-
1
-
-
72949083368
-
Common corruption of the MTOR signaling network in human tumors
-
Menon, S. Manning, B.D. Common corruption of the mTOR signaling network in human tumors. Oncogene 27, S43-S51 (2009).
-
(2009)
Oncogene
, vol.27
-
-
Menon, S.1
Manning, B.D.2
-
2
-
-
79952104568
-
MTOR couples cellular nutrient sensing to organismal metabolic homeostasis
-
Howell, J.J. Manning, B.D. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol. Metab. 22, 94-102 (2011).
-
(2011)
Trends Endocrinol. Metab
, vol.22
, pp. 94-102
-
-
Howell, J.J.1
Manning, B.D.2
-
3
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante, M. Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149, 274-293 (2012).
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
4
-
-
65449135649
-
The multiple facets of MTOR in immunity
-
Weichhart, T. Saemann, M.D. The multiple facets of mTOR in immunity. Trends Immunol. 30, 218-226 (2009).
-
(2009)
Trends Immunol
, vol.30
, pp. 218-226
-
-
Weichhart, T.1
Saemann, M.D.2
-
5
-
-
83455177213
-
Target of Rapamycin (TOR) in nutrient signaling and growth control
-
Loewith, R. Hall, M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189, 1177-1201 (2011).
-
(2011)
Genetics
, vol.189
, pp. 1177-1201
-
-
Loewith, R.1
Hall, M.N.2
-
6
-
-
0033429204
-
Nutrients differentially regulate multiple translation factors and their control by insulin
-
Campbell, L.E., Wang, X. Proud, C.G. Nutrients differentially regulate multiple translation factors and their control by insulin. Biochem. J. 344, 433-441 (1999).
-
(1999)
Biochem. J.
, vol.344
, pp. 433-441
-
-
Campbell, L.E.1
Wang, X.2
Proud, C.G.3
-
7
-
-
0032486268
-
Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism
-
Hara, K. et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273, 14484-14494 (1998).
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 14484-14494
-
-
Hara, K.1
-
8
-
-
79955779584
-
MTOR links oncogenic signaling to tumor cell metabolism
-
Yecies, J.L. Manning, B.D. mTOR links oncogenic signaling to tumor cell metabolism. J. Mol. Med. 89, 221-228 (2011).
-
(2011)
J. Mol. Med.
, vol.89
, pp. 221-228
-
-
Yecies, J.L.1
Manning, B.D.2
-
9
-
-
84862908818
-
AMPK and MTOR in cellular energy homeostasis and drug targets
-
Inoki, K., Kim, J. Guan, K.L. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52, 381-400 (2012).
-
(2012)
Annu. Rev. Pharmacol. Toxicol
, vol.52
, pp. 381-400
-
-
Inoki, K.1
Kim, J.2
Guan, K.L.3
-
10
-
-
84874655800
-
The multifaceted role of mTORC1 in the control of lipid metabolism
-
Ricoult, S.J. Manning, B.D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 14, 242-251 (2013).
-
(2013)
EMBO Rep.
, vol.14
, pp. 242-251
-
-
Ricoult, S.J.1
Manning, B.D.2
-
11
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
Ma, X.M. Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307-318 (2009).
-
(2009)
Nat. Rev. Mol. Cell Biol
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
12
-
-
0028207001
-
Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family
-
Jefferies, H.B., Reinhard, C., Kozma, S.C. Thomas, G. Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family. Proc. Natl Acad. Sci. USA 91, 4441-4445 (1994).
-
(1994)
Proc. Natl Acad. Sci. USA
, vol.91
, pp. 4441-4445
-
-
Jefferies, H.B.1
Reinhard, C.2
Kozma, S.C.3
Thomas, G.4
-
13
-
-
84860527756
-
A unifying model for MTORC1-mediated regulation of MRNA translation
-
Thoreen, C.C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109-113 (2012).
-
(2012)
Nature
, vol.485
, pp. 109-113
-
-
Thoreen, C.C.1
-
14
-
-
84862777192
-
The translational landscape of MTOR signalling steers cancer initiation and metastasis
-
Hsieh, A.C. et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55-61 (2012).
-
(2012)
Nature
, vol.485
, pp. 55-61
-
-
Hsieh, A.C.1
-
15
-
-
84863045210
-
Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis
-
Iadevaia, V., Huo, Y., Zhang, Z., Foster, L.J. Proud, C.G. Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis. Biochem. Soc. Trans. 40, 168-172 (2012).
-
(2012)
Biochem. Soc. Trans
, vol.40
, pp. 168-172
-
-
Iadevaia, V.1
Huo, Y.2
Zhang, Z.3
Foster, L.J.4
Proud, C.G.5
-
16
-
-
79954576972
-
Transcriptional control of cellular metabolism by mTOR signalling
-
Yecies, J.L. Manning, B.D. Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res. 71, 2815-2820 (2011).
-
(2011)
Cancer Res.
, vol.71
, pp. 2815-2820
-
-
Yecies, J.L.1
Manning, B.D.2
-
17
-
-
84874995247
-
Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
-
Ben-Sahra, I., Howell, J.J., Asara, J.M. Manning, B.D. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323-1328 (2013).
-
(2013)
Science
, vol.339
, pp. 1323-1328
-
-
Ben-Sahra, I.1
Howell, J.J.2
Asara, J.M.3
Manning, B.D.4
-
18
-
-
84874961313
-
Quantitative phosphoproteomics reveal MTORC1 activates denovo pyrimidine synthesis
-
Robitaille, A.M. et al. Quantitative phosphoproteomics reveal mTORC1 activates denovo pyrimidine synthesis. Science 339, 1320-1323 (2013).
-
(2013)
Science
, vol.339
, pp. 1320-1323
-
-
Robitaille, A.M.1
-
19
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of MTOR complex 1
-
Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1.Mol. Cell 39, 171-183 (2010).
-
(2010)
Mol. Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
-
20
-
-
0028068606
-
Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1
-
Semenza, G.L., Roth, P.H., Fang, H.M. Wang, G.L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1.J. Biol. Chem 269, 23757-23763 (1994).
-
(1994)
J. Biol. Chem
, vol.269
, pp. 23757-23763
-
-
Semenza, G.L.1
Roth, P.H.2
Fang, H.M.3
Wang, G.L.4
-
21
-
-
0035012605
-
HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: Novel mechanism for HIF 2011;1 2011;mediated vascular endothelial growth factor expression
-
Laughner, E., Taghavi, P., Chiles, K., Mahon, P.C. Semenza, G.L. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF 2011;1 2011;mediated vascular endothelial growth factor expression. Mol. Cell Biol. 21, 3995-4004 (2001).
-
(2001)
Mol. Cell Biol
, vol.21
, pp. 3995-4004
-
-
Laughner, E.1
Taghavi, P.2
Chiles, K.3
Mahon, P.C.4
Semenza, G.L.5
-
22
-
-
0036789574
-
Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin
-
Hudson, C.C. et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell Biol. 22, 7004-7014 (2002).
-
(2002)
Mol. Cell Biol
, vol.22
, pp. 7004-7014
-
-
Hudson, C.C.1
-
23
-
-
0345491599
-
Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation
-
Hu, C.J., Wang, L.Y., Chodosh, L.A., Keith, B. Simon, M.C. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol. Cell Biol. 23, 9361-9374 (2003).
-
(2003)
Mol. Cell Biol
, vol.23
, pp. 9361-9374
-
-
Hu, C.J.1
Wang, L.Y.2
Chodosh, L.A.3
Keith, B.4
Simon, M.C.5
-
24
-
-
0041920901
-
TSC2 regulates VEGF through mTOR-dependent and-independent pathways
-
Brugarolas, J.B., Vazquez, F., Reddy, A., Sellers, W.R. Kaelin, W.G., Jr. TSC2 regulates VEGF through mTOR-dependent and-independent pathways. Cancer Cell 4, 147-158 (2003).
-
(2003)
Cancer Cell
, vol.4
, pp. 147-158
-
-
Brugarolas, J.B.1
Vazquez, F.2
Reddy, A.3
Sellers, W.R.4
Kaelin Jr., W.G.5
-
25
-
-
80054046029
-
Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
-
Lunt, S.Y. Vander Heiden, M.G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441-464 (2011).
-
(2011)
Annu. Rev. Cell Dev. Biol
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
26
-
-
0036251153
-
SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver
-
Horton, J.D., Goldstein, J.L. Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125-1131 (2002).
-
(2002)
J. Clin. Invest
, vol.109
, pp. 1125-1131
-
-
Horton, J.D.1
Goldstein, J.L.2
Brown, M.S.3
-
27
-
-
50049116472
-
SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
-
Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224-236 (2008).
-
(2008)
Cell Metab
, vol.8
, pp. 224-236
-
-
Porstmann, T.1
-
28
-
-
79961165137
-
MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson, T.R. et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146, 408-420 (2011).
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
-
29
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz, J.D. White, E. Autophagy and metabolism. Science 330, 1344-1348 (2010).
-
(2010)
Science
, vol.330
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
30
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1 2011;Atg13 2011;FIP200 complex required for autophagy
-
Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1 2011;Atg13 2011;FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981-1991 (2009).
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
-
31
-
-
65249176304
-
ULK 2011; Atg13 2011; FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung, C.H. et al. ULK 2011;Atg13 2011;FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992-2003 (2009).
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
-
32
-
-
66449083078
-
ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley, I.G. et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297-12305 (2009).
-
(2009)
J. Biol. Chem
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
-
33
-
-
79551598347
-
AMPK and MTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim, J., Kundu, M., Viollet, B. Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132-141 (2011).
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
34
-
-
84857997408
-
A lysosome 2011;to 2011;nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre, C. et al. A lysosome 2011;to 2011;nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095-1108 (2012).
-
(2012)
EMBO J.
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
-
36
-
-
75749114797
-
MTOR signaling: At the crossroads of plasticity, memory and disease
-
Hoeffer, C.A. Klann, E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 33, 67-75 (2010).
-
(2010)
Trends Neurosci
, vol.33
, pp. 67-75
-
-
Hoeffer, C.A.1
Klann, E.2
-
37
-
-
78650848337
-
MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
-
Sengupta, S., Peterson, T.R., Laplante, M., Oh, S. Sabatini, D.M. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468, 1100-1104 (2010).
-
(2010)
Nature
, vol.468
, pp. 1100-1104
-
-
Sengupta, S.1
Peterson, T.R.2
Laplante, M.3
Oh, S.4
Sabatini, D.M.5
-
38
-
-
0038433304
-
Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
-
Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2.Mol. Cell 11, 1457-1466 (2003).
-
(2003)
Mol. Cell
, vol.11
, pp. 1457-1466
-
-
Garami, A.1
-
39
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates MTOR signalling
-
Inoki, K., Li, Y., Xu, T. Guan, K.L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829-1834 (2003).
-
(2003)
Genes Dev
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.L.4
-
40
-
-
0042701991
-
Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
-
Tee, A.R., Manning, B.D., Roux, P.P., Cantley, L.C. Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259-1268 (2003).
-
(2003)
Curr. Biol.
, vol.13
, pp. 1259-1268
-
-
Tee, A.R.1
Manning, B.D.2
Roux, P.P.3
Cantley, L.C.4
Blenis, J.5
-
41
-
-
0038304516
-
Rheb is an essential regulator of S6K in controlling cell growth in Drosophila
-
Stocker, H. et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat. Cell Biol. 5, 559-565 (2003).
-
(2003)
Nat. Cell Biol
, vol.5
, pp. 559-565
-
-
Stocker, H.1
-
42
-
-
0038643484
-
Rheb promotes cell growth as a component of the insulin/TOR signalling network
-
Saucedo, L.J. et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 5, 566-571 (2003).
-
(2003)
Nat. Cell Biol
, vol.5
, pp. 566-571
-
-
Saucedo, L.J.1
-
43
-
-
0038141979
-
Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
-
Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5, 578-581 (2003).
-
(2003)
Nat. Cell Biol
, vol.5
, pp. 578-581
-
-
Zhang, Y.1
-
44
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak, Y. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903-915 (2007).
-
(2007)
Mol. Cell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
-
45
-
-
84865371057
-
TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
-
Dibble, C.C. et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 47, 535-546 (2012).
-
(2012)
Mol. Cell
, vol.47
, pp. 535-546
-
-
Dibble, C.C.1
-
46
-
-
0036342294
-
Identification of the tuberous sclerosis complex 2011;2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3 2011;kinase/akt pathway
-
Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J. Cantley, L.C. Identification of the tuberous sclerosis complex 2011;2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3 2011;kinase/akt pathway. Mol. Cell 10, 151-162 (2002).
-
(2002)
Mol. Cell
, vol.10
, pp. 151-162
-
-
Manning, B.D.1
Tee, A.R.2
Logsdon, M.N.3
Blenis, J.4
Cantley, L.C.5
-
47
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by akt and suppresses MTOR signalling
-
Inoki, K., Li, Y., Zhu, T., Wu, J. Guan, K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648-657 (2002).
-
(2002)
Nat. Cell Biol
, vol.4
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.L.5
-
48
-
-
0036714127
-
Akt regulates growth by directly phosphorylating Tsc2
-
Potter, C.J., Pedraza, L.G. Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4, 658-665 (2002).
-
(2002)
Nat. Cell Biol
, vol.4
, pp. 658-665
-
-
Potter, C.J.1
Pedraza, L.G.2
Xu, T.3
-
49
-
-
4544384577
-
Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase
-
Roux, P.P., Ballif, B.A., Anjum, R., Gygi, S.P. Blenis, J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl Acad. Sci USA 101, 13489-13494 (2004).
-
(2004)
Proc. Natl Acad. Sci USA
, vol.101
, pp. 13489-13494
-
-
Roux, P.P.1
Ballif, B.A.2
Anjum, R.3
Gygi, S.P.4
Blenis, J.5
-
50
-
-
17444431201
-
Phosphorylation and functional inactivation of TSC2 by erk implications for tuberous sclerosis and cancer pathogenesis
-
Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. Pandolfi, P.P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179-193 (2005).
-
(2005)
Cell
, vol.121
, pp. 179-193
-
-
Ma, L.1
Chen, Z.2
Erdjument-Bromage, H.3
Tempst, P.4
Pandolfi, P.P.5
-
51
-
-
33646111903
-
Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning
-
Cai, S.L. et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J. Cell Biol. 173, 279-289 (2006).
-
(2006)
J. Cell Biol
, vol.173
, pp. 279-289
-
-
Cai, S.L.1
-
52
-
-
33847397874
-
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
-
Vander Haar, E., Lee, S.I., Bandhakavi, S., Griffin, T.J. Kim, D.H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316-323 (2007).
-
(2007)
Nat. Cell Biol
, vol.9
, pp. 316-323
-
-
Vander Haar, E.1
Lee, S.I.2
Bandhakavi, S.3
Griffin, T.J.4
Kim, D.H.5
-
53
-
-
51049083138
-
Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation
-
Carriere, A. et al. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr. Biol. 18, 1269-1277 (2008).
-
(2008)
Curr. Biol
, vol.18
, pp. 1269-1277
-
-
Carriere, A.1
-
54
-
-
73649098283
-
Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation
-
Foster, K.G. et al. Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation. J. Biol. Chem. 285, 80-94 (2010).
-
(2010)
J. Biol. Chem
, vol.285
, pp. 80-94
-
-
Foster, K.G.1
-
55
-
-
78650943298
-
ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1)
-
Carriere, A. et al. ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). J. Biol. Chem. 286, 567-577 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 567-577
-
-
Carriere, A.1
-
56
-
-
44449161481
-
The TSC1-TSC2 complex: A molecular switchboard controlling cell growth
-
Huang, J. Manning, B.D. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179-190 (2008).
-
(2008)
Biochem. J.
, vol.412
, pp. 179-190
-
-
Huang, J.1
Manning, B.D.2
-
57
-
-
0028899789
-
Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes
-
Blommaart, E.F., Luiken, J.J., Blommaart, P.J., van Woerkom, G.M. Meijer, A.J. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J. Biol. Chem. 270, 2320-2326 (1995).
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 2320-2326
-
-
Blommaart, E.F.1
Luiken, J.J.2
Blommaart, P.J.3
Van Woerkom, G.M.4
Meijer, A.J.5
-
58
-
-
59049087460
-
Bidirectional transport of amino acids regulates MTOR and autophagy
-
Nicklin, P. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521-534 (2009).
-
(2009)
Cell
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
-
59
-
-
21244456553
-
Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency
-
Long, X., Ortiz-Vega, S., Lin, Y. Avruch, J. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J. Biol. Chem. 280, 23433-23436 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 23433-23436
-
-
Long, X.1
Ortiz-Vega, S.2
Lin, Y.3
Avruch, J.4
-
60
-
-
21244480367
-
The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses
-
Smith, E.M., Finn, S.G., Tee, A.R., Browne, G.J. Proud, C.G. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J. Biol. Chem. 280, 18717-18727 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 18717-18727
-
-
Smith, E.M.1
Finn, S.G.2
Tee, A.R.3
Browne, G.J.4
Proud, C.G.5
-
61
-
-
21244448694
-
The TOR and EGO protein complexes orchestrate microautophagy in yeast
-
Dubouloz, F., Deloche, O., Wanke, V., Cameroni, E. De Virgilio, C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell 19, 15-26 (2005).
-
(2005)
Mol. Cell
, vol.19
, pp. 15-26
-
-
Dubouloz, F.1
Deloche, O.2
Wanke, V.3
Cameroni, E.4
De Virgilio, C.5
-
62
-
-
48649085816
-
Regulation of TORC1 by rag GTPases in nutrient response
-
Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T.P. Guan, K.L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935-945 (2008).
-
(2008)
Nat. Cell Biol
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
63
-
-
45849105156
-
The rag GTPases bind raptor and mediate amino acid signaling to MTORC1
-
Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501 (2008).
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
-
64
-
-
0035831451
-
Novel G proteins, rag C and rag D, interact with GTP-binding proteins
-
Sekiguchi, T., Hirose, E., Nakashima, N., Ii, M. Nishimoto, T. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J. Biol. Chem. 276, 7246-7257 (2001).
-
(2001)
Rag A and Rag B. J. Biol. Chem.
, vol.276
, pp. 7246-7257
-
-
Sekiguchi, T.1
Hirose, E.2
Nakashima, N.3
Ii, M.4
Nishimoto, T.5
-
65
-
-
84873665112
-
Regulation of MTORC1 by the rag GTPases is necessary for neonatal autophagy and survival
-
Efeyan, A. et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493, 679-683 (2013).
-
(2013)
Nature
, vol.493
, pp. 679-683
-
-
Efeyan, A.1
-
66
-
-
77951768486
-
Ragulator-rag complex targets MTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303 (2010).
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
-
67
-
-
84866431363
-
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
-
Bar-Peled, L., Schweitzer, L.D., Zoncu, R. Sabatini, D.M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196-1208 (2012).
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
68
-
-
80051873144
-
Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation
-
Gong, R. et al. Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Genes Dev. 25, 1668-1673 (2011).
-
(2011)
Genes Dev.
, vol.25
, pp. 1668-1673
-
-
Gong, R.1
-
69
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334, 678-683 (2011).
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
-
70
-
-
84859704385
-
Leucyl-tRNA synthetase controls TORC1 via the EGO complex
-
Bonfils, G. et al. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol. Cell 46, 105-110 (2012).
-
(2012)
Mol. Cell
, vol.46
, pp. 105-110
-
-
Bonfils, G.1
-
71
-
-
84862777407
-
Leucyl-tRNA synthetase is an intracellular leucine sensor for the mtorc1-signaling pathway
-
Han, J.M. et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410-424 (2012).
-
(2012)
Cell
, vol.149
, pp. 410-424
-
-
Han, J.M.1
-
72
-
-
80053586265
-
P62 is a key regulator of nutrient sensing in the MTORC1 pathway
-
Duran, A. et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol. Cell 44, 134-146 (2011).
-
(2011)
Mol. Cell
, vol.44
, pp. 134-146
-
-
Duran, A.1
-
73
-
-
34147141941
-
A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling
-
Findlay, G.M., Yan, L., Procter, J., Mieulet, V. Lamb, R.F. A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem. J. 403, 13-20 (2007).
-
(2007)
Biochem. J.
, vol.403
, pp. 13-20
-
-
Findlay, G.M.1
Yan, L.2
Procter, J.3
Mieulet, V.4
Lamb, R.F.5
-
74
-
-
77649269312
-
PP2A T61 epsilon is an inhibitor of MAP4K3 in nutrient signaling to mTOR
-
Yan, L. et al. PP2A T61 epsilon is an inhibitor of MAP4K3 in nutrient signaling to mTOR. Mol. Cell 37, 633-642 (2010).
-
(2010)
Mol. Cell
, vol.37
, pp. 633-642
-
-
Yan, L.1
-
75
-
-
77955055166
-
MAP4K3 regulates body size and metabolism in Drosophila
-
Bryk, B., Hahn, K., Cohen, S.M. Teleman, A.A. MAP4K3 regulates body size and metabolism in Drosophila. Dev. Biol. 344, 150-157 (2010).
-
(2010)
Dev. Biol.
, vol.344
, pp. 150-157
-
-
Bryk, B.1
Hahn, K.2
Cohen, S.M.3
Teleman, A.A.4
-
76
-
-
84864931233
-
Glutaminolysis activates Rag-mTORC1 signaling
-
Duran, R.V. et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell 47, 349-358 (2012).
-
(2012)
Mol. Cell
, vol.47
, pp. 349-358
-
-
Duran, R.V.1
-
77
-
-
84863009605
-
SH3BP4 is a negative regulator of amino acid-Rag GTPase-mTORC1 signaling
-
Kim, Y.M. et al. SH3BP4 is a negative regulator of amino acid-Rag GTPase-mTORC1 signaling. Mol. Cell 46, 833-846 (2012).
-
(2012)
Mol. Cell
, vol.46
, pp. 833-846
-
-
Kim, Y.M.1
-
78
-
-
84866846953
-
The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy
-
Wauson, E.M. et al. The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy. Mol. Cell 47, 851-862 (2012).
-
(2012)
Mol. Cell
, vol.47
, pp. 851-862
-
-
Wauson, E.M.1
-
79
-
-
79551565620
-
Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase
-
Kim, S. et al. Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase. Cell Metab. 13, 215-221 (2011).
-
(2011)
Cell Metab
, vol.13
, pp. 215-221
-
-
Kim, S.1
-
80
-
-
0030888163
-
The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation
-
Clark, G.J. et al. The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation. J. Biol. Chem. 272, 10608-10615 (1997).
-
(1997)
J. Biol. Chem
, vol.272
, pp. 10608-10615
-
-
Clark, G.J.1
-
81
-
-
25444450400
-
Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3 2011;kinase/mTOR pathway
-
Takahashi, K., Nakagawa, M., Young, S.G. Yamanaka, S. Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3 2011;kinase/mTOR pathway. J. Biol. Chem. 280, 32768-32774 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 32768-32774
-
-
Takahashi, K.1
Nakagawa, M.2
Young, S.G.3
Yamanaka, S.4
-
82
-
-
33646143793
-
Localization of Rheb to the endomembrane is critical for its signaling function
-
Buerger, C., DeVries, B. Stambolic, V. Localization of Rheb to the endomembrane is critical for its signaling function. Biochem. Biophys. Res. Commun. 344, 869-880 (2006).
-
(2006)
Biochem. Biophys. Res. Commun
, vol.344
, pp. 869-880
-
-
Buerger, C.1
Devries, B.2
Stambolic, V.3
-
83
-
-
0041356888
-
Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin-and farnesylation-dependent manner
-
Castro, A.F., Rebhun, J.F., Clark, G.J. Quilliam, L.A. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin-and farnesylation-dependent manner. J. Biol. Chem. 278, 32493-32496 (2003).
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 32493-32496
-
-
Castro, A.F.1
Rebhun, J.F.2
Clark, G.J.3
Quilliam, L.A.4
-
84
-
-
0035447688
-
Glucose exerts a permissive effect on the regulation of the initiation factor 4e binding protein 4E-BP1
-
Patel, J., Wang, X. Proud, C.G. Glucose exerts a permissive effect on the regulation of the initiation factor 4E binding protein 4E-BP1. Biochem. J. 358, 497-503 (2001).
-
(2001)
Biochem. J.
, vol.358
, pp. 497-503
-
-
Patel, J.1
Wang, X.2
Proud, C.G.3
-
85
-
-
0035798097
-
Mammalian TOR: A homeostatic ATP sensor
-
Dennis, P.B. et al. Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102-1105 (2001).
-
(2001)
Science
, vol.294
, pp. 1102-1105
-
-
Dennis, P.B.1
-
86
-
-
0042031047
-
A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets
-
Arsham, A.M., Howell, J.J. Simon, M.C. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J. Biol. Chem. 278, 29655-29660 (2003).
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 29655-29660
-
-
Arsham, A.M.1
Howell, J.J.2
Simon, M.C.3
-
87
-
-
80052511813
-
The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
-
Mihaylova, M.M. Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016-1023 (2011).
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1016-1023
-
-
Mihaylova, M.M.1
Shaw, R.J.2
-
88
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan, D.F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461 (2011).
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
-
89
-
-
84872586081
-
Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
-
Kim, J. et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290-303 (2013).
-
(2013)
Cell
, vol.152
, pp. 290-303
-
-
Kim, J.1
-
90
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki, K., Zhu, T. Guan, K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590 (2003).
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
91
-
-
33748153690
-
TSC2 integrates wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
-
Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955-968 (2006).
-
(2006)
Cell
, vol.126
, pp. 955-968
-
-
Inoki, K.1
-
92
-
-
3142594193
-
The LKB1 tumor suppressor negatively regulates MTOR signalling
-
Shaw, R.J. et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6, 91-99 (2004).
-
(2004)
Cancer Cell
, vol.6
, pp. 91-99
-
-
Shaw, R.J.1
-
93
-
-
10044276783
-
Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex
-
Brugarolas, J. et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 18, 2893-2904 (2004).
-
(2004)
Genes Dev.
, vol.18
, pp. 2893-2904
-
-
Brugarolas, J.1
-
94
-
-
32444433450
-
Hypoxia-induced energy stress regulates mRNA translation and cell growth
-
Liu, L. et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol. Cell 21, 521-531 (2006).
-
(2006)
Mol. Cell
, vol.21
, pp. 521-531
-
-
Liu, L.1
-
95
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn, D.M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214-226 (2008).
-
(2008)
Mol. Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
-
96
-
-
84868005485
-
AMP-Activated protein kinase: A target for drugs both ancient and modern
-
Hardie, D.G., Ross, F.A. Hawley, S.A. AMP-Activated Protein Kinase: A Target for Drugs both Ancient and Modern. Chem. Biol. 19, 1222-1236 (2012).
-
(2012)
Chem. Biol.
, vol.19
, pp. 1222-1236
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
97
-
-
10044276784
-
The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila
-
Reiling, J.H. Hafen, E. The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev. 18, 2879-2892 (2004).
-
(2004)
Genes Dev.
, vol.18
, pp. 2879-2892
-
-
Reiling, J.H.1
Hafen, E.2
-
98
-
-
0036118562
-
Identification of a novel hypoxia-inducible factor 1 2011;responsive gene, RTP801, involved in apoptosis
-
Shoshani, T. et al. Identification of a novel hypoxia-inducible factor 1 2011;responsive gene, RTP801, involved in apoptosis. Mol. Cell Biol. 22, 2283-2293 (2002).
-
(2002)
Mol. Cell Biol.
, vol.22
, pp. 2283-2293
-
-
Shoshani, T.1
-
99
-
-
84861845402
-
The updated biology of hypoxia-inducible factor
-
Greer, S.N., Metcalf, J.L., Wang, Y. Ohh, M. The updated biology of hypoxia-inducible factor. EMBO J. 31, 2448-2460 (2012).
-
(2012)
EMBO J.
, vol.31
, pp. 2448-2460
-
-
Greer, S.N.1
Metcalf, J.L.2
Wang, Y.3
Ohh, M.4
-
100
-
-
38349056675
-
Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 143 3 shuttling
-
DeYoung, M.P., Horak, P., Sofer, A., Sgroi, D. Ellisen, L.W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14 2011;3 2011;3 shuttling. Genes Dev. 22, 239-251 (2008).
-
(2008)
Genes Dev.
, vol.22
, pp. 239-251
-
-
Deyoung, M.P.1
Horak, P.2
Sofer, A.3
Sgroi, D.4
Ellisen, L.W.5
-
101
-
-
77949528224
-
Structural analysis and functional implications of the negative MTORC1 Regulator REDD1
-
Vega 2011;Rubin 2011;de-Celis, S. et al. Structural analysis and functional implications of the negative mTORC1 regulator REDD1. Biochemistry 49, 2491-2501 (2010).
-
(2010)
Biochemistry
, vol.49
, pp. 2491-2501
-
-
Vega Rubin De-Celis, S.1
-
102
-
-
78649231611
-
MTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha
-
Cam, H., Easton, J.B., High, A. Houghton, P.J. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Mol. Cell 40, 509-520 (2010).
-
(2010)
Mol. Cell
, vol.40
, pp. 509-520
-
-
Cam, H.1
Easton, J.B.2
High, A.3
Houghton, P.J.4
-
103
-
-
21744459535
-
Regulation of mTOR and cell growth in response to energy stress by REDD1
-
Sofer, A., Lei, K., Johannessen, C.M. Ellisen, L.W. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol. Cell Biol. 25, 5834-5845 (2005).
-
(2005)
Mol. Cell Biol.
, vol.25
, pp. 5834-5845
-
-
Sofer, A.1
Lei, K.2
Johannessen, C.M.3
Ellisen, L.W.4
-
104
-
-
79959764729
-
Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1
-
Ben Sahra, I. et al. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res. 71, 4366-4372 (2011).
-
(2011)
Cancer Res.
, vol.71
, pp. 4366-4372
-
-
Ben Sahra, I.1
-
105
-
-
58149524838
-
ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression
-
Whitney, M.L., Jefferson, L.S. Kimball, S.R. ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression. Biochem. Biophys. Res. Commun. 379, 451-455 (2009).
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.379
, pp. 451-455
-
-
Whitney, M.L.1
Jefferson, L.S.2
Kimball, S.R.3
-
106
-
-
0036863624
-
REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species
-
Ellisen, L.W. et al. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol. Cell 10, 995-1005 (2002).
-
(2002)
Mol. Cell
, vol.10
, pp. 995-1005
-
-
Ellisen, L.W.1
-
107
-
-
57749206796
-
SP600125 negatively regulates the mammalian target of rapamycin via ATF4-induced Redd1 expression
-
Jin, H.O. et al. SP600125 negatively regulates the mammalian target of rapamycin via ATF4-induced Redd1 expression. FEBS Lett. 583, 123-127 (2009).
-
(2009)
FEBS Lett.
, vol.583
, pp. 123-127
-
-
Jin, H.O.1
-
108
-
-
80155126675
-
Deoxyglucose induces Noxa-dependent apoptosis in alveolar rhabdomyosarcoma
-
Ramirez-Peinado, S. et al. 2 2011;deoxyglucose induces Noxa-dependent apoptosis in alveolar rhabdomyosarcoma. Cancer Res. 71, 6796-6806 (2011).
-
(2011)
Cancer Res.
, vol.71
, pp. 6796-6806
-
-
Ramirez-Peinado, S.1
-
109
-
-
79955389182
-
Cell 2011;type 2011;dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia
-
Wolff, N.C. et al. Cell 2011;type 2011;dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia. Mol. Cell Biol. 31, 1870-1884 (2011).
-
(2011)
Mol. Cell Biol
, vol.31
, pp. 1870-1884
-
-
Wolff, N.C.1
-
110
-
-
33745840203
-
5' 2011;AMP 2011;activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments
-
Laderoute, K.R. et al. 5' 2011;AMP 2011;activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol. Cell Biol. 26, 5336-5347 (2006).
-
(2006)
Mol. Cell Biol.
, vol.26
, pp. 5336-5347
-
-
Laderoute, K.R.1
-
111
-
-
77955059513
-
Mechanisms and functions of P38 MAPK Signalling
-
Cuadrado, A. Nebreda, A.R. Mechanisms and functions of p38 MAPK signalling. Biochem. J. 429, 403-417 (2010).
-
(2010)
Biochem. J.
, vol.429
, pp. 403-417
-
-
Cuadrado, A.1
Nebreda, A.R.2
-
112
-
-
79952281400
-
Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy 2011;depletion 2011;induced suppression of mTORC1
-
Zheng, M. et al. Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy 2011;depletion 2011;induced suppression of mTORC1. Nat. Cell Biol. 13, 263-272 (2011).
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 263-272
-
-
Zheng, M.1
-
113
-
-
73549093581
-
A role for p38 stress-activated protein kinase in regulation of cell growth via TORC1
-
Cully, M. et al. A role for p38 stress-activated protein kinase in regulation of cell growth via TORC1. Mol. Cell Biol. 30, 481-495 (2010).
-
(2010)
Mol. Cell Biol
, vol.30
, pp. 481-495
-
-
Cully, M.1
-
114
-
-
0038190932
-
The p38 and MK2 kinase cascade phosphorylates tuberin, the tuberous sclerosis 2 gene product, and enhances its interaction with 14 2011;3 2011;3
-
Li, Y., Inoki, K., Vacratsis, P. Guan, K.L. The p38 and MK2 kinase cascade phosphorylates tuberin, the tuberous sclerosis 2 gene product, and enhances its interaction with 14 2011;3 2011;3.J. Biol. Chem. 278, 13663-13671 (2003).
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 13663-13671
-
-
Li, Y.1
Inoki, K.2
Vacratsis, P.3
Guan, K.L.4
-
115
-
-
80052403225
-
Phosphorylation of Raptor by p38beta participates in arsenite-induced mammalian target of rapamycin complex 1 (mTORC1) activation
-
Wu, X.N. et al. Phosphorylation of Raptor by p38beta participates in arsenite-induced mammalian target of rapamycin complex 1 (mTORC1) activation. J. Biol. Chem. 286, 31501-31511 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 31501-31511
-
-
Wu, X.N.1
-
116
-
-
84872272443
-
Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex
-
Kim, S.G. et al. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol. Cell 49, 172-185 (2012).
-
(2012)
Mol. Cell
, vol.49
, pp. 172-185
-
-
Kim, S.G.1
-
117
-
-
37349014081
-
Tel2 regulates the stability of PI3K-related protein kinases
-
Takai, H., Wang, R.C., Takai, K.K., Yang, H. de Lange, T. Tel2 regulates the stability of PI3K-related protein kinases. Cell 131, 1248-1259 (2007).
-
(2007)
Cell
, vol.131
, pp. 1248-1259
-
-
Takai, H.1
Wang, R.C.2
Takai, K.K.3
Yang, H.4
De Lange, T.5
-
118
-
-
84860160279
-
Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2
-
Izumi, N., Yamashita, A. Ohno, S. Integrated regulation of PIKK-mediated stress responses by AAA+ proteins RUVBL1 and RUVBL2. Nucleus 3, 29-43 (2012).
-
(2012)
Nucleus
, vol.3
, pp. 29-43
-
-
Izumi, N.1
Yamashita, A.2
Ohno, S.3
-
119
-
-
77953091045
-
Structure of the human mTOR complex i and its implications for rapamycin inhibition
-
Yip, C.K., Murata, K., Walz, T., Sabatini, D.M. Kang, S.A. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 38, 768-774 (2010).
-
(2010)
Mol. Cell
, vol.38
, pp. 768-774
-
-
Yip, C.K.1
Murata, K.2
Walz, T.3
Sabatini, D.M.4
Kang, S.A.5
-
120
-
-
77955287742
-
Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
-
Kalender, A. et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11, 390-401 (2010).
-
(2010)
Cell Metab
, vol.11
, pp. 390-401
-
-
Kalender, A.1
-
121
-
-
0029063512
-
Disassembly and reassembly of the yeast vacuolar H(+)-ATPase invivo
-
Kane, P.M. Disassembly and reassembly of the yeast vacuolar H(+)-ATPase invivo. J. Biol. Chem. 270, 17025-17032 (1995).
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 17025-17032
-
-
Kane, P.M.1
-
122
-
-
11844260070
-
Phosphatidylinositol 3 2011;kinase 2011;mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells
-
Sautin, Y.Y., Lu, M., Gaugler, A., Zhang, L. Gluck, S.L. Phosphatidylinositol 3 2011;kinase 2011;mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol. Cell Biol. 25, 575-589 (2005).
-
(2005)
Mol. Cell Biol.
, vol.25
, pp. 575-589
-
-
Sautin, Y.Y.1
Lu, M.2
Gaugler, A.3
Zhang, L.4
Gluck, S.L.5
-
123
-
-
79960960007
-
Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
-
Yecies, J.L. et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14, 21-32 (2011).
-
(2011)
Cell Metab
, vol.14
, pp. 21-32
-
-
Yecies, J.L.1
-
124
-
-
84862023939
-
Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression
-
Haas, J.T. et al. Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab. 15, 873-884 (2012).
-
(2012)
Cell Metab
, vol.15
, pp. 873-884
-
-
Haas, J.T.1
-
125
-
-
69949084209
-
The TOR pathway comes of age
-
Stanfel, M.N., Shamieh, L.S., Kaeberlein, M. Kennedy, B.K. The TOR pathway comes of age. Biochim. Biophys. Acta 1790, 1067-1074 (2009).
-
(2009)
Biochim. Biophys. Acta
, vol.1790
, pp. 1067-1074
-
-
Stanfel, M.N.1
Shamieh, L.S.2
Kaeberlein, M.3
Kennedy, B.K.4
-
126
-
-
84870885054
-
Amino acid sensing in dietary 2011;restriction 2011;mediated longevity: Roles of signal-transducing kinases GCN2 and tOR
-
Gallinetti, J., Harputlugil, E. Mitchell, J.R. Amino acid sensing in dietary 2011;restriction 2011;mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem. J. 449, 1-10 (2013).
-
(2013)
Biochem. J.
, vol.449
, pp. 1-10
-
-
Gallinetti, J.1
Harputlugil, E.2
Mitchell, J.R.3
-
127
-
-
39749141485
-
The regulation and function of Class III PI3Ks: Novel roles for Vps34
-
Backer, J.M. The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem. J. 410, 1-17 (2008).
-
(2008)
Biochem. J.
, vol.410
, pp. 1-17
-
-
Backer, J.M.1
-
128
-
-
84859018387
-
Phospholipase D and mTORC1: Nutrients are what bring them together
-
Wiczer, B.M. Thomas, G. Phospholipase D and mTORC1: nutrients are what bring them together. Sci. Signal. 5, pe13 (2012).
-
(2012)
Sci. Signal.
, vol.5
-
-
Wiczer, B.M.1
Thomas, G.2
-
129
-
-
68949103681
-
Phosphatidic acid signaling to mTOR: Signals for the survival of human cancer cells
-
Foster, D.A. Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim. Biophys. Acta 1791, 949-955 (2009).
-
(2009)
Biochim. Biophys. Acta
, vol.1791
, pp. 949-955
-
-
Foster, D.A.1
-
130
-
-
25444457577
-
HVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase
-
Byfield, M.P., Murray, J.T. Backer, J.M. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J. Biol. Chem. 280, 33076-33082 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 33076-33082
-
-
Byfield, M.P.1
Murray, J.T.2
Backer, J.M.3
-
131
-
-
26444575415
-
Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase
-
Nobukuni, T. et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl Acad. Sci. USA 102, 14238-14243 (2005).
-
(2005)
Proc. Natl Acad. Sci. USA
, vol.102
, pp. 14238-14243
-
-
Nobukuni, T.1
-
132
-
-
42649112409
-
Amino acids activate mTOR complex 1via Ca2+/CaM signaling to hVps34
-
Gulati, P. et al. Amino acids activate mTOR complex 1via Ca2+/CaM signaling to hVps34. Cell Metab. 7, 456-465 (2008).
-
(2008)
Cell Metab
, vol.7
, pp. 456-465
-
-
Gulati, P.1
-
133
-
-
84855731134
-
Class III PI 2011;3 2011;kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway
-
Yoon, M.S., Du, G., Backer, J.M., Frohman, M.A. Chen, J. Class III PI 2011;3 2011;kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway. J. Cell Biol. 195, 435-447 (2011).
-
(2011)
J. Cell Biol.
, vol.195
, pp. 435-447
-
-
Yoon, M.S.1
Du, G.2
Backer, J.M.3
Frohman, M.A.4
Chen, J.5
-
134
-
-
79960387847
-
Phospholipase D mediates nutrient input to mammalian target of rapamycin complex 1 (mTORC1)
-
Xu, L. et al. Phospholipase D mediates nutrient input to mammalian target of rapamycin complex 1 (mTORC1). J. Biol. Chem. 286, 25477-25486 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 25477-25486
-
-
Xu, L.1
-
135
-
-
44149127993
-
The class III PI (3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila
-
Juhasz, G. et al. The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol. 181, 655-666 (2008).
-
(2008)
J. Cell Biol
, vol.181
, pp. 655-666
-
-
Juhasz, G.1
-
136
-
-
84863116629
-
Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function
-
Jaber, N. et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc. Natl Acad. Sci. USA 109, 2003-2008 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 2003-2008
-
-
Jaber, N.1
-
137
-
-
77649315183
-
Impaired alpha(IIb)beta (3) integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1
-
Elvers, M. et al. Impaired alpha(IIb)beta(3) integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Sci. Signal. 3, ra1 (2010).
-
(2010)
Sci. Signal. 3 ra1
-
-
Elvers, M.1
-
138
-
-
79958129661
-
PLD1 rather than PLD2 regulates phorbol 2011;ester 2011;, adhesion-dependent and Fc{gamma} 2011;receptor 2011;stimulated ROS production in neutrophils
-
Norton, L.J. et al. PLD1 rather than PLD2 regulates phorbol 2011;ester 2011;, adhesion-dependent and Fc{gamma} 2011;receptor 2011;stimulated ROS production in neutrophils. J. Cell Sci. 124, 1973-1983 (2011).
-
(2011)
J. Cell Sci.
, vol.124
, pp. 1973-1983
-
-
Norton, L.J.1
-
139
-
-
4544220704
-
Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity
-
Um, S.H. et al. Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200-205 (2004).
-
(2004)
Nature
, vol.431
, pp. 200-205
-
-
Um, S.H.1
-
140
-
-
14244256097
-
Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: Possible involvement in obesity-linked insulin resistance
-
Khamzina, L., Veilleux, A., Bergeron, S. Marette, A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146, 1473-1481 (2005).
-
(2005)
Endocrinology
, vol.146
, pp. 1473-1481
-
-
Khamzina, L.1
Veilleux, A.2
Bergeron, S.3
Marette, A.4
-
141
-
-
33750922694
-
Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice
-
Korsheninnikova, E. et al. Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice. Diabetologia 49, 3049-3057 (2006).
-
(2006)
Diabetologia
, vol.49
, pp. 3049-3057
-
-
Korsheninnikova, E.1
-
142
-
-
84857819062
-
Metabolic control by S6 kinases depends on dietary lipids
-
Castaneda, T.R. et al. Metabolic control by S6 kinases depends on dietary lipids. PLoS One 7, e32631 (2012).
-
(2012)
PLoS One
, vol.7
-
-
Castaneda, T.R.1
-
143
-
-
77958149976
-
Palmitate induced insulin resistance by PKCtheta-dependent activation of mTOR/S6K pathway in C2C12 myotubes
-
Wang, X. et al. Palmitate induced insulin resistance by PKCtheta-dependent activation of mTOR/S6K pathway in C2C12 myotubes. Exp. Clin. Endocrinol. Diabetes 118, 657-661 (2010).
-
(2010)
Exp. Clin. Endocrinol. Diabetes
, vol.118
, pp. 657-661
-
-
Wang, X.1
-
144
-
-
79953830502
-
Oleate-mediated activation of phospholipase D and mammalian target of rapamycin (mTOR) regulates proliferation and rapamycin sensitivity of hepatocarcinoma cells
-
Arous, C., Naimi, M. Van Obberghen, E. Oleate-mediated activation of phospholipase D and mammalian target of rapamycin (mTOR) regulates proliferation and rapamycin sensitivity of hepatocarcinoma cells. Diabetologia 54, 954-964 (2011).
-
(2011)
Diabetologia
, vol.54
, pp. 954-964
-
-
Arous, C.1
Naimi, M.2
Van Obberghen, E.3
-
145
-
-
70349323414
-
Lipid-induced mTOR activation in rat skeletal muscle reversed by exercise and 5' 2011;aminoimidazole 2011;4 2011;carboxamide 2011;1 2011;beta 2011;D-ribofuranoside
-
Rivas, D.A., Yaspelkis, B.B., 3rd, Hawley, J.A. Lessard, S.J. Lipid-induced mTOR activation in rat skeletal muscle reversed by exercise and 5' 2011;aminoimidazole 2011;4 2011;carboxamide 2011;1 2011;beta 2011;D-ribofuranoside. J. Endocrinol. 202, 441-451 (2009).
-
(2009)
J. Endocrinol
, vol.202
, pp. 441-451
-
-
Rivas, D.A.1
Yaspelkis Iii., B.B.2
Hawley, J.A.3
Lessard, S.J.4
-
146
-
-
34548092167
-
Activation of mammalian target of rapamycin complex1and insulin resistance induced by palmitate in hepatocytes
-
Mordier, S. Iynedjian, P.B. Activation of mammalian target of rapamycin complex1and insulin resistance induced by palmitate in hepatocytes. Biochem. Biophys. Res. Commun. 362, 206-211 (2007).
-
(2007)
Biochem. Biophys. Res. Commun
, vol.362
, pp. 206-211
-
-
Mordier, S.1
Iynedjian, P.B.2
-
147
-
-
69549127966
-
Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis
-
Ichimura, A., Hirasawa, A., Hara, T. Tsujimoto, G. Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis. Prostag. Oth. Lipid M. 89, 82-88 (2009).
-
(2009)
Prostag. Oth. Lipid M.
, vol.89
, pp. 82-88
-
-
Ichimura, A.1
Hirasawa, A.2
Hara, T.3
Tsujimoto, G.4
|