-
1
-
-
34250864795
-
Protein turnover via autophagy: Implications for metabolism
-
Mizushima, N., & Klionsky, D. J. Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr. 27, 19-40 (2007
-
(2007)
Annu. Rev. Nutr
, vol.27
, pp. 19-40
-
-
Mizushima, N.1
Klionsky, D.J.2
-
2
-
-
84901815187
-
Cargo recognition and trafficking in selective autophagy
-
Stolz, A., Ernst, A., & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495-501 (2014
-
(2014)
Nat. Cell Biol
, vol.16
, pp. 495-501
-
-
Stolz, A.1
Ernst, A.2
Dikic, I.3
-
3
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma, A., et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032-1036 (2004
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
-
4
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu, M., et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880-884 (2006
-
(2006)
Nature
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
-
5
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara, T., et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889 (2006
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
-
6
-
-
81055144784
-
Autophagy: Renovation of cells and tissues
-
Mizushima, N., & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728-741 (2011
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
7
-
-
84859161154
-
Microautophagy: Lesser-known self-eating
-
Li, W. W., Li, J., & Bao, J. K. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69, 1125-1136 (2012
-
(2012)
Cell. Mol. Life Sci
, vol.69
, pp. 1125-1136
-
-
Li, W.W.1
Li, J.2
Bao, J.K.3
-
8
-
-
84891741302
-
Chaperone-mediated autophagy: Roles in disease and aging
-
Cuervo, A. M., & Wong, E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24, 92-104 (2014
-
(2014)
Cell Res
, vol.24
, pp. 92-104
-
-
Cuervo, A.M.1
Wong, E.2
-
9
-
-
84888380983
-
The autophagosome: Origins unknown, biogenesis complex
-
Lamb, C. A., Yoshimori, T., & Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759-774 (2013
-
(2013)
Nat. Rev. Mol. Cell Biol
, vol.14
, pp. 759-774
-
-
Lamb, C.A.1
Yoshimori, T.2
Tooze, S.A.3
-
10
-
-
84892859905
-
Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
-
Rogov, V., Dötsch, V., Johansen, T., & Kirkin, V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 53, 167-178 (2014
-
(2014)
Mol. Cell
, vol.53
, pp. 167-178
-
-
Rogov, V.1
Dötsch, V.2
Johansen, T.3
Kirkin, V.4
-
11
-
-
67649467294
-
Dynamics and diversity in autophagy mechanisms: Lessons from yeast
-
Nakatogawa, H., Suzuki, K., Kamada, Y., & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell. Biol. 10, 458-467 (2009
-
(2009)
Nat. Rev. Mol. Cell. Biol
, vol.10
, pp. 458-467
-
-
Nakatogawa, H.1
Suzuki, K.2
Kamada, Y.3
Ohsumi, Y.4
-
12
-
-
74949090299
-
An overview of the molecular mechanism of autophagy
-
Yang, Z., & Klionsky, D. J. An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol. 335, 1-32 (2009
-
(2009)
Curr. Top. Microbiol. Immunol
, vol.335
, pp. 1-32
-
-
Yang, Z.1
Klionsky, D.J.2
-
13
-
-
84928550400
-
ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
-
Diao, J., et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520, 563-566 (2015
-
(2015)
Nature
, vol.520
, pp. 563-566
-
-
Diao, J.1
-
14
-
-
84924809439
-
Deacetylation of nuclear LC3 drives autophagy initiation under starvation
-
Huang, R., et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol. Cell 57, 456-466 (2015
-
(2015)
Mol. Cell
, vol.57
, pp. 456-466
-
-
Huang, R.1
-
15
-
-
0035503594
-
The pre-Autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
-
Suzuki, K. The pre-Autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20, 5971-5981 (2001
-
(2001)
EMBO J.
, vol.20
, pp. 5971-5981
-
-
Suzuki, K.1
-
16
-
-
0037016752
-
Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation
-
Kim, J., Huang, W. P., Stromhaug, P. E., & Klionsky, D. J. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J. Biol. Chem. 277, 763-773 (2002
-
(2002)
J. Biol. Chem
, vol.277
, pp. 763-773
-
-
Kim, J.1
Huang, W.P.2
Stromhaug, P.E.3
Klionsky, D.J.4
-
17
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3 phosphate and dynamically connected to the endoplasmic reticulum
-
Axe, E. L., Walker, S. A., Manifava, M., & Chandra, P. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3 phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685-701 (2008
-
(2008)
J. Cell Biol
, vol.182
, pp. 685-701
-
-
Axe, E.L.1
Walker, S.A.2
Manifava, M.3
Chandra, P.4
-
18
-
-
77952495224
-
Mitochondria supply membranes for autophagosome biogenesis during starvation
-
Hailey, D. W., et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656-667 (2010
-
(2010)
Cell
, vol.141
, pp. 656-667
-
-
Hailey, D.W.1
-
19
-
-
77957198526
-
An Atg9 containing compartment that functions in the early steps of autophagosome biogenesis
-
Mari, M., et al. An Atg9 containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol. 190, 1005-1022 (2010
-
(2010)
J. Cell Biol
, vol.190
, pp. 1005-1022
-
-
Mari, M.1
-
20
-
-
84864991509
-
Atg9 vesicles are an important membrane source during early steps of autophagosome formation
-
Yamamoto, H., Kakuta, S., & Watanabe, T. M. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198, 219-233 (2012
-
(2012)
J. Cell Biol
, vol.198
, pp. 219-233
-
-
Yamamoto, H.1
Kakuta, S.2
Watanabe, T.M.3
-
21
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
Hamasaki, M., et al. Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389-393 (2013
-
(2013)
Nature
, vol.495
, pp. 389-393
-
-
Hamasaki, M.1
-
22
-
-
77955131007
-
Plasma membrane contributes to the formation of pre-Autophagosomal structures
-
Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C., & Rubinsztein, D. C. Plasma membrane contributes to the formation of pre-Autophagosomal structures. Nat. Cell Biol. 12, 747-757 (2010
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 747-757
-
-
Ravikumar, B.1
Moreau, K.2
Jahreiss, L.3
Puri, C.4
Rubinsztein, D.C.5
-
23
-
-
84905491871
-
Autophagic clearance of polyQ proteins mediated by ubiquitin Atg8 adaptors of the conserved CUET protein family
-
Lu, K., Psakhye, I., & Jentsch, S. Autophagic clearance of polyQ proteins mediated by ubiquitin Atg8 adaptors of the conserved CUET protein family. Cell 158, 549-563 (2014
-
(2014)
Cell
, vol.158
, pp. 549-563
-
-
Lu, K.1
Psakhye, I.2
Jentsch, S.3
-
25
-
-
84901801108
-
Organellophagy: Eliminating cellular building blocks via selective autophagy
-
Okamoto, K. Organellophagy: eliminating cellular building blocks via selective autophagy. J. Cell Biol. 205, 435-445 (2014
-
(2014)
J. Cell Biol
, vol.205
, pp. 435-445
-
-
Okamoto, K.1
-
26
-
-
67650264633
-
Atg32 is a mitochondrial protein that confers selectivity during mitophagy
-
Kanki, T., Wang, K., Cao, Y., Baba, M., & Klionsky, D. J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17, 98-109 (2009
-
(2009)
Dev. Cell
, vol.17
, pp. 98-109
-
-
Kanki, T.1
Wang, K.2
Cao, Y.3
Baba, M.4
Klionsky, D.J.5
-
27
-
-
73449118234
-
A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria
-
Okamoto, K., Kondo-Okamoto, N., & Ohsumi, Y. A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria. Autophagy 5, 1203-1205 (2009
-
(2009)
Autophagy
, vol.5
, pp. 1203-1205
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
Ohsumi, Y.3
-
28
-
-
67650246357
-
Mitochondria-Anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
-
Okamoto, K., Kondo-Okamoto, N., & Ohsumi, Y. Mitochondria-Anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17, 87-97 (2009
-
(2009)
Dev. Cell
, vol.17
, pp. 87-97
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
Ohsumi, Y.3
-
29
-
-
43649104579
-
Mitochondrial autophagy is an HIF 1 dependent adaptive metabolic response to hypoxia
-
Zhang, H., et al. Mitochondrial autophagy is an HIF 1 dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892-10903 (2008
-
(2008)
J. Biol. Chem
, vol.283
, pp. 10892-10903
-
-
Zhang, H.1
-
30
-
-
37649017266
-
NIX is required for programmed mitochondrial clearance during reticulocyte maturation
-
Schweers, R. L., et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500-19505 (2007
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 19500-19505
-
-
Schweers, R.L.1
-
31
-
-
47049100413
-
Essential role for Nix in autophagic maturation of erythroid cells
-
Sandoval, H., et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232-235 (2008
-
(2008)
Nature
, vol.454
, pp. 232-235
-
-
Sandoval, H.1
-
32
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak, I., et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45-51 (2010
-
(2010)
EMBO Rep
, vol.11
, pp. 45-51
-
-
Novak, I.1
-
33
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
Liu, L., et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 1-10 (2012
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 1-10
-
-
Liu, L.1
-
34
-
-
80052197610
-
Phosphorylation of serine 114 on Atg32 mediates mitophagy
-
Aoki, Y., et al. Phosphorylation of serine 114 on Atg32 mediates mitophagy. Mol. Biol. Cell 22, 3206-3217 (2011
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 3206-3217
-
-
Aoki, Y.1
-
35
-
-
84872291490
-
Modulation of serines 17 and 24 in the LC3 interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis
-
Zhu, Y., et al. Modulation of serines 17 and 24 in the LC3 interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J. Biol. Chem. 288, 1099-1113 (2013
-
(2013)
J. Biol. Chem
, vol.288
, pp. 1099-1113
-
-
Zhu, Y.1
-
36
-
-
42049094041
-
PpAtg30 tags peroxisomes for turnover by selective autophagy
-
Farré, J. C., Manjithaya, R., Mathewson, R. D., & Subramani, S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell 14, 365-376 (2008
-
(2008)
Dev. Cell
, vol.14
, pp. 365-376
-
-
Farré, J.C.1
Manjithaya, R.2
Mathewson, R.D.3
Subramani, S.4
-
37
-
-
84863843241
-
Pex3 anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae
-
Motley, A. M., Nuttall, J. M., & Hettema, E. H. Pex3 anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 31, 2852-2868 (2012
-
(2012)
EMBO J.
, vol.31
, pp. 2852-2868
-
-
Motley, A.M.1
Nuttall, J.M.2
Hettema, E.H.3
-
38
-
-
58549084167
-
Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes
-
Kim, P. K., Hailey, D. W., Mullen, R. T., & Lippincott-Schwartz, J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl Acad. Sci. USA 105, 20567-20574 (2008
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 20567-20574
-
-
Kim, P.K.1
Hailey, D.W.2
Mullen, R.T.3
Lippincott-Schwartz, J.4
-
39
-
-
84876345355
-
NBR1 acts as an autophagy receptor for peroxisomes
-
Deosaran, E., et al. NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci. 126, 939-952 (2013
-
(2013)
J. Cell Sci
, vol.126
, pp. 939-952
-
-
Deosaran, E.1
-
40
-
-
84907042769
-
ER phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery
-
Schuck, S., Gallagher, C. M., & Walter, P. ER phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J. Cell Sci. 127, 4078-4088 (2014
-
(2014)
J. Cell Sci
, vol.127
, pp. 4078-4088
-
-
Schuck, S.1
Gallagher, C.M.2
Walter, P.3
-
41
-
-
84890178991
-
Substrate recognition in selective autophagy and the ubiquitin-proteasome system
-
Schreiber, A., & Peter, M. Substrate recognition in selective autophagy and the ubiquitin-proteasome system. Biochim. Biophys. Acta 1843, 163-181 (2014
-
(2014)
Biochim. Biophys. Acta
, vol.1843
, pp. 163-181
-
-
Schreiber, A.1
Peter, M.2
-
42
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh, R., et al. Autophagy regulates lipid metabolism. Nature 458, 1131-1135 (2009
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
-
43
-
-
84899746695
-
Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
-
Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W., & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105-109 (2014
-
(2014)
Nature
, vol.509
, pp. 105-109
-
-
Mancias, J.D.1
Wang, X.2
Gygi, S.P.3
Harper, J.W.4
Kimmelman, A.C.5
-
44
-
-
84908466248
-
Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo
-
Dowdle, W. E., et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16, 1069-1079 (2014
-
(2014)
Nat. Cell Biol
, vol.16
, pp. 1069-1079
-
-
Dowdle, W.E.1
-
45
-
-
79955631150
-
Autophagy in the cellular energetic balance
-
Singh, R., & Cuervo, A. M. Autophagy in the cellular energetic balance. Cell Metab. 13, 495-504 (2011
-
(2011)
Cell Metab
, vol.13
, pp. 495-504
-
-
Singh, R.1
Cuervo, A.M.2
-
46
-
-
0019501619
-
Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver
-
Schworer, C. M., Shiffer, K. A., & Mortimore, G. E. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J. Biol. Chem. 256, 7652-7658 (1981
-
(1981)
J. Biol. Chem
, vol.256
, pp. 7652-7658
-
-
Schworer, C.M.1
Shiffer, K.A.2
Mortimore, G.E.3
-
47
-
-
0019846434
-
Vanadate inhibits protein degradation in isolated rat hepatocytes
-
Seglen, P. O., & Gordon, P. B. Vanadate inhibits protein degradation in isolated rat hepatocytes. J. Biol. Chem. 256, 7699-7701 (1981
-
(1981)
J. Biol. Chem
, vol.256
, pp. 7699-7701
-
-
Seglen, P.O.1
Gordon, P.B.2
-
48
-
-
24744441497
-
Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation
-
Onodera, J. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem. 280, 31582-31586 (2005
-
(2005)
J. Biol. Chem
, vol.280
, pp. 31582-31586
-
-
Onodera, J.1
-
49
-
-
79952166584
-
Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction
-
Suzuki, S. W., Onodera, J., & Ohsumi, Y. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction. PLoS ONE 6, e17412 (2011
-
(2011)
PLoS ONE
, vol.6
, pp. e17412
-
-
Suzuki, S.W.1
Onodera, J.2
Ohsumi, Y.3
-
50
-
-
46849115787
-
Autophagy is essential for preimplantation development of mouse embryos
-
Tsukamoto, S., et al. Autophagy is essential for preimplantation development of mouse embryos. Science 321, 117-120 (2008
-
(2008)
Science
, vol.321
, pp. 117-120
-
-
Tsukamoto, S.1
-
51
-
-
79956325949
-
Spatial coupling of mTOR and autophagy augments secretory phenotypes
-
Narita, M., et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332, 966-970 (2011
-
(2011)
Science
, vol.332
, pp. 966-970
-
-
Narita, M.1
-
52
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7 deficient mice
-
Komatsu, M. Impairment of starvation-induced and constitutive autophagy in Atg7 deficient mice. J. Cell Biol. 169, 425-434 (2005
-
(2005)
J. Cell Biol
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
-
53
-
-
12944303650
-
Growth factor regulation of autophagy and cell survival in the absence of apoptosis
-
Lum, J. J., et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237-248 (2005
-
(2005)
Cell
, vol.120
, pp. 237-248
-
-
Lum, J.J.1
-
54
-
-
84874192375
-
FOXO3A directs a protective autophagy program in haematopoietic stem cells
-
Warr, M. R., et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494, 323-327 (2013
-
(2013)
Nature
, vol.494
, pp. 323-327
-
-
Warr, M.R.1
-
55
-
-
79959952405
-
Liver autophagy contributes to the maintenance of blood glucose and amino acid levels
-
Ezaki, J., et al. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 7, 727-736 (2011
-
(2011)
Autophagy
, vol.7
, pp. 727-736
-
-
Ezaki, J.1
-
56
-
-
84864960912
-
Autophagy stress, and cancer metabolism: What doesn't kill you makes you stronger
-
Mathew, R., & White, E. Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger. Cold Spring Harb. Symp. Quant. Biol. 76, 389-396 (2011
-
(2011)
Cold Spring Harb. Symp. Quant. Biol
, vol.76
, pp. 389-396
-
-
Mathew, R.1
White, E.2
-
57
-
-
84901457664
-
Autophagy and cancer metabolism
-
Goldsmith, J., Levine, B., & Debnath, J. Autophagy and cancer metabolism. Methods Enzymol. 542, 25-57 (2014
-
(2014)
Methods Enzymol
, vol.542
, pp. 25-57
-
-
Goldsmith, J.1
Levine, B.2
Debnath, J.3
-
58
-
-
84918827750
-
Cellular and metabolic functions for autophagy in cancer cells
-
Kenific, C. M., & Debnath, J. Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol. 1, 37-45 (2015
-
(2015)
Trends Cell Biol
, vol.1
, pp. 37-45
-
-
Kenific, C.M.1
Debnath, J.2
-
59
-
-
84890018924
-
Autophagy-mediated tumor promotion
-
Guo, J. Y., Xia, B., & White, E. Autophagy-mediated tumor promotion. Cell 155, 1216-1219 (2013
-
(2013)
Cell
, vol.155
, pp. 1216-1219
-
-
Guo, J.Y.1
Xia, B.2
White, E.3
-
60
-
-
84907994253
-
Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity
-
Mathew, R., et al. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol. Cell 55, 916-930 (2014
-
(2014)
Mol. Cell
, vol.55
, pp. 916-930
-
-
Mathew, R.1
-
61
-
-
77955789211
-
Altered lipid content inhibits autophagic vesicular fusion
-
Koga, H., Kaushik, S., & Cuervo, A. M. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 24, 3052-3065 (2010
-
(2010)
FASEB J.
, vol.24
, pp. 3052-3065
-
-
Koga, H.1
Kaushik, S.2
Cuervo, A.M.3
-
62
-
-
82755195229
-
Fatty acids suppress autophagic turnover in β cells
-
Las, G., Serada, S. B., Wikstrom, J. D., Twig, G., & Shirihai, O. S. Fatty acids suppress autophagic turnover in β cells. J. Biol. Chem. 286, 42534-42544 (2011
-
(2011)
J. Biol. Chem
, vol.286
, pp. 42534-42544
-
-
Las, G.1
Serada, S.B.2
Wikstrom, J.D.3
Twig, G.4
Shirihai, O.S.5
-
63
-
-
77956400005
-
Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
-
Yang, L., Li, P., Fu, S., Calay, E. S., & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467-478 (2010
-
(2010)
Cell Metab
, vol.11
, pp. 467-478
-
-
Yang, L.1
Li, P.2
Fu, S.3
Calay, E.S.4
Hotamisligil, G.S.5
-
64
-
-
84923331724
-
Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes
-
Lim, Y. M., et al. Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat. Commun. 5, 4934 (2014
-
(2014)
Nat. Commun
, vol.5
, pp. 4934
-
-
Lim, Y.M.1
-
65
-
-
77951665859
-
Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease
-
Martinez-Vicente, M., et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci. 13, 567-576 (2010
-
(2010)
Nat. Neurosci
, vol.13
, pp. 567-576
-
-
Martinez-Vicente, M.1
-
66
-
-
79960951346
-
Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance
-
Kaushik, S., et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab. 14, 173-183 (2011
-
(2011)
Cell Metab
, vol.14
, pp. 173-183
-
-
Kaushik, S.1
-
67
-
-
84859444880
-
Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues
-
Hernández-Gea, V., et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938-946 (2012
-
(2012)
Gastroenterology
, vol.142
, pp. 938-946
-
-
Hernández-Gea, V.1
-
68
-
-
84892536117
-
Lipid droplet autophagy in the yeast Saccharomyces cerevisiae
-
van Zutphen, T., et al. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 25, 290-301 (2014
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 290-301
-
-
Van Zutphen, T.1
-
69
-
-
0028245065
-
Exogenous VLDL stimulates apolipoprotein B secretion from HepG2 cells by both pre-And post-Translational mechanisms
-
Wu, X., Sakata, N., Dixon, J., & Ginsberg, H. N. Exogenous VLDL stimulates apolipoprotein B secretion from HepG2 cells by both pre-And post-Translational mechanisms. J. Lipid Res. 35, 1200-1210 (1994
-
(1994)
J. Lipid Res
, vol.35
, pp. 1200-1210
-
-
Wu, X.1
Sakata, N.2
Dixon, J.3
Ginsberg, H.N.4
-
70
-
-
69449107552
-
Lipases in lysosomes what for?
-
Czaja, M. J., & Cuervo, A. M. Lipases in lysosomes, what for?. Autophagy 5, 866-867 (2009
-
(2009)
Autophagy
, vol.5
, pp. 866-867
-
-
Czaja, M.J.1
Cuervo, A.M.2
-
71
-
-
84878533962
-
MXL 3 and HLH 30 transcriptionally link lipolysis and autophagy to nutrient availability
-
O'Rourke, E. J., & Ruvkun, G. MXL 3 and HLH 30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 15, 668-676 (2013
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 668-676
-
-
O'rourke, E.J.1
Ruvkun, G.2
-
72
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre, C., et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433 (2011
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
-
73
-
-
84878606239
-
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
-
Settembre, C., et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647-658 (2013
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 647-658
-
-
Settembre, C.1
-
74
-
-
84923031534
-
Nutrient-sensing nuclear receptors coordinate autophagy
-
Lee, J. M., et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516, 112-115 (2014
-
(2014)
Nature
, vol.516
, pp. 112-115
-
-
Lee, J.M.1
-
75
-
-
84922968506
-
Transcriptional regulation of autophagy by an FXR-CREB axis
-
Seok, S., et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 516, 108-111 (2014
-
(2014)
Nature
, vol.516
, pp. 108-111
-
-
Seok, S.1
-
76
-
-
63349104160
-
The MAP1 LC3 conjugation system is involved in lipid droplet formation
-
Shibata, M., et al. The MAP1 LC3 conjugation system is involved in lipid droplet formation. Biochem. Biophys. Res. Commun. 382, 419-423 (2009
-
(2009)
Biochem. Biophys. Res. Commun
, vol.382
, pp. 419-423
-
-
Shibata, M.1
-
77
-
-
84870995648
-
Regulation of lipid stores and metabolism by lipophagy
-
Liu, K., & Czaja, M. J. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 20, 3-11 (2012
-
(2012)
Cell Death Differ
, vol.20
, pp. 3-11
-
-
Liu, K.1
Czaja, M.J.2
-
78
-
-
84887527969
-
Lipid droplet breakdown requires Dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes
-
Schulze, R. J., et al. Lipid droplet breakdown requires Dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J. Cell Biol. 203, 315-326 (2013
-
(2013)
J. Cell Biol
, vol.203
, pp. 315-326
-
-
Schulze, R.J.1
-
79
-
-
84892727198
-
What we talk about when we talk about fat
-
Rosen, E. D., & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20-44 (2014
-
(2014)
Cell
, vol.156
, pp. 20-44
-
-
Rosen, E.D.1
Spiegelman, B.M.2
-
80
-
-
84864287504
-
Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
-
Wu, J., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366-376 (2012
-
(2012)
Cell
, vol.150
, pp. 366-376
-
-
Wu, J.1
-
81
-
-
73449117508
-
Targeted deletion of autophagy-related 5 (Atg5) impairs adipogenesis in a cellular model and in mice
-
Baerga, R., Zhang, Y., Chen, P. H., Goldman, S., & Jin, S. Targeted deletion of autophagy-related 5 (Atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 5, 1118-1130 (2009
-
(2009)
Autophagy
, vol.5
, pp. 1118-1130
-
-
Baerga, R.1
Zhang, Y.2
Chen, P.H.3
Goldman, S.4
Jin, S.5
-
82
-
-
70449448312
-
Autophagy regulates adipose mass and differentiation in mice
-
Singh, R., et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329-3339 (2009
-
(2009)
J. Clin. Invest
, vol.119
, pp. 3329-3339
-
-
Singh, R.1
-
83
-
-
73949124173
-
Adipose-specific deletion of autophagy-related gene 7 (Atg7) in mice reveals a role in adipogenesis
-
Zhang, Y., et al. Adipose-specific deletion of autophagy-related gene 7 (Atg7) in mice reveals a role in adipogenesis. Proc. Natl Acad. Sci. USA 106, 19860-19865 (2009
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 19860-19865
-
-
Zhang, Y.1
-
84
-
-
84883488843
-
Autophagy in Myf5+ progenitors regulates energy and glucose homeostasis through control of brown fat and skeletal muscle development
-
Martinez-Lopez, N., et al. Autophagy in Myf5+ progenitors regulates energy and glucose homeostasis through control of brown fat and skeletal muscle development. EMBO Rep. 14, 795-803 (2013
-
(2013)
EMBO Rep
, vol.14
, pp. 795-803
-
-
Martinez-Lopez, N.1
-
85
-
-
84872057896
-
Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
-
Kim, K. H., et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83-92 (2013
-
(2013)
Nat. Med
, vol.19
, pp. 83-92
-
-
Kim, K.H.1
-
86
-
-
80052712323
-
Defective hypothalamic autophagy directs the central pathogenesis of obesity via the I?B kinase β (IKKβ)/NF ?B pathway
-
Meng, Q., & Cai, D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the I?B kinase β (IKKβ)/NF ?B pathway. J. Biol. Chem. 286, 32324-32332 (2011
-
(2011)
J. Biol. Chem
, vol.286
, pp. 32324-32332
-
-
Meng, Q.1
Cai, D.2
-
87
-
-
84863229947
-
Loss of autophagy in hypothalamic POMC neurons impairs lipolysis
-
Kaushik, S., et al. Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep. 13, 258-265 (2012
-
(2012)
EMBO Rep
, vol.13
, pp. 258-265
-
-
Kaushik, S.1
-
88
-
-
84856953003
-
Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation
-
Coupé, B., et al. Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab. 15, 47-255 (2012
-
(2012)
Cell Metab
, vol.15
, pp. 47-255
-
-
Coupé, B.1
-
89
-
-
84859416906
-
Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response
-
Quan, W., et al. Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology 153, 1817-1826 (2012
-
(2012)
Endocrinology
, vol.153
, pp. 1817-1826
-
-
Quan, W.1
-
90
-
-
84923359391
-
Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity
-
Malhotra, R., Warne, J. P., Salas, E., Xu, A. W., & Debnath, J. Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity. Autophagy 11, 145-154 (2015
-
(2015)
Autophagy
, vol.11
, pp. 145-154
-
-
Malhotra, R.1
Warne, J.P.2
Salas, E.3
Xu, A.W.4
Debnath, J.5
-
91
-
-
0033809401
-
Glycogen autophagy in newborn rat hepatocytes
-
Kalamidas, S. A., & Kotoulas, O. B. Glycogen autophagy in newborn rat hepatocytes. Histol. Histopathol. 15, 1011-1018 (2000
-
(2000)
Histol. Histopathol
, vol.15
, pp. 1011-1018
-
-
Kalamidas, S.A.1
Kotoulas, O.B.2
-
92
-
-
33747363269
-
Glycogen autophagy in glucose homeostasis
-
Kotoulas, O. B., Kalamidas, S. A., & Kondomerkos, D. J. Glycogen autophagy in glucose homeostasis. Pathol. Res. Pract. 202, 631-638 (2006
-
(2006)
Pathol. Res. Pract
, vol.202
, pp. 631-638
-
-
Kotoulas, O.B.1
Kalamidas, S.A.2
Kondomerkos, D.J.3
-
93
-
-
21644475161
-
Glycogen autophagy in the liver and heart of newborn rats the effects of glucagon, adrenalin or rapamycin
-
Kondomerkos, D. J., Kalamidas, S. A., Kotoulas, O. B., & Hann, A. C. Glycogen autophagy in the liver and heart of newborn rats. The effects of glucagon, adrenalin or rapamycin. Histol. Histopathol. 20, 689-696 (2005
-
(2005)
Histol. Histopathol
, vol.20
, pp. 689-696
-
-
Kondomerkos, D.J.1
Kalamidas, S.A.2
Kotoulas, O.B.3
Hann, A.C.4
-
94
-
-
1542283812
-
In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
-
Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T., & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101-1111 (2003
-
(2003)
Mol. Biol. Cell
, vol.15
, pp. 1101-1111
-
-
Mizushima, N.1
Yamamoto, A.2
Matsui, M.3
Yoshimori, T.4
Ohsumi, Y.5
-
95
-
-
84905497318
-
Autophagy is required for glucose homeostasis and lung tumor maintenance
-
Karsli-Uzunbas, G., et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 4, 914-927 (2014
-
(2014)
Cancer Discov
, vol.4
, pp. 914-927
-
-
Karsli-Uzunbas, G.1
-
96
-
-
83455243361
-
Autophagy in lysosomal myopathies
-
Malicdan, M. C. V., & Nishino, I. Autophagy in lysosomal myopathies. Brain Pathol. 22, 82-88 (2012
-
(2012)
Brain Pathol
, vol.22
, pp. 82-88
-
-
Malicdan, M.C.V.1
Nishino, I.2
-
97
-
-
57049094929
-
Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease
-
Raben, N., et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum. Mol. Genet. 17, 3897-3908 (2008
-
(2008)
Hum. Mol. Genet
, vol.17
, pp. 3897-3908
-
-
Raben, N.1
-
98
-
-
77649200841
-
Autophagy in skeletal muscle: Implications for Pompe disease
-
Shea, L., & Raben, N. Autophagy in skeletal muscle: implications for Pompe disease. Int. J. Clin. Pharmacol. Ther. 47, S42-S47 (2009
-
(2009)
Int. J. Clin. Pharmacol. Ther
, vol.47
, pp. S42-S47
-
-
Shea, L.1
Raben, N.2
-
99
-
-
84877601173
-
Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease
-
Spampanato, C., et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol. Med. 5, 691-706 (2013
-
(2013)
EMBO Mol. Med
, vol.5
, pp. 691-706
-
-
Spampanato, C.1
-
100
-
-
84889069304
-
Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy
-
Zirin, J., Nieuwenhuis, J., & Perrimon, N. Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol. 11, e1001708 (2013
-
(2013)
PLoS Biol
, vol.11
, pp. e1001708
-
-
Zirin, J.1
Nieuwenhuis, J.2
Perrimon, N.3
-
101
-
-
84863393597
-
Exercise-induced BCL2 regulated autophagy is required for muscle glucose homeostasis
-
He, C., et al. Exercise-induced BCL2 regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511-515 (2012
-
(2012)
Nature
, vol.481
, pp. 511-515
-
-
He, C.1
-
102
-
-
52749093177
-
Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
-
Ebato, C., et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 8, 325-332 (2008
-
(2008)
Cell Metab
, vol.8
, pp. 325-332
-
-
Ebato, C.1
-
103
-
-
52749094770
-
Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia
-
Jung, H. S., et al. Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia. Cell Metab. 8, 318-324 (2008
-
(2008)
Cell Metab
, vol.8
, pp. 318-324
-
-
Jung, H.S.1
-
104
-
-
34548368589
-
Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine β-cells
-
Marsh, B. J., et al. Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine β-cells. Mol. Endocrinol. 21, 2255-2269 (2007
-
(2007)
Mol. Endocrinol
, vol.21
, pp. 2255-2269
-
-
Marsh, B.J.1
-
105
-
-
84923279437
-
Insulin secretory granules control autophagy in pancreatic β cells
-
Goginashvili, A., et al. Insulin secretory granules control autophagy in pancreatic β cells. Science 347, 878-882 (2015
-
(2015)
Science
, vol.347
, pp. 878-882
-
-
Goginashvili, A.1
-
106
-
-
84897946801
-
Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion
-
Lock, R., Kenific, C. M., Leidal, A. M., Salas, E., & Debnath, J. Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov. 4, 466-479 (2014
-
(2014)
Cancer Discov
, vol.4
, pp. 466-479
-
-
Lock, R.1
Kenific, C.M.2
Leidal, A.M.3
Salas, E.4
Debnath, J.5
-
107
-
-
84864272758
-
Mechanisms of mammalian iron homeostasis
-
Pantopoulos, K., Porwal, S. K., Tartakoff, A., & Devireddy, L. Mechanisms of mammalian iron homeostasis. Biochemistry 51, 5705-5724 (2012
-
(2012)
Biochemistry
, vol.51
, pp. 5705-5724
-
-
Pantopoulos, K.1
Porwal, S.K.2
Tartakoff, A.3
Devireddy, L.4
-
108
-
-
79956115511
-
Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells
-
Asano, T., et al. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol. Cell. Biol. 31, 2040-2052 (2011
-
(2011)
Mol. Cell. Biol
, vol.31
, pp. 2040-2052
-
-
Asano, T.1
-
109
-
-
84907042842
-
Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells
-
Kishi-Itakura, C., Koyama-Honda, I., Itakura, E., & Mizushima, N. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J. Cell Sci.127, 4089-4102 (2014
-
(2014)
J. Cell Sci
, vol.127
, pp. 4089-4102
-
-
Kishi-Itakura, C.1
Koyama-Honda, I.2
Itakura, E.3
Mizushima, N.4
-
110
-
-
0029951486
-
Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells
-
Yeh, S., & Chang, C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl Acad. Sci. USA 93, 5517-5521 (1996
-
(1996)
Proc. Natl Acad. Sci. USA
, vol.93
, pp. 5517-5521
-
-
Yeh, S.1
Chang, C.2
-
111
-
-
84870913730
-
Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct X linked dominant form of NBIA
-
Haack, T. B., et al. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X linked dominant form of NBIA. Am. J. Hum. Genet. 91, 1144-1149 (2012
-
(2012)
Am. J. Hum. Genet
, vol.91
, pp. 1144-1149
-
-
Haack, T.B.1
-
112
-
-
84875757691
-
De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood
-
Saitsu, H., et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat. Genet. 45, 445-449 (2013
-
(2013)
Nat. Genet
, vol.45
, pp. 445-449
-
-
Saitsu, H.1
-
113
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075 (2008
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
114
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
Nakai, A., et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13, 619-624 (2007
-
(2007)
Nat. Med
, vol.13
, pp. 619-624
-
-
Nakai, A.1
-
115
-
-
70449927247
-
Autophagy is required to maintain muscle mass
-
Masiero, E., et al. Autophagy is required to maintain muscle mass. Cell Metab. 10, 507-515 (2009
-
(2009)
Cell Metab
, vol.10
, pp. 507-515
-
-
Masiero, E.1
-
116
-
-
34250183177
-
HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS
-
Pandey, U. B., et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 860-864 (2007
-
(2007)
Nature
, vol.447
, pp. 860-864
-
-
Pandey, U.B.1
-
117
-
-
82855181806
-
Proteasome malfunction activates macroautophagy in the heart
-
Zheng, Q., Su, H., Tian, Z., & Wang, X. Proteasome malfunction activates macroautophagy in the heart. Am. J. Cardiovasc. Dis. 1, 214-226 (2011
-
(2011)
Am. J. Cardiovasc. Dis
, vol.1
, pp. 214-226
-
-
Zheng, Q.1
Su, H.2
Tian, Z.3
Wang, X.4
-
118
-
-
84868148725
-
Failure of amino acid homeostasis causes cell death following proteasome inhibition
-
Suraweera, A., Mch, C., Hanssum, A., & Bertolotti, A. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol. Cell 48, 242-253 (2012
-
(2012)
Mol. Cell
, vol.48
, pp. 242-253
-
-
Suraweera, A.1
Mch, C.2
Hanssum, A.3
Bertolotti, A.4
-
119
-
-
29344464782
-
Protein synthesis upon acute nutrient restriction relies on proteasome function
-
Vabulas, R. M., & Hartl, F. U. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 310, 1960-1963 (2005
-
(2005)
Science
, vol.310
, pp. 1960-1963
-
-
Vabulas, R.M.1
Hartl, F.U.2
-
120
-
-
84872345477
-
Proteasome-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) is essential for autophagy suppression and muscle remodeling following denervation
-
Quy, P. N., Kuma, A., Pierre, P., & Mizushima, N. Proteasome-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) is essential for autophagy suppression and muscle remodeling following denervation. J. Biol. Chem. 288, 1125-1134 (2013
-
(2013)
J. Biol. Chem
, vol.288
, pp. 1125-1134
-
-
Quy, P.N.1
Kuma, A.2
Pierre, P.3
Mizushima, N.4
-
121
-
-
0033671965
-
Retention of mutant α1-Antitrypsin Z in endoplasmic reticulum is associated with an autophagic response
-
Teckman, J. H., & Perlmutter, D. H. Retention of mutant α1-Antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G961-G974 (2000
-
(2000)
Am. J. Physiol. Gastrointest. Liver Physiol
, vol.279
, pp. G961-G974
-
-
Teckman, J.H.1
Perlmutter, D.H.2
-
122
-
-
33845480131
-
Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response
-
Bernales, S., McDonald, K. L., & Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4, e423 (2006
-
(2006)
PLoS Biol
, vol.4
, pp. e423
-
-
Bernales, S.1
McDonald, K.L.2
Walter, P.3
-
123
-
-
33749579383
-
Endoplasmic reticulum stress triggers autophagy
-
Yorimitsu, T., Nair, U., Yang, Z., & Klionsky, D. J. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281, 30299-30304 (2006
-
(2006)
J. Biol. Chem
, vol.281
, pp. 30299-30304
-
-
Yorimitsu, T.1
Nair, U.2
Yang, Z.3
Klionsky, D.J.4
-
124
-
-
84938097353
-
Reticulophagy and ribophagy: Regulated degradation of protein production factories
-
Ogata, M., et al. Reticulophagy and ribophagy: regulated degradation of protein production factories. Mol. Cell. Biol. 2012, 9220-9231 (2006
-
(2006)
Mol. Cell. Biol
, vol.2012
, pp. 9220-9231
-
-
Ogata, M.1
-
125
-
-
33947497050
-
Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival
-
Ding, W. X., et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem. 282, 4702-4710 (2007
-
(2007)
J. Biol. Chem
, vol.282
, pp. 4702-4710
-
-
Ding, W.X.1
-
126
-
-
58849089529
-
Mechanisms of regulated unconventional protein secretion
-
Nickel, W., & Rabouille, C. Mechanisms of regulated unconventional protein secretion. Nat. Rev. Mol. Cell Biol. 10, 148-155 (2009
-
(2009)
Nat. Rev. Mol. Cell Biol
, vol.10
, pp. 148-155
-
-
Nickel, W.1
Rabouille, C.2
-
127
-
-
77149152566
-
Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation
-
Manjithaya, R., Anjard, C., Loomis, W. F., & Subramani, S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J. Cell Biol. 188, 537-546 (2010
-
(2010)
J. Cell Biol
, vol.188
, pp. 537-546
-
-
Manjithaya, R.1
Anjard, C.2
Loomis, W.F.3
Subramani, S.4
-
128
-
-
77149155386
-
Unconventional secretion of Acb1 is mediated by autophagosomes
-
Duran, J. M., Anjard, C., Stefan, C., Loomis, W. F., & Malhotra, V. Unconventional secretion of Acb1 is mediated by autophagosomes. J. Cell Biol. 188, 527-536 (2010
-
(2010)
J. Cell Biol
, vol.188
, pp. 527-536
-
-
Duran, J.M.1
Anjard, C.2
Stefan, C.3
Loomis, W.F.4
Malhotra, V.5
-
129
-
-
84855490021
-
Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion
-
Bruns, C., McCaffery, J. M., & Curwin, A. J. Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. J. Cell Biol. 195, 979-992 (2011
-
(2011)
J. Cell Biol
, vol.195
, pp. 979-992
-
-
Bruns, C.1
McCaffery, J.M.2
Curwin, A.J.3
-
130
-
-
82455210868
-
Autophagy-based unconventional secretory pathway for extracellular delivery of IL 1β
-
Dupont, N., et al Autophagy-based unconventional secretory pathway for extracellular delivery of IL 1β. EMBO J. 30, 4701-4711 (2011
-
(2011)
EMBO J.
, vol.30
, pp. 4701-4711
-
-
Dupont, N.1
-
131
-
-
80052277733
-
Rescue of δf508 CFTR trafficking via a GRASP-dependent unconventional secretion pathway
-
Gee, H. Y., Noh, S. H., Tang, B. L., Kim, K. H., & Lee, M. G. Rescue of δF508 CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell 146, 746-760 (2011
-
(2011)
Cell
, vol.146
, pp. 746-760
-
-
Gee, H.Y.1
Noh, S.H.2
Tang, B.L.3
Kim, K.H.4
Lee, M.G.5
-
132
-
-
34547604776
-
The Golgi-Associated protein GRASP is required for unconventional protein secretion during development
-
Kinseth, M. A., et al. The Golgi-Associated protein GRASP is required for unconventional protein secretion during development. Cell 130, 524-534 (2007
-
(2007)
Cell
, vol.130
, pp. 524-534
-
-
Kinseth, M.A.1
-
133
-
-
84930445399
-
Remodeling of secretory compartments creates CUPS during nutrient starvation
-
Cruz-Garcia, D., et al. Remodeling of secretory compartments creates CUPS during nutrient starvation. J. Cell Biol. 207, 695-703 (2014
-
(2014)
J. Cell Biol
, vol.207
, pp. 695-703
-
-
Cruz-Garcia, D.1
-
134
-
-
79955577268
-
Crucial role for autophagy in degranulation of mast cells
-
Ushio, H., et al. Crucial role for autophagy in degranulation of mast cells. J. Allergy Clin. Immunol. 127, 1267-1276.e6 (2011
-
(2011)
J. Allergy Clin. Immunol
, vol.127
, pp. 1267-1267e6
-
-
Ushio, H.1
-
135
-
-
84923852038
-
ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function
-
Murrow, L., Malhotra, R., & Debnath, J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat. Cell Biol. 17, 300-310 (2015
-
(2015)
Nat. Cell Biol
, vol.17
, pp. 300-310
-
-
Murrow, L.1
Malhotra, R.2
Debnath, J.3
-
136
-
-
84864295258
-
Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation
-
Deretic, V., Jiang, S., & Dupont, N. Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol. 22, 397-406 (2012
-
(2012)
Trends Cell Biol
, vol.22
, pp. 397-406
-
-
Deretic, V.1
Jiang, S.2
Dupont, N.3
-
137
-
-
64349123107
-
Autophagy mediates the mitotic senescence transition
-
Young, A. R. J., et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 23, 798-803 (2009
-
(2009)
Genes Dev
, vol.23
, pp. 798-803
-
-
Young, A.R.J.1
-
138
-
-
84856213604
-
Autophagy and mitochondria in Pompe disease: Nothing is so new as what has long been forgotten
-
Raben, N., Wong, A., Ralston, E., & Myerowitz, R. Autophagy and mitochondria in Pompe disease: nothing is so new as what has long been forgotten. Am. J. Med. Genet. C Semin. Med. Genet. 160C, 13-21 (2012
-
(2012)
Am. J. Med. Genet. C Semin. Med. Genet
, vol.160 C
, pp. 13-21
-
-
Raben, N.1
Wong, A.2
Ralston, E.3
Myerowitz, R.4
-
139
-
-
17044440789
-
Primary LAMP 2 deficiency causes X linked vacuolar cardiomyopathy and myopathy (Danon disease
-
Nishino, I., et al. Primary LAMP 2 deficiency causes X linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406, 906-910 (2000
-
(2000)
Nature
, vol.406
, pp. 906-910
-
-
Nishino, I.1
|