메뉴 건너뛰기




Volumn 516, Issue 729, 2014, Pages 108-111

Transcriptional regulation of autophagy by an FXR-CREB axis

Author keywords

[No Author keywords available]

Indexed keywords

CYCLIC AMP RESPONSIVE ELEMENT BINDING PROTEIN; FARNESOID X RECEPTOR; 3 [2 [2 CHLORO 4 [3 (2,6 DICHLOROPHENYL) 5 ISOPROPYL 4 ISOXAZOLYLMETHOXY]PHENYL]VINYL]BENZOIC ACID; CELL RECEPTOR; FARNESOID X-ACTIVATED RECEPTOR; ISOXAZOLE DERIVATIVE; PROTEIN BINDING;

EID: 84922968506     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature13949     Document Type: Article
Times cited : (341)

References (27)
  • 1
    • 1842583789 scopus 로고    scopus 로고
    • Development by self-digestion: Molecular mechanisms and biological functions of autophagy
    • Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463-477 (2004).
    • (2004) Dev. Cell , vol.6 , pp. 463-477
    • Levine, B.1    Klionsky, D.J.2
  • 2
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy andmetabolism
    • Rabinowitz, J. D.&White, E. Autophagy andmetabolism. Science 330, 1344-1348 (2010).
    • (2010) Science , vol.330 , pp. 1344-1348
    • Rabinowitz, J.D.1    White, E.2
  • 3
    • 48249140220 scopus 로고    scopus 로고
    • Diurnal rhythmsof autophagy: Implications for cell biology and human disease
    • Sachdeva, U. M.&Thompson, C. B. Diurnal rhythmsof autophagy: implications for cell biology and human disease. Autophagy 4, 581-589 (2008).
    • (2008) Autophagy , vol.4 , pp. 581-589
    • Sachdeva, U.M.1    Thompson, C.B.2
  • 4
    • 72949111893 scopus 로고    scopus 로고
    • Physiological functions of autophagy
    • Mizushima, N. Physiological functions of autophagy. Curr. Top. Microbiol. Immunol. 335, 71-84 (2009).
    • (2009) Curr. Top. Microbiol. Immunol. , vol.335 , pp. 71-84
    • Mizushima, N.1
  • 5
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biol. 13, 132-141 (2011).
    • (2011) Nature Cell Biol. , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 6
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461 (2011).
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1
  • 7
    • 72549095406 scopus 로고    scopus 로고
    • Regulation mechanisms and signaling pathways of autophagy
    • He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67-93 (2009).
    • (2009) Annu. Rev. Genet. , vol.43 , pp. 67-93
    • He, C.1    Klionsky, D.J.2
  • 8
    • 84858796689 scopus 로고    scopus 로고
    • Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR
    • Calkin, A. C. & Tontonoz, P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nature Rev. Mol. Cell Biol. 13, 213-224 (2012).
    • (2012) Nature Rev. Mol. Cell Biol. , vol.13 , pp. 213-224
    • Calkin, A.C.1    Tontonoz, P.2
  • 10
    • 27144506185 scopus 로고    scopus 로고
    • The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
    • Koo, S. H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109-1111 (2005).
    • (2005) Nature , vol.437 , pp. 1109-1111
    • Koo, S.H.1
  • 11
    • 67749135249 scopus 로고    scopus 로고
    • TheCREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis
    • Wang, Y., Vera, L., Fischer, W. H.& Montminy, M. TheCREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature 460, 534-537 (2009).
    • (2009) Nature , vol.460 , pp. 534-537
    • Wang, Y.1    Vera, L.2    Fischer, W.H.3    Montminy, M.4
  • 12
    • 84863512181 scopus 로고    scopus 로고
    • Genomic analysis of hepatic farnesoid X receptor (FXR) binding sites reveals altered binding in obesity and direct gene repression by FXR
    • Lee, J. et al. Genomic analysis of hepatic farnesoid X receptor (FXR) binding sites reveals altered binding in obesity and direct gene repression by FXR. Hepatology 56, 108-117 (2012).
    • (2012) Hepatology , vol.56 , pp. 108-117
    • Lee, J.1
  • 13
    • 77950605769 scopus 로고    scopus 로고
    • Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine
    • Thomas, A. M. et al. Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine. Hepatology 51, 1410-1419 (2010).
    • (2010) Hepatology , vol.51 , pp. 1410-1419
    • Thomas, A.M.1
  • 14
    • 84877811076 scopus 로고    scopus 로고
    • Integrative genomic analysis of CREB defines a critical role for transcription factor networks in mediating the fed/fasted switch in liver
    • Everett, L. J. et al. Integrative genomic analysis of CREB defines a critical role for transcription factor networks in mediating the fed/fasted switch in liver. BMC Genomics 14, 337 (2013).
    • (2013) BMC Genomics , vol.14 , pp. 337
    • Everett, L.J.1
  • 15
    • 20144379523 scopus 로고    scopus 로고
    • Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues
    • Zhang, X. et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl Acad. Sci. USA 102, 4459-4464 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 4459-4464
    • Zhang, X.1
  • 16
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • Singh,R. et al.Autophagy regulates lipid metabolism.Nature458,1131-1135(2009).
    • (2009) Nature , vol.458 , pp. 1131-1135
    • Singh, R.1
  • 17
    • 75749122303 scopus 로고    scopus 로고
    • Methods in mammalian autophagy research
    • Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313-326 (2010).
    • (2010) Cell , vol.140 , pp. 313-326
    • Mizushima, N.1    Yoshimori, T.2    Levine, B.3
  • 18
    • 27844546989 scopus 로고    scopus 로고
    • Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis
    • Inagaki, T. et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2, 217-225 (2005).
    • (2005) Cell Metab. , vol.2 , pp. 217-225
    • Inagaki, T.1
  • 19
    • 84871364913 scopus 로고    scopus 로고
    • Mechanism of CREB recognition and coactivation by the CREBregulated transcriptional coactivator CRTC2
    • Luo, Q. et al. Mechanism of CREB recognition and coactivation by the CREBregulated transcriptional coactivator CRTC2. Proc. Natl Acad. Sci. USA 109, 20865-20870 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 20865-20870
    • Luo, Q.1
  • 20
    • 80955177196 scopus 로고    scopus 로고
    • TFEB links autophagy to lysosomal biogenesis
    • Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433 (2011).
    • (2011) Science , vol.332 , pp. 1429-1433
    • Settembre, C.1
  • 21
    • 84878606239 scopus 로고    scopus 로고
    • TFEB controls cellular lipid metabolism through a starvationinduced autoregulatory loop
    • Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvationinduced autoregulatory loop. Nature Cell Biol. 15, 647-658 (2013).
    • (2013) Nature Cell Biol. , vol.15 , pp. 647-658
    • Settembre, C.1
  • 22
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotesERstress and causes insulin resistance
    • Yang, L., Li, P., Fu, S., Calay, E. S.&Hotamisligil, G. S. Defective hepatic autophagy in obesity promotesERstress and causes insulin resistance.CellMetab.11, 467-478 (2010).
    • (2010) CellMetab , vol.11 , pp. 467-478
    • Yang, L.1    Li, P.2    Fu, S.3    Calay, E.S.4    Hotamisligil, G.S.5
  • 23
    • 84923031534 scopus 로고    scopus 로고
    • Nutrient-sensing nuclear receptors coordinate autophagy
    • Lee, J. M. et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature http://dx.doi.org/10.1038/nature13961 (this issue).
    • Nature
    • Lee, J.M.1
  • 24
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27-42 (2008).
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 25
    • 70350606061 scopus 로고    scopus 로고
    • FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated inmetabolic disease states
    • Kemper, J. K. et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated inmetabolic disease states. Cell Metab. 10, 392-404 (2009).
    • (2009) Cell Metab. , vol.10 , pp. 392-404
    • Kemper, J.K.1
  • 26
    • 84881457500 scopus 로고    scopus 로고
    • Bile acid signal-induced phosphorylation of small heterodimer partner by protein kinase Czeta is critical for epigenomic regulation of liver metabolic genes
    • Seok, S. et al. Bile acid signal-induced phosphorylation of small heterodimer partner by protein kinase Czeta is critical for epigenomic regulation of liver metabolic genes. J. Biol. Chem. 288, 23252-23263 (2013).
    • (2013) J. Biol. Chem. , vol.288 , pp. 23252-23263
    • Seok, S.1
  • 27
    • 84867068010 scopus 로고    scopus 로고
    • Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor b-Klotho
    • Fu, T. et al. Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor b-Klotho. Proc. Natl Acad. Sci. USA 109, 16137-16142 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 16137-16142
    • Fu, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.