaw, R.J. et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6, 91-99 (2004).
    • (2004) Cancer Cell , vol.6 , pp. 91-99
    • Shaw, R.J.1
  • 93
    • 10044276783 scopus 로고    scopus 로고
    • Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex
    • Brugarolas, J. et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 18, 2893-2904 (2004).
    • (2004) Genes Dev. , vol.18 , pp. 2893-2904
    • Brugarolas, J.1
  • 94
    • 32444433450 scopus 로고    scopus 로고
    • Hypoxia-induced energy stress regulates mRNA translation and cell growth
    • Liu, L. et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol. Cell 21, 521-531 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 521-531
    • Liu, L.1
  • 95
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn, D.M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214-226 (2008).
    • (2008) Mol. Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1
  • 96
    • 84868005485 scopus 로고    scopus 로고
    • AMP-Activated protein kinase: A target for drugs both ancient and modern
    • Hardie, D.G., Ross, F.A. Hawley, S.A. AMP-Activated Protein Kinase: A Target for Drugs both Ancient and Modern. Chem. Biol. 19, 1222-1236 (2012).
    • (2012) Chem. Biol. , vol.19 , pp. 1222-1236
    • Hardie, D.G.1    Ross, F.A.2    Hawley, S.A.3
  • 97
    • 10044276784 scopus 로고    scopus 로고
    • The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila
    • Reiling, J.H. Hafen, E. The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev. 18, 2879-2892 (2004).
    • (2004) Genes Dev. , vol.18 , pp. 2879-2892
    • Reiling, J.H.1    Hafen, E.2
  • 98
    • 0036118562 scopus 로고    scopus 로고
    • Identification of a novel hypoxia-inducible factor 1 2011;responsive gene, RTP801, involved in apoptosis
    • Shoshani, T. et al. Identification of a novel hypoxia-inducible factor 1 2011;responsive gene, RTP801, involved in apoptosis. Mol. Cell Biol. 22, 2283-2293 (2002).
    • (2002) Mol. Cell Biol. , vol.22 , pp. 2283-2293
    • Shoshani, T.1
  • 99
    • 84861845402 scopus 로고    scopus 로고
    • The updated biology of hypoxia-inducible factor
    • Greer, S.N., Metcalf, J.L., Wang, Y. Ohh, M. The updated biology of hypoxia-inducible factor. EMBO J. 31, 2448-2460 (2012).
    • (2012) EMBO J. , vol.31 , pp. 2448-2460
    • Greer, S.N.1    Metcalf, J.L.2    Wang, Y.3    Ohh, M.4
  • 100
    • 38349056675 scopus 로고    scopus 로고
    • Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 143 3 shuttling
    • DeYoung, M.P., Horak, P., Sofer, A., Sgroi, D. Ellisen, L.W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14 2011;3 2011;3 shuttling. Genes Dev. 22, 239-251 (2008).
    • (2008) Genes Dev. , vol.22 , pp. 239-251
    • Deyoung, M.P.1    Horak, P.2    Sofer, A.3    Sgroi, D.4    Ellisen, L.W.5
  • 101
    • 77949528224 scopus 로고    scopus 로고
    • Structural analysis and functional implications of the negative MTORC1 Regulator REDD1
    • Vega 2011;Rubin 2011;de-Celis, S. et al. Structural analysis and functional implications of the negative mTORC1 regulator REDD1. Biochemistry 49, 2491-2501 (2010).
    • (2010) Biochemistry , vol.49 , pp. 2491-2501
    • Vega Rubin De-Celis, S.1
  • 102
    • 78649231611 scopus 로고    scopus 로고
    • MTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha
    • Cam, H., Easton, J.B., High, A. Houghton, P.J. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Mol. Cell 40, 509-520 (2010).
    • (2010) Mol. Cell , vol.40 , pp. 509-520
    • Cam, H.1    Easton, J.B.2    High, A.3    Houghton, P.J.4
  • 103
    • 21744459535 scopus 로고    scopus 로고
    • Regulation of mTOR and cell growth in response to energy stress by REDD1
    • Sofer, A., Lei, K., Johannessen, C.M. Ellisen, L.W. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol. Cell Biol. 25, 5834-5845 (2005).
    • (2005) Mol. Cell Biol. , vol.25 , pp. 5834-5845
    • Sofer, A.1    Lei, K.2    Johannessen, C.M.3    Ellisen, L.W.4
  • 104
    • 79959764729 scopus 로고    scopus 로고
    • Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1
    • Ben Sahra, I. et al. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res. 71, 4366-4372 (2011).
    • (2011) Cancer Res. , vol.71 , pp. 4366-4372
    • Ben Sahra, I.1
  • 105
    • 58149524838 scopus 로고    scopus 로고
    • ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression
    • Whitney, M.L., Jefferson, L.S. Kimball, S.R. ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression. Biochem. Biophys. Res. Commun. 379, 451-455 (2009).
    • (2009) Biochem. Biophys. Res. Commun. , vol.379 , pp. 451-455
    • Whitney, M.L.1    Jefferson, L.S.2    Kimball, S.R.3
  • 106
    • 0036863624 scopus 로고    scopus 로고
    • REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species
    • Ellisen, L.W. et al. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol. Cell 10, 995-1005 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 995-1005
    • Ellisen, L.W.1
  • 107
    • 57749206796 scopus 로고    scopus 로고
    • SP600125 negatively regulates the mammalian target of rapamycin via ATF4-induced Redd1 expression
    • Jin, H.O. et al. SP600125 negatively regulates the mammalian target of rapamycin via ATF4-induced Redd1 expression. FEBS Lett. 583, 123-127 (2009).
    • (2009) FEBS Lett. , vol.583 , pp. 123-127
    • Jin, H.O.1
  • 108
    • 80155126675 scopus 로고    scopus 로고
    • Deoxyglucose induces Noxa-dependent apoptosis in alveolar rhabdomyosarcoma
    • Ramirez-Peinado, S. et al. 2 2011;deoxyglucose induces Noxa-dependent apoptosis in alveolar rhabdomyosarcoma. Cancer Res. 71, 6796-6806 (2011).
    • (2011) Cancer Res. , vol.71 , pp. 6796-6806
    • Ramirez-Peinado, S.1
  • 109
    • 79955389182 scopus 로고    scopus 로고
    • Cell 2011;type 2011;dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia
    • Wolff, N.C. et al. Cell 2011;type 2011;dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia. Mol. Cell Biol. 31, 1870-1884 (2011).
    • (2011) Mol. Cell Biol , vol.31 , pp. 1870-1884
    • Wolff, N.C.1
  • 110
    • 33745840203 scopus 로고    scopus 로고
    • 5' 2011;AMP 2011;activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments
    • Laderoute, K.R. et al. 5' 2011;AMP 2011;activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol. Cell Biol. 26, 5336-5347 (2006).
    • (2006) Mol. Cell Biol. , vol.26 , pp. 5336-5347
    • Laderoute, K.R.1
  • 111
    • 77955059513 scopus 로고    scopus 로고
    • Mechanisms and functions of P38 MAPK Signalling
    • Cuadrado, A. Nebreda, A.R. Mechanisms and functions of p38 MAPK signalling. Biochem. J. 429, 403-417 (2010).
    • (2010) Biochem. J. , vol.429 , pp. 403-417
    • Cuadrado, A.1    Nebreda, A.R.2
  • 112
    • 79952281400 scopus 로고    scopus 로고
    • Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy 2011;depletion 2011;induced suppression of mTORC1
    • Zheng, M. et al. Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy 2011;depletion 2011;induced suppression of mTORC1. Nat. Cell Biol. 13, 263-272 (2011).
    • (2011) Nat. Cell Biol. , vol.13 , pp. 263-272
    • Zheng, M.1
  • 113
    • 73549093581 scopus 로고    scopus 로고
    • A role for p38 stress-activated protein kinase in regulation of cell growth via TORC1
    • Cully, M. et al. A role for p38 stress-activated protein kinase in regulation of cell growth via TORC1. Mol. Cell Biol. 30, 481-495 (2010).
    • (2010) Mol. Cell Biol , vol.30 , pp. 481-495
    • Cully, M.1
  • 114
    • 0038190932 scopus 로고    scopus 로고
    • The p38 and MK2 kinase cascade phosphorylates tuberin, the tuberous sclerosis 2 gene product, and enhances its interaction with 14 2011;3 2011;3
    • Li, Y., Inoki, K., Vacratsis, P. Guan, K.L. The p38 and MK2 kinase cascade phosphorylates tuberin, the tuberous sclerosis 2 gene product, and enhances its interaction with 14 2011;3 2011;3.J. Biol. Chem. 278, 13663-13671 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 13663-13671
    • Li, Y.1    Inoki, K.2    Vacratsis, P.3    Guan, K.L.4
  • 115
    • 80052403225 scopus 로고    scopus 로고
    • Phosphorylation of Raptor by p38beta participates in arsenite-induced mammalian target of rapamycin complex 1 (mTORC1) activation
    • Wu, X.N. et al. Phosphorylation of Raptor by p38beta participates in arsenite-induced mammalian target of rapamycin complex 1 (mTORC1) activation. J. Biol. Chem. 286, 31501-31511 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 31501-31511
    • Wu, X.N.1
  • 116
    • 84872272443 scopus 로고    scopus 로고
    • Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex
    • Kim, S.G. et al. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol. Cell 49, 172-185 (2012).
    • (2012) Mol. Cell , vol.49 , pp. 172-185
    • Kim, S.G.1
  • 117
    • 37349014081 scopus 로고    scopus 로고
    • Tel2 regulates the stability of PI3K-related protein kinases
    • Takai, H., Wang, R.C., Takai, K.K., Yang, H. de Lange, T. Tel2 regulates the stability of PI3K-related protein kinases. Cell 131, 1248-1259 (2007).
    • (2007) Cell , vol.131 , pp. 1248-1259
    • Takai, H.1    Wang, R.C.2    Takai, K.K.3    Yang, H.4    De Lange, T.5
  • 118
    • 84860160279 scopus 로고    scopus 로고
    • Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2
    • Izumi, N., Yamashita, A. Ohno, S. Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2. Nucleus 3, 29-43 (2012).
    • (2012) Nucleus , vol.3 , pp. 29-43
    • Izumi, N.1    Yamashita, A.2    Ohno, S.3
  • 119
    • 77953091045 scopus 로고    scopus 로고
    • Structure of the human mTOR complex i and its implications for rapamycin inhibition
    • Yip, C.K., Murata, K., Walz, T., Sabatini, D.M. Kang, S.A. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 38, 768-774 (2010).
    • (2010) Mol. Cell , vol.38 , pp. 768-774
    • Yip, C.K.1    Murata, K.2    Walz, T.3    Sabatini, D.M.4    Kang, S.A.5
  • 120
    • 77955287742 scopus 로고    scopus 로고
    • Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
    • Kalender, A. et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11, 390-401 (2010).
    • (2010) Cell Metab , vol.11 , pp. 390-401
    • Kalender, A.1
  • 121
    • 0029063512 scopus 로고
    • Disassembly and reassembly of the yeast vacuolar H(+)-ATPase invivo
    • Kane, P.M. Disassembly and reassembly of the yeast vacuolar H(+)-ATPase invivo. J. Biol. Chem. 270, 17025-17032 (1995).
    • (1995) J. Biol. Chem. , vol.270 , pp. 17025-17032
    • Kane, P.M.1
  • 122
    • 11844260070 scopus 로고    scopus 로고
    • Phosphatidylinositol 3 2011;kinase 2011;mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells
    • Sautin, Y.Y., Lu, M., Gaugler, A., Zhang, L. Gluck, S.L. Phosphatidylinositol 3 2011;kinase 2011;mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol. Cell Biol. 25, 575-589 (2005).
    • (2005) Mol. Cell Biol. , vol.25 , pp. 575-589
    • Sautin, Y.Y.1    Lu, M.2    Gaugler, A.3    Zhang, L.4    Gluck, S.L.5
  • 123
    • 79960960007 scopus 로고    scopus 로고
    • Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
    • Yecies, J.L. et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14, 21-32 (2011).
    • (2011) Cell Metab , vol.14 , pp. 21-32
    • Yecies, J.L.1
  • 124
    • 84862023939 scopus 로고    scopus 로고
    • Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression
    • Haas, J.T. et al. Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab. 15, 873-884 (2012).
    • (2012) Cell Metab , vol.15 , pp. 873-884
    • Haas, J.T.1
  • 126
    • 84870885054 scopus 로고    scopus 로고
    • Amino acid sensing in dietary 2011;restriction 2011;mediated longevity: Roles of signal-transducing kinases GCN2 and tOR
    • Gallinetti, J., Harputlugil, E. Mitchell, J.R. Amino acid sensing in dietary 2011;restriction 2011;mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem. J. 449, 1-10 (2013).
    • (2013) Biochem. J. , vol.449 , pp. 1-10
    • Gallinetti, J.1    Harputlugil, E.2    Mitchell, J.R.3
  • 127
    • 39749141485 scopus 로고    scopus 로고
    • The regulation and function of Class III PI3Ks: Novel roles for Vps34
    • Backer, J.M. The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem. J. 410, 1-17 (2008).
    • (2008) Biochem. J. , vol.410 , pp. 1-17
    • Backer, J.M.1
  • 128
    • 84859018387 scopus 로고    scopus 로고
    • Phospholipase D and mTORC1: Nutrients are what bring them together
    • Wiczer, B.M. Thomas, G. Phospholipase D and mTORC1: nutrients are what bring them together. Sci. Signal. 5, pe13 (2012).
    • (2012) Sci. Signal. , vol.5
    • Wiczer, B.M.1    Thomas, G.2
  • 129
    • 68949103681 scopus 로고    scopus 로고
    • Phosphatidic acid signaling to mTOR: Signals for the survival of human cancer cells
    • Foster, D.A. Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim. Biophys. Acta 1791, 949-955 (2009).
    • (2009) Biochim. Biophys. Acta , vol.1791 , pp. 949-955
    • Foster, D.A.1
  • 130
    • 25444457577 scopus 로고    scopus 로고
    • HVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase
    • Byfield, M.P., Murray, J.T. Backer, J.M. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J. Biol. Chem. 280, 33076-33082 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 33076-33082
    • Byfield, M.P.1    Murray, J.T.2    Backer, J.M.3
  • 131
    • 26444575415 scopus 로고    scopus 로고
    • Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase
    • Nobukuni, T. et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl Acad. Sci. USA 102, 14238-14243 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 14238-14243
    • Nobukuni, T.1
  • 132
    • 42649112409 scopus 로고    scopus 로고
    • Amino acids activate mTOR complex 1via Ca2+/CaM signaling to hVps34
    • Gulati, P. et al. Amino acids activate mTOR complex 1via Ca2+/CaM signaling to hVps34. Cell Metab. 7, 456-465 (2008).
    • (2008) Cell Metab , vol.7 , pp. 456-465
    • Gulati, P.1
  • 133
    • 84855731134 scopus 로고    scopus 로고
    • Class III PI 2011;3 2011;kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway
    • Yoon, M.S., Du, G., Backer, J.M., Frohman, M.A. Chen, J. Class III PI 2011;3 2011;kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway. J. Cell Biol. 195, 435-447 (2011).
    • (2011) J. Cell Biol. , vol.195 , pp. 435-447
    • Yoon, M.S.1    Du, G.2    Backer, J.M.3    Frohman, M.A.4    Chen, J.5
  • 134
    • 79960387847 scopus 로고    scopus 로고
    • Phospholipase D mediates nutrient input to mammalian target of rapamycin complex 1 (mTORC1)
    • Xu, L. et al. Phospholipase D mediates nutrient input to mammalian target of rapamycin complex 1 (mTORC1). J. Biol. Chem. 286, 25477-25486 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 25477-25486
    • Xu, L.1
  • 135
    • 44149127993 scopus 로고    scopus 로고
    • The class III PI (3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila
    • Juhasz, G. et al. The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol. 181, 655-666 (2008).
    • (2008) J. Cell Biol , vol.181 , pp. 655-666
    • Juhasz, G.1
  • 136
    • 84863116629 scopus 로고    scopus 로고
    • Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function
    • Jaber, N. et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc. Natl Acad. Sci. USA 109, 2003-2008 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 2003-2008
    • Jaber, N.1
  • 137
    • 77649315183 scopus 로고    scopus 로고
    • Impaired alpha(IIb)beta (3) integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1
    • Elvers, M. et al. Impaired alpha(IIb)beta(3) integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Sci. Signal. 3, ra1 (2010).
    • (2010) Sci. Signal. 3 ra1
    • Elvers, M.1
  • 138
    • 79958129661 scopus 로고    scopus 로고
    • PLD1 rather than PLD2 regulates phorbol 2011;ester 2011;, adhesion-dependent and Fc{gamma} 2011;receptor 2011;stimulated ROS production in neutrophils
    • Norton, L.J. et al. PLD1 rather than PLD2 regulates phorbol 2011;ester 2011;, adhesion-dependent and Fc{gamma} 2011;receptor 2011;stimulated ROS production in neutrophils. J. Cell Sci. 124, 1973-1983 (2011).
    • (2011) J. Cell Sci. , vol.124 , pp. 1973-1983
    • Norton, L.J.1
  • 139
    • 4544220704 scopus 로고    scopus 로고
    • Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity
    • Um, S.H. et al. Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200-205 (2004).
    • (2004) Nature , vol.431 , pp. 200-205
    • Um, S.H.1
  • 140
    • 14244256097 scopus 로고    scopus 로고
    • Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: Possible involvement in obesity-linked insulin resistance
    • Khamzina, L., Veilleux, A., Bergeron, S. Marette, A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146, 1473-1481 (2005).
    • (2005) Endocrinology , vol.146 , pp. 1473-1481
    • Khamzina, L.1    Veilleux, A.2    Bergeron, S.3    Marette, A.4
  • 141
    • 33750922694 scopus 로고    scopus 로고
    • Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice
    • Korsheninnikova, E. et al. Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice. Diabetologia 49, 3049-3057 (2006).
    • (2006) Diabetologia , vol.49 , pp. 3049-3057
    • Korsheninnikova, E.1
  • 142
    • 84857819062 scopus 로고    scopus 로고
    • Metabolic control by S6 kinases depends on dietary lipids
    • Castaneda, T.R. et al. Metabolic control by S6 kinases depends on dietary lipids. PLoS One 7, e32631 (2012).
    • (2012) PLoS One , vol.7
    • Castaneda, T.R.1
  • 143
    • 77958149976 scopus 로고    scopus 로고
    • Palmitate induced insulin resistance by PKCtheta-dependent activation of mTOR/S6K pathway in C2C12 myotubes
    • Wang, X. et al. Palmitate induced insulin resistance by PKCtheta-dependent activation of mTOR/S6K pathway in C2C12 myotubes. Exp. Clin. Endocrinol. Diabetes 118, 657-661 (2010).
    • (2010) Exp. Clin. Endocrinol. Diabetes , vol.118 , pp. 657-661
    • Wang, X.1
  • 144
    • 79953830502 scopus 로고    scopus 로고
    • Oleate-mediated activation of phospholipase D and mammalian target of rapamycin (mTOR) regulates proliferation and rapamycin sensitivity of hepatocarcinoma cells
    • Arous, C., Naimi, M. Van Obberghen, E. Oleate-mediated activation of phospholipase D and mammalian target of rapamycin (mTOR) regulates proliferation and rapamycin sensitivity of hepatocarcinoma cells. Diabetologia 54, 954-964 (2011).
    • (2011) Diabetologia , vol.54 , pp. 954-964
    • Arous, C.1    Naimi, M.2    Van Obberghen, E.3
  • 145
    • 70349323414 scopus 로고    scopus 로고
    • Lipid-induced mTOR activation in rat skeletal muscle reversed by exercise and 5' 2011;aminoimidazole 2011;4 2011;carboxamide 2011;1 2011;beta 2011;D-ribofuranoside
    • Rivas, D.A., Yaspelkis, B.B., 3rd, Hawley, J.A. Lessard, S.J. Lipid-induced mTOR activation in rat skeletal muscle reversed by exercise and 5' 2011;aminoimidazole 2011;4 2011;carboxamide 2011;1 2011;beta 2011;D-ribofuranoside. J. Endocrinol. 202, 441-451 (2009).
    • (2009) J. Endocrinol , vol.202 , pp. 441-451
    • Rivas, D.A.1    Yaspelkis Iii., B.B.2    Hawley, J.A.3    Lessard, S.J.4
  • 146
    • 34548092167 scopus 로고    scopus 로고
    • Activation of mammalian target of rapamycin complex1and insulin resistance induced by palmitate in hepatocytes
    • Mordier, S. Iynedjian, P.B. Activation of mammalian target of rapamycin complex1and insulin resistance induced by palmitate in hepatocytes. Biochem. Biophys. Res. Commun. 362, 206-211 (2007).
    • (2007) Biochem. Biophys. Res. Commun , vol.362 , pp. 206-211
    • Mordier, S.1    Iynedjian, P.B.2
  • 147
    • 69549127966 scopus 로고    scopus 로고
    • Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis
    • Ichimura, A., Hirasawa, A., Hara, T. Tsujimoto, G. Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis. Prostag. Oth. Lipid M. 89, 82-88 (2009).
    • (2009) Prostag. Oth. Lipid M. , vol.89 , pp. 82-88
    • Ichimura, A.1    Hirasawa, A.2    Hara, T.3    Tsujimoto, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.