메뉴 건너뛰기




Volumn 32, Issue , 2016, Pages 223-253

The Lysosome as a Regulatory Hub

Author keywords

Autophagy; Cancer metabolism; Lysosomal adaptation; MTORC1; Neurodegeneration; Nutrient sensing; TFEB

Indexed keywords

ARTICLE; AUTOPHAGY; BIOGENESIS; CELL FUNCTION; CELL METABOLISM; EXOCYTOSIS; GENETIC TRANSCRIPTION; ION CURRENT; LYSOSOME; LYSOSOME STORAGE DISEASE; NEOPLASM; NERVE DEGENERATION; NONHUMAN; PRIORITY JOURNAL; SIGNAL TRANSDUCTION; TRANSCRIPTION REGULATION; ANIMAL; DISEASES; HUMAN; METABOLISM;

EID: 84990849636     PISSN: 10810706     EISSN: 15308995     Source Type: Book Series    
DOI: 10.1146/annurev-cellbio-111315-125125     Document Type: Article
Times cited : (417)

References (237)
  • 1
    • 7444237665 scopus 로고    scopus 로고
    • Mutations in the glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews
    • Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R. 2004. Mutations in the glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. N. Engl. J. Med. 351:1972-77
    • (2004) N. Engl. J. Med , vol.351 , pp. 1972-1977
    • Aharon-Peretz, J.1    Rosenbaum, H.2    Gershoni-Baruch, R.3
  • 2
    • 84878643872 scopus 로고    scopus 로고
    • Lysosomal cell death at a glance
    • Aits S, Jaattela M. 2013. Lysosomal cell death at a glance. J. Cell Sci. 126:1905-12
    • (2013) J. Cell Sci , vol.126 , pp. 1905-1912
    • Aits, S.1    Jaattela, M.2
  • 3
    • 0028230738 scopus 로고
    • Ultrastructural analysis of the autophagic process in yeast: Detection of autophagosomes and their characterization
    • Baba M, Takeshige K, Baba N, Ohsumi Y. 1994. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol. 124:903-13
    • (1994) J. Cell Biol , vol.124 , pp. 903-913
    • Baba, M.1    Takeshige, K.2    Baba, N.3    Ohsumi, Y.4
  • 4
    • 62949116803 scopus 로고    scopus 로고
    • Lysosomal disorders: From storage to cellular damage
    • Ballabio A, Gieselmann V. 2009. Lysosomal disorders: from storage to cellular damage. Biochim. Biophys. Acta 1793:684-96
    • (2009) Biochim. Biophys. Acta , vol.1793 , pp. 684-696
    • Ballabio, A.1    Gieselmann, V.2
  • 5
    • 84878357685 scopus 로고    scopus 로고
    • A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
    • Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, et al. 2013. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340:1100-6
    • (2013) Science , vol.340 , pp. 1100-1106
    • Bar-Peled, L.1    Chantranupong, L.2    Cherniack, A.D.3    Chen, W.W.4    Ottina, K.A.5
  • 6
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. 2012. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150:1196-208
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 7
    • 84905826586 scopus 로고    scopus 로고
    • Phase i clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma
    • Barnard RA, Wittenburg LA, Amaravadi RK,Gustafson DL, Thorburn A, Thamm DH. 2014. Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy 10:1415-25
    • (2014) Autophagy , vol.10 , pp. 1415-1425
    • Barnard, R.A.1    Wittenburg, L.A.2    Amaravadi, R.K.3    Gustafson, D.L.4    Thorburn, A.5    Thamm, D.H.6
  • 8
    • 77956063541 scopus 로고    scopus 로고
    • Pathophysiology of neuropathic lysosomal storage disorders
    • Bellettato CM, Scarpa M. 2010. Pathophysiology of neuropathic lysosomal storage disorders. J. Inherit. Metab. Dis. 33:347-62
    • (2010) J. Inherit. Metab. Dis , vol.33 , pp. 347-362
    • Bellettato, C.M.1    Scarpa, M.2
  • 9
    • 84957899529 scopus 로고    scopus 로고
    • MTORC1induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle
    • Ben-Sahra I,HoxhajG, Ricoult SJ, Asara JM,Manning BD. 2016.mTORC1induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351:728-33
    • (2016) Science , vol.351 , pp. 728-733
    • Ben-Sahra, I.1    Hoxhaj, G.2    Ricoult, S.J.3    Asara, J.M.4    Manning, B.D.5
  • 11
    • 27944504351 scopus 로고    scopus 로고
    • P62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
    • Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, et al. 2005. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171:603-14
    • (2005) J. Cell Biol , vol.171 , pp. 603-614
    • Bjorkoy, G.1    Lamark, T.2    Brech, A.3    Outzen, H.4    Perander, M.5
  • 12
    • 84927175720 scopus 로고    scopus 로고
    • Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs
    • Bowman CJ, Ayer DE, Dynlacht BD. 2014. Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs. Nat. Cell Biol. 16:1202-14
    • (2014) Nat. Cell Biol , vol.16 , pp. 1202-1214
    • Bowman, C.J.1    Ayer, D.E.2    Dynlacht, B.D.3
  • 13
    • 48449101433 scopus 로고    scopus 로고
    • P53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling
    • Budanov AV, Karin M. 2008. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134:451-60
    • (2008) Cell , vol.134 , pp. 451-460
    • Budanov, A.V.1    Karin, M.2
  • 15
    • 0030727535 scopus 로고    scopus 로고
    • Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution
    • Burkhardt JK, Echeverri CJ, Nilsson T, Vallee RB. 1997. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139:469-84
    • (1997) J. Cell Biol , vol.139 , pp. 469-484
    • Burkhardt, J.K.1    Echeverri, C.J.2    Nilsson, T.3    Vallee, R.B.4
  • 16
    • 84874105202 scopus 로고    scopus 로고
    • MTORregulates lysosomalATP-sensitive two-pore Na+ channels to adapt to metabolic state
    • CangC,ZhouY,Navarro B, Seo YJ, Aranda K, et al. 2013.mTORregulates lysosomalATP-sensitive two-pore Na+ channels to adapt to metabolic state. Cell 152:778-90
    • (2013) Cell , vol.152 , pp. 778-790
    • Cang, C.1    Zhou, Y.2    Navarro, B.3    Seo, Y.J.4    Aranda, K.5
  • 17
    • 0030863352 scopus 로고    scopus 로고
    • Niemann-Pick C1 disease gene: Homology to mediators of cholesterol homeostasis
    • Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, et al. 1997. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:228-31
    • (1997) Science , vol.277 , pp. 228-231
    • Carstea, E.D.1    Morris, J.A.2    Coleman, K.G.3    Loftus, S.K.4    Zhang, D.5
  • 18
    • 84959880781 scopus 로고    scopus 로고
    • The CASTOR proteins are arginine sensors for the mTORC1 pathway
    • Chantranupong L, Scaria SM, Saxton RA, GygiMP, Shen K, et al. 2016. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165:153-64
    • (2016) Cell , vol.165 , pp. 153-164
    • Chantranupong, L.1    Scaria, S.M.2    Saxton, R.A.3    Gygi, M.P.4    Shen, K.5
  • 19
    • 84907991157 scopus 로고    scopus 로고
    • The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1
    • Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, et al. 2014. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep. 9:1-8
    • (2014) Cell Rep , vol.9 , pp. 1-8
    • Chantranupong, L.1    Wolfson, R.L.2    Orozco, J.M.3    Saxton, R.A.4    Scaria, S.M.5
  • 20
    • 84925873653 scopus 로고    scopus 로고
    • Nutrient-sensing mechanisms across evolution
    • Chantranupong L, Wolfson RL, Sabatini DM. 2015. Nutrient-sensing mechanisms across evolution. Cell 161:67-83
    • (2015) Cell , vol.161 , pp. 67-83
    • Chantranupong, L.1    Wolfson, R.L.2    Sabatini, D.M.3
  • 21
    • 84878707013 scopus 로고    scopus 로고
    • An extended proteome map of the lysosomal membrane reveals novel potential transporters
    • Chapel A, Kieffer-Jaquinod S, Sagne C, Verdon Q, Ivaldi C, et al. 2013. An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol. Cell. Proteom. 12:1572-88
    • (2013) Mol. Cell. Proteom , vol.12 , pp. 1572-1588
    • Chapel, A.1    Kieffer-Jaquinod, S.2    Sagne, C.3    Verdon, Q.4    Ivaldi, C.5
  • 23
    • 84921960605 scopus 로고    scopus 로고
    • The intracellular Ca2+ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy
    • Cheng X, Zhang X, Gao Q, Ali Samie M, Azar M, et al. 2014. The intracellular Ca2+ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nat. Med. 20:1187-92
    • (2014) Nat. Med , vol.20 , pp. 1187-1192
    • Cheng, X.1    Zhang, X.2    Gao, Q.3    Ali Samie, M.4    Azar, M.5
  • 24
    • 34447133038 scopus 로고    scopus 로고
    • Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J
    • Chow CY, Zhang Y, Dowling JJ, Jin N, AdamskaM, et al. 2007. Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448:68-72
    • (2007) Nature , vol.448 , pp. 68-72
    • Chow, C.Y.1    Zhang, Y.2    Dowling, J.J.3    Jin, N.4    Adamska, M.5
  • 25
    • 84927126103 scopus 로고    scopus 로고
    • Cholesterol transport through lysosome-peroxisome membrane contacts
    • Chu BB, Liao YC, Qi W, Xie C, Du X, et al. 2015. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161:291-306
    • (2015) Cell , vol.161 , pp. 291-306
    • Chu, B.B.1    Liao, Y.C.2    Qi, W.3    Xie, C.4    Du, X.5
  • 27
    • 0037422066 scopus 로고    scopus 로고
    • Regulated portals of entry into the cell
    • Conner SD, Schmid SL. 2003. Regulated portals of entry into the cell. Nature 422:37-44
    • (2003) Nature , vol.422 , pp. 37-44
    • Conner, S.D.1    Schmid, S.L.2
  • 28
    • 82755181717 scopus 로고    scopus 로고
    • The cellular pathology of lysosomal diseases
    • Cox TM, Cachon-Gonzalez MB. 2012. The cellular pathology of lysosomal diseases. J. Pathol. 226:241-54
    • (2012) J. Pathol , vol.226 , pp. 241-254
    • Cox, T.M.1    Cachon-Gonzalez, M.B.2
  • 30
    • 0037609538 scopus 로고    scopus 로고
    • Cloning of an α-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation
    • Davis IJ, Hsi BL, Arroyo JD, Vargas SO, Yeh YA, et al. 2003. Cloning of an α-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. PNAS 100:6051-56
    • (2003) PNAS , vol.100 , pp. 6051-6056
    • Davis, I.J.1    Hsi, B.L.2    Arroyo, J.D.3    Vargas, S.O.4    Yeh, Y.A.5
  • 31
    • 26944475263 scopus 로고    scopus 로고
    • The lysosome turns fifty
    • de Duve C. 2005. The lysosome turns fifty. Nat. Cell Biol. 7:847-49
    • (2005) Nat. Cell Biol , vol.7 , pp. 847-849
    • De Duve, C.1
  • 33
    • 84877351078 scopus 로고    scopus 로고
    • TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity
    • Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Bjorklund A. 2013. TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. PNAS 110:1817-26
    • (2013) PNAS , vol.110 , pp. 1817-1826
    • Decressac, M.1    Mattsson, B.2    Weikop, P.3    Lundblad, M.4    Jakobsson, J.5    Bjorklund, A.6
  • 34
    • 84894212463 scopus 로고    scopus 로고
    • Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
    • Demetriades C, Doumpas N, Teleman AA. 2014. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156:786-99
    • (2014) Cell , vol.156 , pp. 786-799
    • Demetriades, C.1    Doumpas, N.2    Teleman, A.A.3
  • 35
    • 84947704464 scopus 로고    scopus 로고
    • Cancer's fuel choice: New flavors for a picky eater
    • DeNicola GM, Cantley LC. 2015. Cancer's fuel choice: new flavors for a picky eater. Mol. Cell 60:514-23
    • (2015) Mol. Cell , vol.60 , pp. 514-523
    • DeNicola, G.M.1    Cantley, L.C.2
  • 36
    • 67649607465 scopus 로고    scopus 로고
    • Autophagy, immunity, and microbial adaptations
    • Deretic V, Levine B. 2009. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5:527-49
    • (2009) Cell Host Microbe , vol.5 , pp. 527-549
    • Deretic, V.1    Levine, B.2
  • 38
    • 33749836234 scopus 로고    scopus 로고
    • Phosphoinositides in cell regulation and membrane dynamics
    • Di Paolo G, De Camilli P. 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651-57
    • (2006) Nature , vol.443 , pp. 651-657
    • Di Paolo, G.1    De Camilli, P.2
  • 39
    • 84928550400 scopus 로고    scopus 로고
    • ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
    • Diao J, Liu R, Rong Y, Zhao M, Zhang J, et al. 2015. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520:563-66
    • (2015) Nature , vol.520 , pp. 563-566
    • Diao, J.1    Liu, R.2    Rong, Y.3    Zhao, M.4    Zhang, J.5
  • 40
    • 79957971892 scopus 로고    scopus 로고
    • A conserved coatomer-related complex containing Sec 13 and Seh1 dynamically associates with the vacuole in Saccharomyces cerevisiae
    • M110.06478
    • Dokudovskaya S,Waharte F, Schlessinger A, Pieper U, Devos DP, et al. 2011. A conserved coatomer-related complex containing Sec 13 and Seh1 dynamically associates with the vacuole in Saccharomyces cerevisiae. Mol. Cell. Proteom. 10:M110.06478
    • (2011) Mol. Cell. Proteom , vol.10
    • Dokudovskaya, S.1    Waharte, F.2    Schlessinger, A.3    Pieper, U.4    Devos, D.P.5
  • 41
    • 54049156405 scopus 로고    scopus 로고
    • The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel
    • Dong XP, Cheng X, Mills E, Delling M,Wang F, et al. 2008. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455:992-96
    • (2008) Nature , vol.455 , pp. 992-996
    • Dong, X.P.1    Cheng, X.2    Mills, E.3    Delling, M.4    Wang, F.5
  • 43
    • 84908395617 scopus 로고    scopus 로고
    • Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states
    • Durr KL, Chen L, Stein RA, De Zorzi R, Folea IM, et al. 2014. Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Cell 158:778-92
    • (2014) Cell , vol.158 , pp. 778-792
    • Durr, K.L.1    Chen, L.2    Stein, R.A.3    De Zorzi, R.4    Folea, I.M.5
  • 44
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, et al. 2010. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39:171-83
    • (2010) Mol. Cell , vol.39 , pp. 171-183
    • Duvel, K.1    Yecies, J.L.2    Menon, S.3    Raman, P.4    Lipovsky, A.I.5
  • 45
    • 63649154351 scopus 로고    scopus 로고
    • A molecular mechanism of bacterial flagellar motor switching
    • Dyer CM, Vartanian AS, Zhou H, Dahlquist FW. 2009. A molecular mechanism of bacterial flagellar motor switching. J. Mol. Biol. 388:71-84
    • (2009) J. Mol. Biol , vol.388 , pp. 71-84
    • Dyer, C.M.1    Vartanian, A.S.2    Zhou, H.3    Dahlquist, F.W.4
  • 46
    • 22044457181 scopus 로고    scopus 로고
    • The Fab1 phosphatidylinositol kinase pathway in the regulation of vacuole morphology
    • Efe JA, Botelho RJ, Emr SD. 2005. The Fab1 phosphatidylinositol kinase pathway in the regulation of vacuole morphology. Curr. Opin. Cell Biol. 17:402-8
    • (2005) Curr. Opin. Cell Biol , vol.17 , pp. 402-408
    • Efe, J.A.1    Botelho, R.J.2    Emr, S.D.3
  • 47
    • 84865592978 scopus 로고    scopus 로고
    • Amino acids and mTORC1: From lysosomes to disease
    • Efeyan A, Zoncu R, Sabatini DM. 2012. Amino acids and mTORC1: from lysosomes to disease. Trends Mol. Med. 18:524-33
    • (2012) Trends Mol. Med , vol.18 , pp. 524-533
    • Efeyan, A.1    Zoncu, R.2    Sabatini, D.M.3
  • 48
    • 80053476420 scopus 로고    scopus 로고
    • The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR
    • Egan D, Kim J, Shaw RJ, Guan KL. 2011. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7:643-44
    • (2011) Autophagy , vol.7 , pp. 643-644
    • Egan, D.1    Kim, J.2    Shaw, R.J.3    Guan, K.L.4
  • 50
    • 0015372521 scopus 로고
    • Cytochemical localization of acid phosphatase activity in granule fractions from rabbit polymorphonuclear leukocytes
    • Farquhar MG, Bainton DF, Baggiolini M, de Duve C. 1972. Cytochemical localization of acid phosphatase activity in granule fractions from rabbit polymorphonuclear leukocytes. J. Cell Biol. 54:141-56
    • (1972) J. Cell Biol , vol.54 , pp. 141-156
    • Farquhar, M.G.1    Bainton, D.F.2    Baggiolini, M.3    De Duve, C.4
  • 51
    • 35948983328 scopus 로고    scopus 로고
    • Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease
    • Filimonenko M, Stuffers S, Raiborg C, Yamamoto A,Malerod L, et al. 2007. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179:485-500
    • (2007) J. Cell Biol , vol.179 , pp. 485-500
    • Filimonenko, M.1    Stuffers, S.2    Raiborg, C.3    Yamamoto, A.4    Malerod, L.5
  • 52
    • 84923295947 scopus 로고    scopus 로고
    • Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans
    • Folick A, Oakley HD, Yu Y, Armstrong EH, Kumari M, et al. 2015. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans. Science 347:83-86
    • (2015) Science , vol.347 , pp. 83-86
    • Folick, A.1    Oakley, H.D.2    Yu, Y.3    Armstrong, E.H.4    Kumari, M.5
  • 53
    • 35448946098 scopus 로고    scopus 로고
    • Vacuolar ATPases: Rotary proton pumps in physiology and pathophysiology
    • Forgac M. 2007. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8:917-29
    • (2007) Nat. Rev. Mol. Cell Biol , vol.8 , pp. 917-929
    • Forgac, M.1
  • 54
    • 21844478747 scopus 로고    scopus 로고
    • Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma
    • Garraway LA, Widlund HR, RubinMA, Getz G, Berger AJ, et al. 2005. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436:117-22
    • (2005) Nature , vol.436 , pp. 117-122
    • Garraway, L.A.1    Widlund, H.R.2    Rubin, M.A.3    Getz, G.4    Berger, A.J.5
  • 57
    • 84925851378 scopus 로고    scopus 로고
    • A century of cholesterol and coronaries: From plaques to genes to statins
    • Goldstein JL, Brown MS. 2015. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161:161-72
    • (2015) Cell , vol.161 , pp. 161-172
    • Goldstein, J.L.1    Brown, M.S.2
  • 58
    • 84919480908 scopus 로고    scopus 로고
    • Modeling alveolar soft part sarcomagenesis in the mouse: A role for lactate in the tumor microenvironment
    • GoodwinML, Jin H, Straessler K, Smith-FryK,Zhu JF, et al. 2014. Modeling alveolar soft part sarcomagenesis in the mouse: a role for lactate in the tumor microenvironment. Cancer Cell 26:851-62
    • (2014) Cancer Cell , vol.26 , pp. 851-862
    • Goodwin, M.L.1    Jin, H.2    Straessler, K.3    Smith-Fry, K.4    Zhu, J.F.5
  • 59
    • 84925284243 scopus 로고    scopus 로고
    • O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation
    • GuoB,LiangQ,LiL,HuZ,Wu F, et al. 2014.O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat. Cell Biol. 16:1215-26
    • (2014) Nat. Cell Biol , vol.16 , pp. 1215-1226
    • Guo, B.1    Liang, Q.2    Li, L.3    Hu, Z.4    Wu, F.5
  • 60
    • 79952228407 scopus 로고    scopus 로고
    • Activated Ras requires autophagy tomaintain oxidative metabolism and tumorigenesis
    • Guo JY, Chen HY,Mathew R, Fan J, Strohecker AM, et al. 2011. Activated Ras requires autophagy tomaintain oxidative metabolism and tumorigenesis. Genes Dev. 25:460-70
    • (2011) Genes Dev , vol.25 , pp. 460-470
    • Guo, J.Y.1    Chen, H.Y.2    Mathew, R.3    Fan, J.4    Strohecker, A.M.5
  • 61
    • 10944253145 scopus 로고    scopus 로고
    • Autophagy is a defense mechanism inhibiting BCGand Mycobacterium tuberculosis survival in infected macrophages
    • Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. 2004. Autophagy is a defense mechanism inhibiting BCGand Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753-66
    • (2004) Cell , vol.119 , pp. 753-766
    • Gutierrez, M.G.1    Master, S.S.2    Singh, S.B.3    Taylor, G.A.4    Colombo, M.I.5    Deretic, V.6
  • 62
    • 80052753295 scopus 로고    scopus 로고
    • Biology and clinical relevance of the micropthalmia family of transcription factors in human cancer
    • Haq R, Fisher DE. 2011. Biology and clinical relevance of the micropthalmia family of transcription factors in human cancer. J. Clin. Oncol. 29:3474-82
    • (2011) J. Clin. Oncol , vol.29 , pp. 3474-3482
    • Haq, R.1    Fisher, D.E.2
  • 63
    • 33745192802 scopus 로고    scopus 로고
    • Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
    • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, et al. 2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885-89
    • (2006) Nature , vol.441 , pp. 885-889
    • Hara, T.1    Nakamura, K.2    Matsui, M.3    Yamamoto, A.4    Nakahara, Y.5
  • 64
    • 0032489870 scopus 로고    scopus 로고
    • Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein
    • Harada A, Takei Y, Kanai Y, Tanaka Y, Nonaka S, Hirokawa N. 1998. Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J. Cell Biol. 141:51-59
    • (1998) J. Cell Biol , vol.141 , pp. 51-59
    • Harada, A.1    Takei, Y.2    Kanai, Y.3    Tanaka, Y.4    Nonaka, S.5    Hirokawa, N.6
  • 65
    • 72549095406 scopus 로고    scopus 로고
    • Regulation mechanisms and signaling pathways of autophagy
    • He C, Klionsky DJ. 2009. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43:67-93
    • (2009) Annu. Rev. Genet , vol.43 , pp. 67-93
    • He, C.1    Klionsky, D.J.2
  • 67
    • 84904255813 scopus 로고    scopus 로고
    • Cellular metabolism regulates contact sites between vacuoles and mitochondria
    • Honscher C, Mari M, Auffarth K, Bohnert M, Griffith J, et al. 2014. Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev. Cell 30:86-94
    • (2014) Dev. Cell , vol.30 , pp. 86-94
    • Honscher, C.1    Mari, M.2    Auffarth, K.3    Bohnert, M.4    Griffith, J.5
  • 68
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependentmTORC1association with the ULK1-Atg13-FIP200 complex required for autophagy
    • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, et al. 2009. Nutrient-dependentmTORC1association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20:1981-91
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1981-1991
    • Hosokawa, N.1    Hara, T.2    Kaizuka, T.3    Kishi, C.4    Takamura, A.5
  • 69
    • 84898639632 scopus 로고    scopus 로고
    • Atomistic autophagy: The structures of cellular self-digestion
    • Hurley JH, Schulman BA. 2014. Atomistic autophagy: the structures of cellular self-digestion. Cell 157:300-11
    • (2014) Cell , vol.157 , pp. 300-311
    • Hurley, J.H.1    Schulman, B.A.2
  • 70
    • 0043127125 scopus 로고    scopus 로고
    • Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
    • Inoki K, Li Y, Xu T, Guan KL. 2003. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17:1829-34
    • (2003) Genes Dev , vol.17 , pp. 1829-1834
    • Inoki, K.1    Li, Y.2    Xu, T.3    Guan, K.L.4
  • 72
    • 84870880174 scopus 로고    scopus 로고
    • The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
    • Itakura E, Kishi-Itakura C, Mizushima N. 2012. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:1256-69
    • (2012) Cell , vol.151 , pp. 1256-1269
    • Itakura, E.1    Kishi-Itakura, C.2    Mizushima, N.3
  • 73
    • 84922727084 scopus 로고    scopus 로고
    • Differential regulation of mTORC1 by leucine and glutamine
    • Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, et al. 2015. Differential regulation of mTORC1 by leucine and glutamine. Science 347:194-98
    • (2015) Science , vol.347 , pp. 194-198
    • Jewell, J.L.1    Kim, Y.C.2    Russell, R.C.3    Yu, F.X.4    Park, H.W.5
  • 75
    • 84870947500 scopus 로고    scopus 로고
    • Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy
    • Jezegou A, Llinares E, Anne C, Kieffer-Jaquinod S, O'Regan S, et al. 2012. Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. PNAS 109:3434-43
    • (2012) PNAS , vol.109 , pp. 3434-3443
    • Jezegou, A.1    Llinares, E.2    Anne, C.3    Kieffer-Jaquinod, S.4    O'Regan, S.5
  • 76
    • 84978796152 scopus 로고    scopus 로고
    • The position of lysosomes within the cell determines their luminal pH
    • Johnson DE, Ostrowski P, Jaumouille V, Grinstein S. 2016. The position of lysosomes within the cell determines their luminal pH. J. Cell Biol. 212:677-92
    • (2016) J. Cell Biol , vol.212 , pp. 677-692
    • Johnson, D.E.1    Ostrowski, P.2    Jaumouille, V.3    Grinstein, S.4
  • 77
    • 84856768251 scopus 로고    scopus 로고
    • Regulation of membrane protein degradation by starvation-response pathways
    • Jones CB, Ott EM, Keener JM, Curtiss M, Sandrin V, Babst M. 2012. Regulation of membrane protein degradation by starvation-response pathways. Traffic 13:468-82
    • (2012) Traffic , vol.13 , pp. 468-482
    • Jones, C.B.1    Ott, E.M.2    Keener, J.M.3    Curtiss, M.4    Sandrin, V.5    Babst, M.6
  • 78
    • 84932638310 scopus 로고    scopus 로고
    • Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9
    • Jung J, Genau HM, Behrends C. 2015. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol. Cell. Biol. 35:2479-94
    • (2015) Mol. Cell. Biol , vol.35 , pp. 2479-2494
    • Jung, J.1    Genau, H.M.2    Behrends, C.3
  • 80
    • 84878464291 scopus 로고    scopus 로고
    • Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids
    • Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R, et al. 2013. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. PNAS 110:8882-87
    • (2013) PNAS , vol.110 , pp. 8882-8887
    • Kamphorst, J.J.1    Cross, J.R.2    Fan, J.3    De Stanchina, E.4    Mathew, R.5
  • 81
    • 84961288972 scopus 로고    scopus 로고
    • Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein
    • Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, et al. 2015. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75:544-53
    • (2015) Cancer Res , vol.75 , pp. 544-553
    • Kamphorst, J.J.1    Nofal, M.2    Commisso, C.3    Hackett, S.R.4    Lu, W.5
  • 82
    • 84905497318 scopus 로고    scopus 로고
    • Autophagy is required for glucose homeostasis and lung tumor maintenance
    • Karsli-Uzunbas G, Guo JY, Price S, Teng X, Laddha SV, et al. 2014. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 4:914-27
    • (2014) Cancer Discov , vol.4 , pp. 914-927
    • Karsli-Uzunbas, G.1    Guo, J.Y.2    Price, S.3    Teng, X.4    Laddha, S.V.5
  • 84
    • 84938072487 scopus 로고    scopus 로고
    • Autophagy at the crossroads of catabolism and anabolism
    • Kaur J, Debnath J. 2015. Autophagy at the crossroads of catabolism and anabolism. Nat. Rev. Mol. Cell Biol. 16:461-72
    • (2015) Nat. Rev. Mol. Cell Biol , vol.16 , pp. 461-472
    • Kaur, J.1    Debnath, J.2
  • 85
    • 84864318195 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy: A unique way to enter the lysosome world
    • Kaushik S, Cuervo AM. 2012. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 22:407-17
    • (2012) Trends Cell Biol , vol.22 , pp. 407-417
    • Kaushik, S.1    Cuervo, A.M.2
  • 86
    • 84877311822 scopus 로고    scopus 로고
    • Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses
    • Kenzelmann Broz D, Spano Mello S, Bieging KT, Jiang D, Dusek RL, et al. 2013. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 27:1016-31
    • (2013) Genes Dev , vol.27 , pp. 1016-1031
    • Kenzelmann Broz, D.1    Spano Mello, S.2    Bieging, K.T.3    Jiang, D.4    Dusek, R.L.5
  • 88
    • 0024022640 scopus 로고
    • Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae
    • Kitamoto K, Yoshizawa K, Ohsumi Y, Anraku Y. 1988. Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae. J. Bacteriol. 170:2683-86
    • (1988) J. Bacteriol , vol.170 , pp. 2683-2686
    • Kitamoto, K.1    Yoshizawa, K.2    Ohsumi, Y.3    Anraku, Y.4
  • 89
  • 90
    • 33646800306 scopus 로고    scopus 로고
    • Loss of autophagy in the central nervous system causes neurodegeneration in mice
    • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, et al. 2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880-84
    • (2006) Nature , vol.441 , pp. 880-884
    • Komatsu, M.1    Waguri, S.2    Chiba, T.3    Murata, S.4    Iwata, J.5
  • 93
    • 50249128591 scopus 로고    scopus 로고
    • Is the Rsp5 ubiquitin ligase involved in the regulation of ribophagy?
    • Kraft C, Peter M. 2008. Is the Rsp5 ubiquitin ligase involved in the regulation of ribophagy? Autophagy 4:838-40
    • (2008) Autophagy , vol.4 , pp. 838-840
    • Kraft, C.1    Peter, M.2
  • 94
    • 84920400982 scopus 로고    scopus 로고
    • Autophagy: A druggable process that is deregulated in aging and human disease
    • Kroemer G. 2015. Autophagy: a druggable process that is deregulated in aging and human disease. J. Clin. Investig. 125:1-4
    • (2015) J. Clin. Investig , vol.125 , pp. 1-4
    • Kroemer, G.1
  • 95
    • 0042309581 scopus 로고    scopus 로고
    • Upregulation of the transcription factorTFEBin t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution
    • Kuiper RP, Schepens M, Thijssen J, van Asseldonk M, van den Berg E, et al. 2003. Upregulation of the transcription factorTFEBin t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. Hum. Mol. Genet. 12:1661-69
    • (2003) Hum. Mol. Genet , vol.12 , pp. 1661-1669
    • Kuiper, R.P.1    Schepens, M.2    Thijssen, J.3    Van Asseldonk, M.4    Vanden Berg, E.5
  • 96
    • 84900012487 scopus 로고    scopus 로고
    • Principles of membrane tethering and fusion in endosome and lysosome biogenesis
    • Kummel D, Ungermann C. 2014. Principles of membrane tethering and fusion in endosome and lysosome biogenesis. Curr. Opin. Cell Biol. 29:61-66
    • (2014) Curr. Opin. Cell Biol , vol.29 , pp. 61-66
    • Kummel, D.1    Ungermann, C.2
  • 97
    • 67549105629 scopus 로고    scopus 로고
    • Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol
    • Kwon HJ, Abi-Mosleh L,WangML, Deisenhofer J,Goldstein JL, et al. 2009. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137:1213-24
    • (2009) Cell , vol.137 , pp. 1213-1224
    • Kwon, H.J.1    Abi-Mosleh, L.2    Wang, M.L.3    Deisenhofer, J.4    Goldstein, J.L.5
  • 98
    • 0035804224 scopus 로고    scopus 로고
    • The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25
    • Ladanyi M, Lui MY, Antonescu CR, Krause-Boehm A, Meindl A, et al. 2001. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 20:48-57
    • (2001) Oncogene , vol.20 , pp. 48-57
    • Ladanyi, M.1    Lui, M.Y.2    Antonescu, C.R.3    Krause-Boehm, A.4    Meindl, A.5
  • 100
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149:274-93
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 101
    • 84857032953 scopus 로고    scopus 로고
    • Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
    • Lazarou M, Jin SM, Kane LA, Youle RJ. 2012. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell 22:320-33
    • (2012) Dev. Cell , vol.22 , pp. 320-333
    • Lazarou, M.1    Jin, S.M.2    Kane, L.A.3    Youle, R.J.4
  • 102
    • 84923031534 scopus 로고    scopus 로고
    • Nutrient-sensing nuclear receptors coordinate autophagy
    • Lee JM, Wagner M, Xiao R, Kim KH, Feng D, et al. 2014. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516:112-15
    • (2014) Nature , vol.516 , pp. 112-115
    • Lee, J.M.1    Wagner, M.2    Xiao, R.3    Kim, K.H.4    Feng, D.5
  • 103
    • 62949218373 scopus 로고    scopus 로고
    • The yeast lysosome-like vacuole: Endpoint and crossroads
    • Li SC, Kane PM. 2009. The yeast lysosome-like vacuole: endpoint and crossroads. Biochim. Biophys. Acta 1793:650-63
    • (2009) Biochim. Biophys. Acta , vol.1793 , pp. 650-663
    • Li, S.C.1    Kane, P.M.2
  • 104
    • 84960158035 scopus 로고    scopus 로고
    • A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation
    • Li X, Rydzewski N, Hider A, Zhang X, Yang J, et al. 2016. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat. Cell Biol. 8:404-17
    • (2016) Nat. Cell Biol , vol.8 , pp. 404-417
    • Li, X.1    Rydzewski, N.2    Hider, A.3    Zhang, X.4    Yang, J.5
  • 106
    • 55549102963 scopus 로고    scopus 로고
    • Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface
    • Lin CH, MacGurn JA, Chu T, Stefan CJ, Emr SD. 2008. Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135:714-25
    • (2008) Cell , vol.135 , pp. 714-725
    • Lin, C.H.1    MacGurn, J.A.2    Chu, T.3    Stefan, C.J.4    Emr, S.D.5
  • 107
    • 84863997137 scopus 로고    scopus 로고
    • LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis
    • Liu B, Du H, Rutkowski R, Gartner A,Wang X. 2012. LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis. Science 337:351-54
    • (2012) Science , vol.337 , pp. 351-354
    • Liu, B.1    Du, H.2    Rutkowski, R.3    Gartner, A.4    Wang, X.5
  • 108
    • 55549134611 scopus 로고    scopus 로고
    • Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium
    • Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, et al. 2008. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat. Med. 14:1247-55
    • (2008) Nat. Med , vol.14 , pp. 1247-1255
    • Lloyd-Evans, E.1    Morgan, A.J.2    He, X.3    Smith, D.A.4    Elliot-Smith, E.5
  • 109
    • 78751511180 scopus 로고    scopus 로고
    • Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation
    • Lock R, Roy S, Kenific CM, Su JS, Salas E, et al. 2011. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell 22:165-78
    • (2011) Mol. Biol. Cell , vol.22 , pp. 165-178
    • Lock, R.1    Roy, S.2    Kenific, C.M.3    Su, J.S.4    Salas, E.5
  • 110
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
    • Lunt SY, Vander Heiden MG. 2011. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27:441-64
    • (2011) Annu. Rev. Cell Dev. Biol , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 112
    • 84896757312 scopus 로고    scopus 로고
    • Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma
    • Ma XH, Piao SF, Dey S, McAfee Q, Karakousis G, et al. 2014. Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J. Clin. Investig. 124:1406-17
    • (2014) J. Clin. Investig , vol.124 , pp. 1406-1417
    • Ma, X.H.1    Piao, S.F.2    Dey, S.3    McAfee, Q.4    Karakousis, G.5
  • 113
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma XM, Blenis J. 2009. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10:307-18
    • (2009) Nat. Rev. Mol. Cell Biol , vol.10 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 114
    • 81855183664 scopus 로고    scopus 로고
    • TORC1 regulates endocytosis via Npr1-mediated phosphoinhibition of a ubiquitin ligase adaptor
    • MacGurn JA, Hsu PC, Smolka MB, Emr SD. 2011. TORC1 regulates endocytosis via Npr1-mediated phosphoinhibition of a ubiquitin ligase adaptor. Cell 147:1104-17
    • (2011) Cell , vol.147 , pp. 1104-1117
    • MacGurn, J.A.1    Hsu, P.C.2    Smolka, M.B.3    Emr, S.D.4
  • 115
    • 84883291965 scopus 로고    scopus 로고
    • Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
    • Maejima I, Takahashi A, Omori H, Kimura T, Takabatake Y, et al. 2013. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32:2336-47
    • (2013) EMBO J , vol.32 , pp. 2336-2347
    • Maejima, I.1    Takahashi, A.2    Omori, H.3    Kimura, T.4    Takabatake, Y.5
  • 116
    • 84904062324 scopus 로고    scopus 로고
    • Combined autophagy and HDAC inhibition: A phase i safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors
    • Mahalingam D, Mita M, Sarantopoulos J, Wood L, Amaravadi RK, et al. 2014. Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 10:1403-14
    • (2014) Autophagy , vol.10 , pp. 1403-1414
    • Mahalingam, D.1    Mita, M.2    Sarantopoulos, J.3    Wood, L.4    Amaravadi, R.K.5
  • 118
    • 84923762495 scopus 로고    scopus 로고
    • Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells
    • Marchand B, Arsenault D, Raymond-Fleury A, Boisvert FM, Boucher MJ. 2015. Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells. J. Biol. Chem. 290:5592-605
    • (2015) J. Biol. Chem , vol.290 , pp. 5592-5605
    • Marchand, B.1    Arsenault, D.2    Raymond-Fleury, A.3    Boisvert, F.M.4    Boucher, M.J.5
  • 119
    • 84883450687 scopus 로고    scopus 로고
    • Lysosome-related organelles: Unusual compartments become mainstream
    • Marks MS, Heijnen HF, Raposo G. 2013. Lysosome-related organelles: Unusual compartments become mainstream. Curr. Opin. Cell Biol. 25:495-505
    • (2013) Curr. Opin. Cell Biol , vol.25 , pp. 495-505
    • Marks, M.S.1    Heijnen, H.F.2    Raposo, G.3
  • 120
    • 84864874958 scopus 로고    scopus 로고
    • MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
    • Martina JA, Chen Y, Gucek M, Puertollano R. 2012. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8:903-14
    • (2012) Autophagy , vol.8 , pp. 903-914
    • Martina, J.A.1    Chen, Y.2    Gucek, M.3    Puertollano, R.4
  • 121
    • 84874352229 scopus 로고    scopus 로고
    • Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes
    • Martina JA, Puertollano R. 2013. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 200:475-91
    • (2013) J. Cell Biol , vol.200 , pp. 475-491
    • Martina, J.A.1    Puertollano, R.2
  • 122
    • 79960009804 scopus 로고    scopus 로고
    • Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies
    • Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, et al. 2011. Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146:37-52
    • (2011) Cell , vol.146 , pp. 37-52
    • Mazzulli, J.R.1    Xu, Y.H.2    Sun, Y.3    Knight, A.L.4    McLean, P.J.5
  • 123
    • 84861434652 scopus 로고    scopus 로고
    • Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency
    • McAfee Q, Zhang Z, Samanta A, Levi SM, Ma XH, et al. 2012. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. PNAS 109:8253-58
    • (2012) PNAS , vol.109 , pp. 8253-8258
    • McAfee, Q.1    Zhang, Z.2    Samanta, A.3    Levi, S.M.4    Ma, X.H.5
  • 125
    • 84920448565 scopus 로고    scopus 로고
    • PLEKHM1 regulates autophagosomelysosome fusion through HOPS complex and LC3/GABARAP proteins
    • McEwan DG, Popovic D, Gubas A, Terawaki S, SuzukiH, et al. 2015. PLEKHM1 regulates autophagosomelysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57:39-54
    • (2015) Mol. Cell , vol.57 , pp. 39-54
    • McEwan, D.G.1    Popovic, D.2    Gubas, A.3    Terawaki, S.4    Suzuki, H.5
  • 126
    • 84923820926 scopus 로고    scopus 로고
    • Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB
    • Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, et al. 2015. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 17:288-99
    • (2015) Nat. Cell Biol , vol.17 , pp. 288-299
    • Medina, D.L.1    Di Paola, S.2    Peluso, I.3    Armani, A.4    De Stefani, D.5
  • 127
    • 80052729465 scopus 로고    scopus 로고
    • Transcriptional activation of lysosomal exocytosis promotes cellular clearance
    • Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G, et al. 2011. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 21:421-30
    • (2011) Dev. Cell , vol.21 , pp. 421-430
    • Medina, D.L.1    Fraldi, A.2    Bouche, V.3    Annunziata, F.4    Mansueto, G.5
  • 128
    • 84894114029 scopus 로고    scopus 로고
    • Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
    • Menon S, Dibble CC, Talbott G, Hoxhaj G, Valvezan AJ, et al. 2014. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156:771-85
    • (2014) Cell , vol.156 , pp. 771-785
    • Menon, S.1    Dibble, C.C.2    Talbott, G.3    Hoxhaj, G.4    Valvezan, A.J.5
  • 130
    • 84857260144 scopus 로고    scopus 로고
    • Lysosomal acidification mechanisms
    • Mindell JA. 2012. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 74:69-86
    • (2012) Annu. Rev. Physiol , vol.74 , pp. 69-86
    • Mindell, J.A.1
  • 131
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: Renovation of cells and tissues
    • Mizushima N, Komatsu M. 2011. Autophagy: renovation of cells and tissues. Cell 147:728-41
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 132
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular selfdigestion
    • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. 2008. Autophagy fights disease through cellular selfdigestion. Nature 451:1069-75
    • (2008) Nature , vol.451 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3    Klionsky, D.J.4
  • 133
    • 84934449988 scopus 로고    scopus 로고
    • Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus
    • Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, et al. 2015. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522:359-62
    • (2015) Nature , vol.522 , pp. 359-362
    • Mochida, K.1    Oikawa, Y.2    Kimura, Y.3    Kirisako, H.4    Hirano, H.5
  • 134
    • 85018214749 scopus 로고    scopus 로고
    • The coordinated action of theMVBpathway and autophagy ensures cell survival during starvation
    • MullerM, Schmidt O, Angelova M, Faserl K, Weys S, et al. 2015. The coordinated action of theMVBpathway and autophagy ensures cell survival during starvation. eLife 4:e07736
    • (2015) ELife , vol.4 , pp. e07736
    • Muller, M.1    Schmidt, O.2    Angelova, M.3    Faserl, K.4    Weys, S.5
  • 135
    • 62049084764 scopus 로고    scopus 로고
    • The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes
    • Nada S, Hondo A, Kasai A, KoikeM, Saito K, et al. 2009. The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes. EMBO J. 28:477-89
    • (2009) EMBO J , vol.28 , pp. 477-489
    • Nada, S.1    Hondo, A.2    Kasai, A.3    Koike, M.4    Saito, K.5
  • 136
    • 0028871742 scopus 로고
    • Pointmutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport
    • Nakata T, Hirokawa N. 1995. Pointmutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. J. Cell Biol. 131:1039-53
    • (1995) J. Cell Biol , vol.131 , pp. 1039-1053
    • Nakata, T.1    Hirokawa, N.2
  • 137
    • 0029773625 scopus 로고    scopus 로고
    • Occurrence of Parkinson's syndrome in type i Gaucher disease
    • Neudorfer O, Giladi N, Elstein D, Abrahamov A, Turezkite T, et al. 1996. Occurrence of Parkinson's syndrome in type I Gaucher disease. QJM 89:691-94
    • (1996) QJM , vol.89 , pp. 691-694
    • Neudorfer, O.1    Giladi, N.2    Elstein, D.3    Abrahamov, A.4    Turezkite, T.5
  • 138
    • 84882254367 scopus 로고    scopus 로고
    • The role of autophagy in neurodegenerative disease
    • Nixon RA. 2013. The role of autophagy in neurodegenerative disease. Nat. Med. 19:983-97
    • (2013) Nat. Med , vol.19 , pp. 983-997
    • Nixon, R.A.1
  • 139
    • 0032512636 scopus 로고    scopus 로고
    • Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast
    • Noda T, Ohsumi Y. 1998. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273:3963-66
    • (1998) J. Biol. Chem , vol.273 , pp. 3963-3966
    • Noda, T.1    Ohsumi, Y.2
  • 141
    • 4344651318 scopus 로고    scopus 로고
    • Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization
    • Nylandsted J,Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, et al. 2004. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J. Exp. Med. 200:425-35
    • (2004) J. Exp. Med , vol.200 , pp. 425-435
    • Nylandsted, J.1    Gyrd-Hansen, M.2    Danielewicz, A.3    Fehrenbacher, N.4    Lademann, U.5
  • 142
    • 84878533962 scopus 로고    scopus 로고
    • MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability
    • O'Rourke EJ, Ruvkun G. 2013. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 15:668-76
    • (2013) Nat. Cell Biol , vol.15 , pp. 668-676
    • O'Rourke, E.J.1    Ruvkun, G.2
  • 143
    • 67649470529 scopus 로고    scopus 로고
    • Reconstitution of Rab-and SNAREdependent membrane fusion by synthetic endosomes
    • Ohya T, Miaczynska M, Coskun U, Lommer B, Runge A, et al. 2009. Reconstitution of Rab-and SNAREdependent membrane fusion by synthetic endosomes. Nature 459:1091-97
    • (2009) Nature , vol.459 , pp. 1091-1097
    • Ohya, T.1    Miaczynska, M.2    Coskun, U.3    Lommer, B.4    Runge, A.5
  • 144
    • 84878811164 scopus 로고    scopus 로고
    • Mitochondria and quality control defects in a mouse model of Gaucher disease-links to Parkinson's disease
    • Osellame LD, Rahim AA, Hargreaves IP, GeggME, Richard-Londt A, et al. 2013. Mitochondria and quality control defects in a mouse model of Gaucher disease-links to Parkinson's disease. CellMetab. 17:941-53
    • (2013) CellMetab , vol.17 , pp. 941-953
    • Osellame, L.D.1    Rahim, A.A.2    Hargreaves, I.P.3    Gegg, M.E.4    Richard-Londt, A.5
  • 145
    • 0033543590 scopus 로고    scopus 로고
    • A piston model for transmembrane signaling of the aspartate receptor
    • Ottemann KM, Xiao W, Shin YK, Koshland DE Jr. 1999. A piston model for transmembrane signaling of the aspartate receptor. Science 285:1751-54
    • (1999) Science , vol.285 , pp. 1751-1754
    • Ottemann, K.M.1    Xiao, W.2    Shin, Y.K.3    Koshland, D.E.4
  • 146
    • 84937253537 scopus 로고    scopus 로고
    • The utilization of extracellular proteins as nutrients is suppressed by mTORC1
    • Palm W, Park Y, Wright K, Pavlova NN, Tuveson DA, Thompson CB. 2015. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 162:259-70
    • (2015) Cell , vol.162 , pp. 259-270
    • Palm, W.1    Park, Y.2    Wright, K.3    Pavlova, N.N.4    Tuveson, D.A.5    Thompson, C.B.6
  • 147
    • 80052716148 scopus 로고    scopus 로고
    • Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways
    • Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, et al. 2011. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20:3852-66
    • (2011) Hum. Mol. Genet , vol.20 , pp. 3852-3866
    • Palmieri, M.1    Impey, S.2    Kang, H.3    Di Ronza, A.4    Pelz, C.5
  • 148
    • 84878353147 scopus 로고    scopus 로고
    • Amino acid deprivation inhibitsTORC1through a GTPaseactivating protein complex for the Rag family GTPase Gtr1
    • Panchaud N, Peli-Gulli MP,De Virgilio C. 2013. Amino acid deprivation inhibitsTORC1through a GTPaseactivating protein complex for the Rag family GTPase Gtr1. Sci. Signal. 6:ra42
    • (2013) Sci. Signal , vol.6 , pp. ra42
    • Panchaud, N.1    Peli-Gulli, M.P.2    De Virgilio, C.3
  • 149
    • 84912128530 scopus 로고    scopus 로고
    • Sestrins inhibit mTORC1 kinase activation through the GATOR complex
    • Parmigiani A, Nourbakhsh A, Ding B, Wang W, Kim YC, et al. 2014. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep. 9:1281-91
    • (2014) Cell Rep , vol.9 , pp. 1281-1291
    • Parmigiani, A.1    Nourbakhsh, A.2    Ding, B.3    Wang, W.4    Kim, Y.C.5
  • 150
    • 84943358458 scopus 로고    scopus 로고
    • Amino acids stimulate TORC1 through Lst4-Lst7, a GTPase-activating protein complex for the Rag family GTPase Gtr2
    • Peli-Gulli MP, Sardu A, Panchaud N, Raucci S, De Virgilio C. 2015. Amino acids stimulate TORC1 through Lst4-Lst7, a GTPase-activating protein complex for the Rag family GTPase Gtr2. Cell Rep. 13:1-7
    • (2015) Cell Rep , vol.13 , pp. 1-7
    • Peli-Gulli, M.P.1    Sardu, A.2    Panchaud, N.3    Raucci, S.4    De Virgilio, C.5
  • 151
    • 84960081213 scopus 로고    scopus 로고
    • Pancreatic cancer metabolism: Breaking it down to build it back up
    • Perera RM, Bardeesy N. 2015. Pancreatic cancer metabolism: breaking it down to build it back up. Cancer Discov. 5:1247-61
    • (2015) Cancer Discov , vol.5 , pp. 1247-1261
    • Perera, R.M.1    Bardeesy, N.2
  • 152
    • 84939787271 scopus 로고    scopus 로고
    • Transcriptional control of autophagylysosome function drives pancreatic cancer metabolism
    • Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, et al. 2015. Transcriptional control of autophagylysosome function drives pancreatic cancer metabolism. Nature 524:361-65
    • (2015) Nature , vol.524 , pp. 361-365
    • Perera, R.M.1    Stoykova, S.2    Nicolay, B.N.3    Ross, K.N.4    Fitamant, J.5
  • 153
    • 84883627583 scopus 로고    scopus 로고
    • Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase
    • Petersen NH, Olsen OD, Groth-Pedersen L, Ellegaard AM, Bilgin M, et al. 2013. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 24:379-93
    • (2013) Cancer Cell , vol.24 , pp. 379-393
    • Petersen, N.H.1    Olsen, O.D.2    Groth-Pedersen, L.3    Ellegaard, A.M.4    Bilgin, M.5
  • 154
    • 84886871016 scopus 로고    scopus 로고
    • Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases
    • Petit CS, Roczniak-Ferguson A, Ferguson SM. 2013. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J. Cell Biol. 202:1107-22
    • (2013) J. Cell Biol , vol.202 , pp. 1107-1122
    • Petit, C.S.1    Roczniak-Ferguson, A.2    Ferguson, S.M.3
  • 156
    • 84871429513 scopus 로고    scopus 로고
    • Transcriptional up-regulation of ULK1 by ATF4 contributes to cancer cell survival
    • Pike LR, Singleton DC, Buffa F, Abramczyk O, Phadwal K, et al. 2013. Transcriptional up-regulation of ULK1 by ATF4 contributes to cancer cell survival. Biochem. J. 449:389-400
    • (2013) Biochem. J , vol.449 , pp. 389-400
    • Pike, L.R.1    Singleton, D.C.2    Buffa, F.3    Abramczyk, O.4    Phadwal, K.5
  • 157
    • 84901950458 scopus 로고    scopus 로고
    • Sphingolipid lysosomal storage disorders
    • Platt FM. 2014. Sphingolipid lysosomal storage disorders. Nature 510:68-75
    • (2014) Nature , vol.510 , pp. 68-75
    • Platt, F.M.1
  • 158
    • 84871960929 scopus 로고    scopus 로고
    • Lysosomal storage disorders: The cellular impact of lysosomal dysfunction
    • Platt FM, Boland B, van der Spoel AC. 2012. Lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J. Cell Biol. 199:723-34
    • (2012) J. Cell Biol , vol.199 , pp. 723-734
    • Platt, F.M.1    Boland, B.2    Vander Spoel, A.C.3
  • 159
    • 84922311449 scopus 로고    scopus 로고
    • MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells
    • Ploper D, Taelman VF, Robert L, Perez BS, Titz B, et al. 2015. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. PNAS 112:420-29
    • (2015) PNAS , vol.112 , pp. 420-429
    • Ploper, D.1    Taelman, V.F.2    Robert, L.3    Perez, B.S.4    Titz, B.5
  • 160
    • 84904672562 scopus 로고    scopus 로고
    • Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis
    • Polishchuk EV, Concilli M, Iacobacci S, Chesi G, Pastore N, et al. 2014. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev. Cell 29:686-700
    • (2014) Dev. Cell , vol.29 , pp. 686-700
    • Polishchuk, E.V.1    Concilli, M.2    Iacobacci, S.3    Chesi, G.4    Pastore, N.5
  • 162
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz JD, White E. 2010. Autophagy and metabolism. Science 330:1344-48
    • (2010) Science , vol.330 , pp. 1344-1348
    • Rabinowitz, J.D.1    White, E.2
  • 163
    • 33749133430 scopus 로고    scopus 로고
    • Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase
    • Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, et al. 2006. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38:1184-91
    • (2006) Nat. Genet , vol.38 , pp. 1184-1191
    • Ramirez, A.1    Heimbach, A.2    Grundemann, J.3    Stiller, B.4    Hampshire, D.5
  • 166
    • 2642586352 scopus 로고    scopus 로고
    • Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease
    • Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, et al. 2004. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36:585-95
    • (2004) Nat. Genet , vol.36 , pp. 585-595
    • Ravikumar, B.1    Vacher, C.2    Berger, Z.3    Davies, J.E.4    Luo, S.5
  • 167
    • 84925777835 scopus 로고    scopus 로고
    • SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
    • Rebsamen M, Pochini L, Stasyk T, de Araujo ME, Galluccio M, et al. 2015. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519:477-81
    • (2015) Nature , vol.519 , pp. 477-481
    • Rebsamen, M.1    Pochini, L.2    Stasyk, T.3    De Araujo, M.E.4    Galluccio, M.5
  • 168
    • 0035958557 scopus 로고    scopus 로고
    • Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes
    • Reddy A, Caler EV, Andrews NW. 2001. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106:157-69
    • (2001) Cell , vol.106 , pp. 157-169
    • Reddy, A.1    Caler, E.V.2    Andrews, N.W.3
  • 169
    • 24144442691 scopus 로고    scopus 로고
    • Rab conversion as a mechanism of progression from early to late endosomes
    • Rink J, Ghigo E, Kalaidzidis Y, Zerial M. 2005. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735-49
    • (2005) Cell , vol.122 , pp. 735-749
    • Rink, J.1    Ghigo, E.2    Kalaidzidis, Y.3    Zerial, M.4
  • 170
    • 67649600680 scopus 로고    scopus 로고
    • Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning
    • Rocha N, Kuijl C, van der Kant R, Janssen L, Houben D, et al. 2009. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J. Cell Biol. 185:1209-25
    • (2009) J. Cell Biol , vol.185 , pp. 1209-1225
    • Rocha, N.1    Kuijl, C.2    Vander Kant, R.3    Janssen, L.4    Houben, D.5
  • 171
    • 84862539692 scopus 로고    scopus 로고
    • The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
    • Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, et al. 2012. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5:ra42
    • (2012) Sci. Signal , vol.5 , pp. ra42
    • Roczniak-Ferguson, A.1    Petit, C.S.2    Froehlich, F.3    Qian, S.4    Ky, J.5
  • 172
    • 84858659826 scopus 로고    scopus 로고
    • Inhibitory effect of dietary lipids on chaperone-mediated autophagy
    • Rodriguez-Navarro JA, Kaushik S, Koga H, Dall'Armi C, ShuiG, et al. 2012. Inhibitory effect of dietary lipids on chaperone-mediated autophagy. PNAS 109:705-14
    • (2012) PNAS , vol.109 , pp. 705-714
    • Rodriguez-Navarro, J.A.1    Kaushik, S.2    Koga, H.3    Dall'Armi, C.4    Shui, G.5
  • 173
    • 84865776097 scopus 로고    scopus 로고
    • Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation
    • Rong Y, Liu M, Ma L, Du W, Zhang H, et al. 2012. Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat. Cell Biol. 14:924-34
    • (2012) Nat. Cell Biol , vol.14 , pp. 924-934
    • Rong, Y.1    Liu, M.2    Ma, L.3    Du, W.4    Zhang, H.5
  • 174
    • 79956346329 scopus 로고    scopus 로고
    • Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation
    • Rong Y, McPhee CK, Deng S, Huang L, Chen L, et al. 2011. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. PNAS 108:7826-31
    • (2011) PNAS , vol.108 , pp. 7826-7831
    • Rong, Y.1    McPhee, C.K.2    Deng, S.3    Huang, L.4    Chen, L.5
  • 175
    • 74949118681 scopus 로고    scopus 로고
    • The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5
    • Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, et al. 2010. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Investig. 120:127-41
    • (2010) J. Clin. Investig , vol.120 , pp. 127-141
    • Rouschop, K.M.1    Vanden Beucken, T.2    Dubois, L.3    Niessen, H.4    Bussink, J.5
  • 176
    • 0035968245 scopus 로고    scopus 로고
    • A family of yeast proteins mediating bidirectional vacuolar amino acid transport
    • Russnak R, Konczal D, McIntire SL. 2001. A family of yeast proteins mediating bidirectional vacuolar amino acid transport. J. Biol. Chem. 276:23849-57
    • (2001) J. Biol. Chem , vol.276 , pp. 23849-23857
    • Russnak, R.1    Konczal, D.2    McIntire, S.L.3
  • 177
    • 69249227502 scopus 로고    scopus 로고
    • Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function
    • Saftig P, Klumperman J. 2009. Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nat. Rev. Mol. Cell Biol. 10:623-35
    • (2009) Nat. Rev. Mol. Cell Biol , vol.10 , pp. 623-635
    • Saftig, P.1    Klumperman, J.2
  • 178
    • 0035912839 scopus 로고    scopus 로고
    • Identification and characterization of a lysosomal transporter for small neutral amino acids
    • Sagne C, Agulhon C, Ravassard P, Darmon M, Hamon M, et al. 2001. Identification and characterization of a lysosomal transporter for small neutral amino acids. PNAS 98:7206-11
    • (2001) PNAS , vol.98 , pp. 7206-7211
    • Sagne, C.1    Agulhon, C.2    Ravassard, P.3    Darmon, M.4    Hamon, M.5
  • 180
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y, Bar-Peled L, Zoncu R,Markhard AL, Nada S, Sabatini DM. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290-303
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1    Bar-Peled, L.2    Zoncu, R.3    Markhard, A.L.4    Nada, S.5    Sabatini, D.M.6
  • 181
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, et al. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496-501
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1    Peterson, T.R.2    Shaul, Y.D.3    Lindquist, R.A.4    Thoreen, C.C.5
  • 185
    • 52049093484 scopus 로고    scopus 로고
    • Novel families of vacuolar amino acid transporters
    • Sekito T, Fujiki Y, Ohsumi Y, Kakinuma Y. 2008. Novel families of vacuolar amino acid transporters. IUBMB Life 60:519-25
    • (2008) IUBMB Life , vol.60 , pp. 519-525
    • Sekito, T.1    Fujiki, Y.2    Ohsumi, Y.3    Kakinuma, Y.4
  • 186
    • 84922968506 scopus 로고    scopus 로고
    • Transcriptional regulation of autophagy by an FXR-CREB axis
    • Seok S, Fu T, Choi SE, Li Y, Zhu R, et al. 2014. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 516:108-11
    • (2014) Nature , vol.516 , pp. 108-111
    • Seok, S.1    Fu, T.2    Choi, S.E.3    Li, Y.4    Zhu, R.5
  • 187
    • 84878606239 scopus 로고    scopus 로고
    • TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
    • Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, et al. 2013a. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15:647-58
    • (2013) Nat. Cell Biol , vol.15 , pp. 647-658
    • Settembre, C.1    De Cegli, R.2    Mansueto, G.3    Saha, P.K.4    Vetrini, F.5
  • 190
    • 84876812269 scopus 로고    scopus 로고
    • Signals from the lysosome: A control centre for cellular clearance and energy metabolism
    • Settembre C, Fraldi A,Medina DL, Ballabio A. 2013b. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14:283-96
    • (2013) Nat. Rev. Mol. Cell Biol , vol.14 , pp. 283-296
    • Settembre, C.1    Fraldi, A.2    Medina, D.L.3    Ballabio, A.4
  • 191
    • 84857997408 scopus 로고    scopus 로고
    • A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
    • Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, et al. 2012. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31:1095-108
    • (2012) EMBO J , vol.31 , pp. 1095-1108
    • Settembre, C.1    Zoncu, R.2    Medina, D.L.3    Vetrini, F.4    Erdin, S.5
  • 192
    • 79953211917 scopus 로고    scopus 로고
    • Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK
    • Shang L, Chen S, Du F, Li S, Zhao L, Wang X. 2011. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. PNAS 108:4788-93
    • (2011) PNAS , vol.108 , pp. 4788-4793
    • Shang, L.1    Chen, S.2    Du, F.3    Li, S.4    Zhao, L.5    Wang, X.6
  • 193
    • 84892875805 scopus 로고    scopus 로고
    • At the end of the autophagic road: An emerging understanding of lysosomal functions in autophagy
    • Shen HM, Mizushima N. 2014. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem. Sci. 39:61-71
    • (2014) Trends Biochem. Sci , vol.39 , pp. 61-71
    • Shen, H.M.1    Mizushima, N.2
  • 194
    • 79955631150 scopus 로고    scopus 로고
    • Autophagy in the cellular energetic balance
    • Singh R, Cuervo AM. 2011. Autophagy in the cellular energetic balance. Cell Metab. 13:495-504
    • (2011) Cell Metab , vol.13 , pp. 495-504
    • Singh, R.1    Cuervo, A.M.2
  • 195
    • 23044471011 scopus 로고    scopus 로고
    • Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia
    • Skibinski G, Parkinson NJ, Brown JM, Chakrabarti L, Lloyd SL, et al. 2005. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet. 37:806-8
    • (2005) Nat. Genet , vol.37 , pp. 806-808
    • Skibinski, G.1    Parkinson, N.J.2    Brown, J.M.3    Chakrabarti, L.4    Lloyd, S.L.5
  • 196
    • 84880056427 scopus 로고    scopus 로고
    • Extending the mannose 6-phosphate glycoproteome by high resolution/accuracy mass spectrometry analysis of control and acid phosphatase 5-deficient mice
    • Sleat DE, Sun P, Wiseman JA, Huang L, El-Banna M, et al. 2013. Extending the mannose 6-phosphate glycoproteome by high resolution/accuracy mass spectrometry analysis of control and acid phosphatase 5-deficient mice. Mol. Cell. Proteom. 12:1806-17
    • (2013) Mol. Cell. Proteom , vol.12 , pp. 1806-1817
    • Sleat, D.E.1    Sun, P.2    Wiseman, J.A.3    Huang, L.4    El-Banna, M.5
  • 198
    • 69249137477 scopus 로고    scopus 로고
    • Endocytosis and signalling: Intertwining molecular networks
    • Sorkin A, von Zastrow M. 2009. Endocytosis and signalling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 10:609-22
    • (2009) Nat. Rev. Mol. Cell Biol , vol.10 , pp. 609-622
    • Sorkin, A.1    Von Zastrow, M.2
  • 199
    • 84877601173 scopus 로고    scopus 로고
    • Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease
    • Spampanato C, Feeney E, Li L, Cardone M, Lim JA, et al. 2013. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol. Med. 5:691-706
    • (2013) EMBO Mol. Med , vol.5 , pp. 691-706
    • Spampanato, C.1    Feeney, E.2    Li, L.3    Cardone, M.4    Lim, J.A.5
  • 200
    • 39549098329 scopus 로고    scopus 로고
    • Functional characterization of Rab7 mutant proteins associated with Charcot-Marie-Tooth type 2B disease
    • Spinosa MR, Progida C, De Luca A, Colucci AM, Alifano P, Bucci C. 2008. Functional characterization of Rab7 mutant proteins associated with Charcot-Marie-Tooth type 2B disease. J. Neurosci. 28:1640-48
    • (2008) J. Neurosci , vol.28 , pp. 1640-1648
    • Spinosa, M.R.1    Progida, C.2    De Luca, A.3    Colucci, A.M.4    Alifano, P.5    Bucci, C.6
  • 203
    • 84885350394 scopus 로고    scopus 로고
    • Autophagy sustainsmitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors
    • Strohecker AM,Guo JY, Karsli-UzunbasG, Price SM,Chen GJ, et al. 2013. Autophagy sustainsmitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov. 3:1272-85
    • (2013) Cancer Discov , vol.3 , pp. 1272-1285
    • Strohecker, A.M.1    Guo, J.Y.2    Karsli-Uzunbas, G.3    Price, S.M.4    Chen, G.J.5
  • 204
    • 84887437596 scopus 로고    scopus 로고
    • Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment
    • Sui X, Chen R,Wang Z,Huang Z, Kong N, et al. 2013. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 4:e838
    • (2013) Cell Death Dis , vol.4 , pp. e838
    • Sui, X.1    Chen, R.2    Wang, Z.3    Huang, Z.4    Kong, N.5
  • 205
    • 12444296116 scopus 로고    scopus 로고
    • Gaucher disease with parkinsonian manifestations: Does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism?
    • Tayebi N,Walker J, Stubblefield B, Orvisky E, LaMarca ME, et al. 2003. Gaucher disease with parkinsonian manifestations: Does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol. Genet. Metab. 79:104-9
    • (2003) Mol. Genet. Metab , vol.79 , pp. 104-109
    • Tayebi, N.1    Walker, J.2    Stubblefield, B.3    Orvisky, E.4    LaMarca, M.E.5
  • 206
    • 0042701991 scopus 로고    scopus 로고
    • Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
    • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. 2003. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13:1259-68
    • (2003) Curr. Biol , vol.13 , pp. 1259-1268
    • Tee, A.R.1    Manning, B.D.2    Roux, P.P.3    Cantley, L.C.4    Blenis, J.5
  • 207
    • 0036899420 scopus 로고    scopus 로고
    • Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction
    • Teis D,Wunderlich W, Huber LA. 2002. Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev. Cell 3:803-14
    • (2002) Dev. Cell , vol.3 , pp. 803-814
    • Teis, D.1    Wunderlich, W.2    Huber, L.A.3
  • 208
    • 84888200442 scopus 로고    scopus 로고
    • The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
    • Tsun Z-Y, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, et al. 2013. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 52:495-50
    • (2013) Mol. Cell , vol.52 , pp. 495-550
    • Tsun, Z.-Y.1    Bar-Peled, L.2    Chantranupong, L.3    Zoncu, R.4    Wang, T.5
  • 209
    • 50249095558 scopus 로고    scopus 로고
    • Mucolipidosis type IV: The importance of functional lysosomes for efficient autophagy
    • Vergarajauregui S, Puertollano R. 2008. Mucolipidosis type IV: the importance of functional lysosomes for efficient autophagy. Autophagy 4:832-34
    • (2008) Autophagy , vol.4 , pp. 832-834
    • Vergarajauregui, S.1    Puertollano, R.2
  • 210
    • 84911861458 scopus 로고    scopus 로고
    • Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function
    • Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, et al. 2014. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514:628-32
    • (2014) Nature , vol.514 , pp. 628-632
    • Viale, A.1    Pettazzoni, P.2    Lyssiotis, C.A.3    Ying, H.4    Sanchez, N.5
  • 211
    • 84905494696 scopus 로고    scopus 로고
    • Combined autophagy and proteasome inhibition: A phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma
    • Vogl DT, Stadtmauer EA, Tan KS, Heitjan DF, Davis LE, et al. 2014. Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 10:1380-90
    • (2014) Autophagy , vol.10 , pp. 1380-1390
    • Vogl, D.T.1    Stadtmauer, E.A.2    Tan, K.S.3    Heitjan, D.F.4    Davis, L.E.5
  • 212
    • 84922743269 scopus 로고    scopus 로고
    • Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
    • Wang S, Tsun Z-Y, WolfsonRL, ShenK,Wyant GA, et al. 2015. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347:188-94
    • (2015) Science , vol.347 , pp. 188-194
    • Wang, S.1    Tsun, Z.-Y.2    Wolfson, R.L.3    Shen, K.4    Wyant, G.A.5
  • 213
    • 84925324770 scopus 로고    scopus 로고
    • Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation
    • Wang W, Gao Q, Yang M, Zhang X, Yu L, et al. 2015. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. PNAS 112:1373-81
    • (2015) PNAS , vol.112 , pp. 1373-1381
    • Wang, W.1    Gao, Q.2    Yang, M.3    Zhang, X.4    Yu, L.5
  • 214
    • 84867565289 scopus 로고    scopus 로고
    • TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes
    • Wang X, Zhang X, Dong XP, Samie M, Li X, et al. 2012. TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell 151:372-83
    • (2012) Cell , vol.151 , pp. 372-383
    • Wang, X.1    Zhang, X.2    Dong, X.P.3    Samie, M.4    Li, X.5
  • 215
    • 84874192375 scopus 로고    scopus 로고
    • FOXO3A directs a protective autophagy program in haematopoietic stem cells
    • Warr MR, Binnewies M, Flach J, Reynaud D, Garg T, et al. 2013. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494:323-27
    • (2013) Nature , vol.494 , pp. 323-327
    • Warr, M.R.1    Binnewies, M.2    Flach, J.3    Reynaud, D.4    Garg, T.5
  • 216
    • 84865220380 scopus 로고    scopus 로고
    • Extracellular M tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway
    • Watson RO, Manzanillo PS, Cox JS. 2012. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150:803-15
    • (2012) Cell , vol.150 , pp. 803-815
    • Watson, R.O.1    Manzanillo, P.S.2    Cox, J.S.3
  • 217
    • 82755189571 scopus 로고    scopus 로고
    • The endosome-lysosome pathway and information generation in the immune system
    • Watts C. 2012. The endosome-lysosome pathway and information generation in the immune system. Biochim. Biophys. Acta 1824:14-21
    • (2012) Biochim. Biophys. Acta , vol.1824 , pp. 14-21
    • Watts, C.1
  • 218
    • 79960401862 scopus 로고    scopus 로고
    • Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis
    • WeiH,Wei S, Gan B, Peng X, Zou W, Guan JL. 2011. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev. 25:1510-27
    • (2011) Genes Dev , vol.25 , pp. 1510-1527
    • Wei, H.1    Wei, S.2    Gan, B.3    Peng, X.4    Zou, W.5    Guan, J.L.6
  • 219
    • 84920415711 scopus 로고    scopus 로고
    • The role for autophagy in cancer
    • White E. 2015. The role for autophagy in cancer. J. Clin. Investig. 125:42-46
    • (2015) J. Clin. Investig , vol.125 , pp. 42-46
    • White, E.1
  • 220
    • 0016282498 scopus 로고
    • Characterization of amino acid pools in the vacuolar compartment of Saccharomyces cerevisiae
    • Wiemken A,DurrM. 1974. Characterization of amino acid pools in the vacuolar compartment of Saccharomyces cerevisiae. Arch. Microbiol. 101:45-57
    • (1974) Arch. Microbiol , vol.101 , pp. 45-57
    • Wiemken, A.1    Durr, M.2
  • 221
  • 223
    • 77950863406 scopus 로고    scopus 로고
    • Molecular mechanism of multivesicular body biogenesis by ESCRT complexes
    • Wollert T, Hurley JH. 2010. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464:864-69
    • (2010) Nature , vol.464 , pp. 864-869
    • Wollert, T.1    Hurley, J.H.2
  • 224
    • 84901933891 scopus 로고    scopus 로고
    • Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma
    • Wolpin BM, Rubinson DA, Wang X, Chan JA, Cleary JM, et al. 2014. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 19:637-38
    • (2014) Oncologist , vol.19 , pp. 637-638
    • Wolpin, B.M.1    Rubinson, D.A.2    Wang, X.3    Chan, J.A.4    Cleary, J.M.5
  • 225
    • 33646397570 scopus 로고    scopus 로고
    • Competitive intra-and extracellular nutrient sensing by the transporter homologue Ssy1p
    • Wu B, Ottow K, Poulsen P, Gaber RF, Albers E, Kielland-Brandt MC. 2006. Competitive intra-and extracellular nutrient sensing by the transporter homologue Ssy1p. J. Cell Biol. 173:327-31
    • (2006) J. Cell Biol , vol.173 , pp. 327-331
    • Wu, B.1    Ottow, K.2    Poulsen, P.3    Gaber, R.F.4    Albers, E.5    Kielland-Brandt, M.C.6
  • 226
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger S, Loewith R, Hall MN. 2006. TOR signaling in growth and metabolism. Cell 124:471-84
    • (2006) Cell , vol.124 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 227
    • 84939508539 scopus 로고    scopus 로고
    • Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma
    • Xie X, Koh JY, Price S, White E, Mehnert JM. 2015. Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov. 5:410-23
    • (2015) Cancer Discov , vol.5 , pp. 410-423
    • Xie, X.1    Koh, J.Y.2    Price, S.3    White, E.4    Mehnert, J.M.5
  • 228
    • 84922794140 scopus 로고    scopus 로고
    • Lysosomal physiology
    • Xu H, Ren D. 2015. Lysosomal physiology. Annu. Rev. Physiol. 77:57-80
    • (2015) Annu. Rev. Physiol , vol.77 , pp. 57-80
    • Xu, H.1    Ren, D.2
  • 229
    • 34548192003 scopus 로고    scopus 로고
    • Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease
    • Xu S, Benoff B, Liou HL, Lobel P, Stock AM. 2007. Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. J. Biol. Chem. 282:23525-31
    • (2007) J. Biol. Chem , vol.282 , pp. 23525-23531
    • Xu, S.1    Benoff, B.2    Liou, H.L.3    Lobel, P.4    Stock, A.M.5
  • 230
    • 79952229430 scopus 로고    scopus 로고
    • Pancreatic cancers require autophagy for tumor growth
    • Yang S, Wang X, Contino G, Liesa M, Sahin E, et al. 2011. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25:717-29
    • (2011) Genes Dev , vol.25 , pp. 717-729
    • Yang, S.1    Wang, X.2    Contino, G.3    Liesa, M.4    Sahin, E.5
  • 231
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • Yu L, McPhee CK, Zheng L,Mardones GA, Rong Y, et al. 2010. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942-46
    • (2010) Nature , vol.465 , pp. 942-946
    • Yu, L.1    McPhee, C.K.2    Zheng, L.3    Mardones, G.A.4    Rong, Y.5
  • 232
    • 51349095898 scopus 로고    scopus 로고
    • Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function
    • Zhang C, Cuervo AM. 2008. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat. Med. 14:959-65
    • (2008) Nat. Med , vol.14 , pp. 959-965
    • Zhang, C.1    Cuervo, A.M.2
  • 233
    • 84907519033 scopus 로고    scopus 로고
    • The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
    • Zhang CS, Jiang B, Li M, Zhu M, Peng Y, et al. 2014. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 20:526-40
    • (2014) Cell Metab , vol.20 , pp. 526-540
    • Zhang, C.S.1    Jiang, B.2    Li, M.3    Zhu, M.4    Peng, Y.5
  • 234
    • 84929335211 scopus 로고    scopus 로고
    • Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase
    • Zhao J, Benlekbir S, Rubinstein JL. 2015. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521:241-45
    • (2015) Nature , vol.521 , pp. 241-245
    • Zhao, J.1    Benlekbir, S.2    Rubinstein, J.L.3
  • 235
    • 80555143078 scopus 로고    scopus 로고
    • MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase
    • Zoncu R, Bar-Peled L, Efeyan A,Wang S, Sancak Y, Sabatini DM. 2011a. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334:678-83
    • (2011) Science , vol.334 , pp. 678-683
    • Zoncu, R.1    Bar-Peled, L.2    Efeyan, A.3    Wang, S.4    Sancak, Y.5    Sabatini, D.M.6
  • 236
    • 78650510609 scopus 로고    scopus 로고
    • MTOR: From growth signal integration to cancer, diabetes and ageing
    • Zoncu R, Efeyan A, Sabatini DM. 2011b. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12:21-35
    • (2011) Nat. Rev. Mol. Cell Biol , vol.12 , pp. 21-35
    • Zoncu, R.1    Efeyan, A.2    Sabatini, D.M.3
  • 237
    • 62549151303 scopus 로고    scopus 로고
    • A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes
    • Zoncu R, Perera RM, Balkin DM, Pirruccello M, Toomre D, De Camilli P. 2009. A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136:1110-21
    • (2009) Cell , vol.136 , pp. 1110-1121
    • Zoncu, R.1    Perera, R.M.2    Balkin, D.M.3    Pirruccello, M.4    Toomre, D.5    De Camilli, P.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.