메뉴 건너뛰기




Volumn 16, Issue 8, 2015, Pages 461-472

Autophagy at the crossroads of catabolism and anabolism

Author keywords

[No Author keywords available]

Indexed keywords

AUTOPHAGY PROTEIN; CARBOHYDRATE; CYCLIC AMP; HEAT SHOCK COGNATE PROTEIN 70; IRON; LIPID; PARKIN; PHOSPHATIDYLETHANOLAMINE; PROTEIN; PROTEIN BCL 2; SNARE PROTEIN; UBIQUITIN PROTEIN LIGASE E3; UNCLASSIFIED DRUG;

EID: 84938072487     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm4024     Document Type: Review
Times cited : (795)

References (139)
  • 1
    • 34250864795 scopus 로고    scopus 로고
    • Protein turnover via autophagy: Implications for metabolism
    • Mizushima, N., & Klionsky, D. J. Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr. 27, 19-40 (2007
    • (2007) Annu. Rev. Nutr , vol.27 , pp. 19-40
    • Mizushima, N.1    Klionsky, D.J.2
  • 2
    • 84901815187 scopus 로고    scopus 로고
    • Cargo recognition and trafficking in selective autophagy
    • Stolz, A., Ernst, A., & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495-501 (2014
    • (2014) Nat. Cell Biol , vol.16 , pp. 495-501
    • Stolz, A.1    Ernst, A.2    Dikic, I.3
  • 3
    • 11144245626 scopus 로고    scopus 로고
    • The role of autophagy during the early neonatal starvation period
    • Kuma, A., et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032-1036 (2004
    • (2004) Nature , vol.432 , pp. 1032-1036
    • Kuma, A.1
  • 4
    • 33646800306 scopus 로고    scopus 로고
    • Loss of autophagy in the central nervous system causes neurodegeneration in mice
    • Komatsu, M., et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880-884 (2006
    • (2006) Nature , vol.441 , pp. 880-884
    • Komatsu, M.1
  • 5
    • 33745192802 scopus 로고    scopus 로고
    • Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
    • Hara, T., et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889 (2006
    • (2006) Nature , vol.441 , pp. 885-889
    • Hara, T.1
  • 6
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: Renovation of cells and tissues
    • Mizushima, N., & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728-741 (2011
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 7
    • 84859161154 scopus 로고    scopus 로고
    • Microautophagy: Lesser-known self-eating
    • Li, W. W., Li, J., & Bao, J. K. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69, 1125-1136 (2012
    • (2012) Cell. Mol. Life Sci , vol.69 , pp. 1125-1136
    • Li, W.W.1    Li, J.2    Bao, J.K.3
  • 8
    • 84891741302 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy: Roles in disease and aging
    • Cuervo, A. M., & Wong, E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24, 92-104 (2014
    • (2014) Cell Res , vol.24 , pp. 92-104
    • Cuervo, A.M.1    Wong, E.2
  • 9
    • 84888380983 scopus 로고    scopus 로고
    • The autophagosome: Origins unknown, biogenesis complex
    • Lamb, C. A., Yoshimori, T., & Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759-774 (2013
    • (2013) Nat. Rev. Mol. Cell Biol , vol.14 , pp. 759-774
    • Lamb, C.A.1    Yoshimori, T.2    Tooze, S.A.3
  • 10
    • 84892859905 scopus 로고    scopus 로고
    • Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
    • Rogov, V., Dötsch, V., Johansen, T., & Kirkin, V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 53, 167-178 (2014
    • (2014) Mol. Cell , vol.53 , pp. 167-178
    • Rogov, V.1    Dötsch, V.2    Johansen, T.3    Kirkin, V.4
  • 11
    • 67649467294 scopus 로고    scopus 로고
    • Dynamics and diversity in autophagy mechanisms: Lessons from yeast
    • Nakatogawa, H., Suzuki, K., Kamada, Y., & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell. Biol. 10, 458-467 (2009
    • (2009) Nat. Rev. Mol. Cell. Biol , vol.10 , pp. 458-467
    • Nakatogawa, H.1    Suzuki, K.2    Kamada, Y.3    Ohsumi, Y.4
  • 12
    • 74949090299 scopus 로고    scopus 로고
    • An overview of the molecular mechanism of autophagy
    • Yang, Z., & Klionsky, D. J. An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol. 335, 1-32 (2009
    • (2009) Curr. Top. Microbiol. Immunol , vol.335 , pp. 1-32
    • Yang, Z.1    Klionsky, D.J.2
  • 13
    • 84928550400 scopus 로고    scopus 로고
    • ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
    • Diao, J., et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520, 563-566 (2015
    • (2015) Nature , vol.520 , pp. 563-566
    • Diao, J.1
  • 14
    • 84924809439 scopus 로고    scopus 로고
    • Deacetylation of nuclear LC3 drives autophagy initiation under starvation
    • Huang, R., et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol. Cell 57, 456-466 (2015
    • (2015) Mol. Cell , vol.57 , pp. 456-466
    • Huang, R.1
  • 15
    • 0035503594 scopus 로고    scopus 로고
    • The pre-Autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
    • Suzuki, K. The pre-Autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20, 5971-5981 (2001
    • (2001) EMBO J. , vol.20 , pp. 5971-5981
    • Suzuki, K.1
  • 16
    • 0037016752 scopus 로고    scopus 로고
    • Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation
    • Kim, J., Huang, W. P., Stromhaug, P. E., & Klionsky, D. J. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J. Biol. Chem. 277, 763-773 (2002
    • (2002) J. Biol. Chem , vol.277 , pp. 763-773
    • Kim, J.1    Huang, W.P.2    Stromhaug, P.E.3    Klionsky, D.J.4
  • 17
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3 phosphate and dynamically connected to the endoplasmic reticulum
    • Axe, E. L., Walker, S. A., Manifava, M., & Chandra, P. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3 phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685-701 (2008
    • (2008) J. Cell Biol , vol.182 , pp. 685-701
    • Axe, E.L.1    Walker, S.A.2    Manifava, M.3    Chandra, P.4
  • 18
    • 77952495224 scopus 로고    scopus 로고
    • Mitochondria supply membranes for autophagosome biogenesis during starvation
    • Hailey, D. W., et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656-667 (2010
    • (2010) Cell , vol.141 , pp. 656-667
    • Hailey, D.W.1
  • 19
    • 77957198526 scopus 로고    scopus 로고
    • An Atg9 containing compartment that functions in the early steps of autophagosome biogenesis
    • Mari, M., et al. An Atg9 containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol. 190, 1005-1022 (2010
    • (2010) J. Cell Biol , vol.190 , pp. 1005-1022
    • Mari, M.1
  • 20
    • 84864991509 scopus 로고    scopus 로고
    • Atg9 vesicles are an important membrane source during early steps of autophagosome formation
    • Yamamoto, H., Kakuta, S., & Watanabe, T. M. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198, 219-233 (2012
    • (2012) J. Cell Biol , vol.198 , pp. 219-233
    • Yamamoto, H.1    Kakuta, S.2    Watanabe, T.M.3
  • 21
    • 84875365804 scopus 로고    scopus 로고
    • Autophagosomes form at ER-mitochondria contact sites
    • Hamasaki, M., et al. Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389-393 (2013
    • (2013) Nature , vol.495 , pp. 389-393
    • Hamasaki, M.1
  • 22
    • 77955131007 scopus 로고    scopus 로고
    • Plasma membrane contributes to the formation of pre-Autophagosomal structures
    • Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C., & Rubinsztein, D. C. Plasma membrane contributes to the formation of pre-Autophagosomal structures. Nat. Cell Biol. 12, 747-757 (2010
    • (2010) Nat. Cell Biol , vol.12 , pp. 747-757
    • Ravikumar, B.1    Moreau, K.2    Jahreiss, L.3    Puri, C.4    Rubinsztein, D.C.5
  • 23
    • 84905491871 scopus 로고    scopus 로고
    • Autophagic clearance of polyQ proteins mediated by ubiquitin Atg8 adaptors of the conserved CUET protein family
    • Lu, K., Psakhye, I., & Jentsch, S. Autophagic clearance of polyQ proteins mediated by ubiquitin Atg8 adaptors of the conserved CUET protein family. Cell 158, 549-563 (2014
    • (2014) Cell , vol.158 , pp. 549-563
    • Lu, K.1    Psakhye, I.2    Jentsch, S.3
  • 25
    • 84901801108 scopus 로고    scopus 로고
    • Organellophagy: Eliminating cellular building blocks via selective autophagy
    • Okamoto, K. Organellophagy: eliminating cellular building blocks via selective autophagy. J. Cell Biol. 205, 435-445 (2014
    • (2014) J. Cell Biol , vol.205 , pp. 435-445
    • Okamoto, K.1
  • 26
    • 67650264633 scopus 로고    scopus 로고
    • Atg32 is a mitochondrial protein that confers selectivity during mitophagy
    • Kanki, T., Wang, K., Cao, Y., Baba, M., & Klionsky, D. J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17, 98-109 (2009
    • (2009) Dev. Cell , vol.17 , pp. 98-109
    • Kanki, T.1    Wang, K.2    Cao, Y.3    Baba, M.4    Klionsky, D.J.5
  • 27
    • 73449118234 scopus 로고    scopus 로고
    • A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria
    • Okamoto, K., Kondo-Okamoto, N., & Ohsumi, Y. A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria. Autophagy 5, 1203-1205 (2009
    • (2009) Autophagy , vol.5 , pp. 1203-1205
    • Okamoto, K.1    Kondo-Okamoto, N.2    Ohsumi, Y.3
  • 28
    • 67650246357 scopus 로고    scopus 로고
    • Mitochondria-Anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
    • Okamoto, K., Kondo-Okamoto, N., & Ohsumi, Y. Mitochondria-Anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17, 87-97 (2009
    • (2009) Dev. Cell , vol.17 , pp. 87-97
    • Okamoto, K.1    Kondo-Okamoto, N.2    Ohsumi, Y.3
  • 29
    • 43649104579 scopus 로고    scopus 로고
    • Mitochondrial autophagy is an HIF 1 dependent adaptive metabolic response to hypoxia
    • Zhang, H., et al. Mitochondrial autophagy is an HIF 1 dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892-10903 (2008
    • (2008) J. Biol. Chem , vol.283 , pp. 10892-10903
    • Zhang, H.1
  • 30
    • 37649017266 scopus 로고    scopus 로고
    • NIX is required for programmed mitochondrial clearance during reticulocyte maturation
    • Schweers, R. L., et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500-19505 (2007
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 19500-19505
    • Schweers, R.L.1
  • 31
    • 47049100413 scopus 로고    scopus 로고
    • Essential role for Nix in autophagic maturation of erythroid cells
    • Sandoval, H., et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232-235 (2008
    • (2008) Nature , vol.454 , pp. 232-235
    • Sandoval, H.1
  • 32
    • 74049153002 scopus 로고    scopus 로고
    • Nix is a selective autophagy receptor for mitochondrial clearance
    • Novak, I., et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45-51 (2010
    • (2010) EMBO Rep , vol.11 , pp. 45-51
    • Novak, I.1
  • 33
    • 84862789618 scopus 로고    scopus 로고
    • Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
    • Liu, L., et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 1-10 (2012
    • (2012) Nat. Cell Biol , vol.14 , pp. 1-10
    • Liu, L.1
  • 34
    • 80052197610 scopus 로고    scopus 로고
    • Phosphorylation of serine 114 on Atg32 mediates mitophagy
    • Aoki, Y., et al. Phosphorylation of serine 114 on Atg32 mediates mitophagy. Mol. Biol. Cell 22, 3206-3217 (2011
    • (2011) Mol. Biol. Cell , vol.22 , pp. 3206-3217
    • Aoki, Y.1
  • 35
    • 84872291490 scopus 로고    scopus 로고
    • Modulation of serines 17 and 24 in the LC3 interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis
    • Zhu, Y., et al. Modulation of serines 17 and 24 in the LC3 interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J. Biol. Chem. 288, 1099-1113 (2013
    • (2013) J. Biol. Chem , vol.288 , pp. 1099-1113
    • Zhu, Y.1
  • 36
    • 42049094041 scopus 로고    scopus 로고
    • PpAtg30 tags peroxisomes for turnover by selective autophagy
    • Farré, J. C., Manjithaya, R., Mathewson, R. D., & Subramani, S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell 14, 365-376 (2008
    • (2008) Dev. Cell , vol.14 , pp. 365-376
    • Farré, J.C.1    Manjithaya, R.2    Mathewson, R.D.3    Subramani, S.4
  • 37
    • 84863843241 scopus 로고    scopus 로고
    • Pex3 anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae
    • Motley, A. M., Nuttall, J. M., & Hettema, E. H. Pex3 anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 31, 2852-2868 (2012
    • (2012) EMBO J. , vol.31 , pp. 2852-2868
    • Motley, A.M.1    Nuttall, J.M.2    Hettema, E.H.3
  • 38
    • 58549084167 scopus 로고    scopus 로고
    • Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes
    • Kim, P. K., Hailey, D. W., Mullen, R. T., & Lippincott-Schwartz, J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl Acad. Sci. USA 105, 20567-20574 (2008
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 20567-20574
    • Kim, P.K.1    Hailey, D.W.2    Mullen, R.T.3    Lippincott-Schwartz, J.4
  • 39
    • 84876345355 scopus 로고    scopus 로고
    • NBR1 acts as an autophagy receptor for peroxisomes
    • Deosaran, E., et al. NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci. 126, 939-952 (2013
    • (2013) J. Cell Sci , vol.126 , pp. 939-952
    • Deosaran, E.1
  • 40
    • 84907042769 scopus 로고    scopus 로고
    • ER phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery
    • Schuck, S., Gallagher, C. M., & Walter, P. ER phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J. Cell Sci. 127, 4078-4088 (2014
    • (2014) J. Cell Sci , vol.127 , pp. 4078-4088
    • Schuck, S.1    Gallagher, C.M.2    Walter, P.3
  • 41
    • 84890178991 scopus 로고    scopus 로고
    • Substrate recognition in selective autophagy and the ubiquitin-proteasome system
    • Schreiber, A., & Peter, M. Substrate recognition in selective autophagy and the ubiquitin-proteasome system. Biochim. Biophys. Acta 1843, 163-181 (2014
    • (2014) Biochim. Biophys. Acta , vol.1843 , pp. 163-181
    • Schreiber, A.1    Peter, M.2
  • 42
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • Singh, R., et al. Autophagy regulates lipid metabolism. Nature 458, 1131-1135 (2009
    • (2009) Nature , vol.458 , pp. 1131-1135
    • Singh, R.1
  • 43
    • 84899746695 scopus 로고    scopus 로고
    • Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
    • Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W., & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105-109 (2014
    • (2014) Nature , vol.509 , pp. 105-109
    • Mancias, J.D.1    Wang, X.2    Gygi, S.P.3    Harper, J.W.4    Kimmelman, A.C.5
  • 44
    • 84908466248 scopus 로고    scopus 로고
    • Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo
    • Dowdle, W. E., et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16, 1069-1079 (2014
    • (2014) Nat. Cell Biol , vol.16 , pp. 1069-1079
    • Dowdle, W.E.1
  • 45
    • 79955631150 scopus 로고    scopus 로고
    • Autophagy in the cellular energetic balance
    • Singh, R., & Cuervo, A. M. Autophagy in the cellular energetic balance. Cell Metab. 13, 495-504 (2011
    • (2011) Cell Metab , vol.13 , pp. 495-504
    • Singh, R.1    Cuervo, A.M.2
  • 46
    • 0019501619 scopus 로고
    • Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver
    • Schworer, C. M., Shiffer, K. A., & Mortimore, G. E. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J. Biol. Chem. 256, 7652-7658 (1981
    • (1981) J. Biol. Chem , vol.256 , pp. 7652-7658
    • Schworer, C.M.1    Shiffer, K.A.2    Mortimore, G.E.3
  • 47
    • 0019846434 scopus 로고
    • Vanadate inhibits protein degradation in isolated rat hepatocytes
    • Seglen, P. O., & Gordon, P. B. Vanadate inhibits protein degradation in isolated rat hepatocytes. J. Biol. Chem. 256, 7699-7701 (1981
    • (1981) J. Biol. Chem , vol.256 , pp. 7699-7701
    • Seglen, P.O.1    Gordon, P.B.2
  • 48
    • 24744441497 scopus 로고    scopus 로고
    • Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation
    • Onodera, J. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem. 280, 31582-31586 (2005
    • (2005) J. Biol. Chem , vol.280 , pp. 31582-31586
    • Onodera, J.1
  • 49
    • 79952166584 scopus 로고    scopus 로고
    • Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction
    • Suzuki, S. W., Onodera, J., & Ohsumi, Y. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction. PLoS ONE 6, e17412 (2011
    • (2011) PLoS ONE , vol.6 , pp. e17412
    • Suzuki, S.W.1    Onodera, J.2    Ohsumi, Y.3
  • 50
    • 46849115787 scopus 로고    scopus 로고
    • Autophagy is essential for preimplantation development of mouse embryos
    • Tsukamoto, S., et al. Autophagy is essential for preimplantation development of mouse embryos. Science 321, 117-120 (2008
    • (2008) Science , vol.321 , pp. 117-120
    • Tsukamoto, S.1
  • 51
    • 79956325949 scopus 로고    scopus 로고
    • Spatial coupling of mTOR and autophagy augments secretory phenotypes
    • Narita, M., et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332, 966-970 (2011
    • (2011) Science , vol.332 , pp. 966-970
    • Narita, M.1
  • 52
    • 21044455137 scopus 로고    scopus 로고
    • Impairment of starvation-induced and constitutive autophagy in Atg7 deficient mice
    • Komatsu, M. Impairment of starvation-induced and constitutive autophagy in Atg7 deficient mice. J. Cell Biol. 169, 425-434 (2005
    • (2005) J. Cell Biol , vol.169 , pp. 425-434
    • Komatsu, M.1
  • 53
    • 12944303650 scopus 로고    scopus 로고
    • Growth factor regulation of autophagy and cell survival in the absence of apoptosis
    • Lum, J. J., et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237-248 (2005
    • (2005) Cell , vol.120 , pp. 237-248
    • Lum, J.J.1
  • 54
    • 84874192375 scopus 로고    scopus 로고
    • FOXO3A directs a protective autophagy program in haematopoietic stem cells
    • Warr, M. R., et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494, 323-327 (2013
    • (2013) Nature , vol.494 , pp. 323-327
    • Warr, M.R.1
  • 55
    • 79959952405 scopus 로고    scopus 로고
    • Liver autophagy contributes to the maintenance of blood glucose and amino acid levels
    • Ezaki, J., et al. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 7, 727-736 (2011
    • (2011) Autophagy , vol.7 , pp. 727-736
    • Ezaki, J.1
  • 56
    • 84864960912 scopus 로고    scopus 로고
    • Autophagy stress, and cancer metabolism: What doesn't kill you makes you stronger
    • Mathew, R., & White, E. Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger. Cold Spring Harb. Symp. Quant. Biol. 76, 389-396 (2011
    • (2011) Cold Spring Harb. Symp. Quant. Biol , vol.76 , pp. 389-396
    • Mathew, R.1    White, E.2
  • 58
    • 84918827750 scopus 로고    scopus 로고
    • Cellular and metabolic functions for autophagy in cancer cells
    • Kenific, C. M., & Debnath, J. Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol. 1, 37-45 (2015
    • (2015) Trends Cell Biol , vol.1 , pp. 37-45
    • Kenific, C.M.1    Debnath, J.2
  • 59
    • 84890018924 scopus 로고    scopus 로고
    • Autophagy-mediated tumor promotion
    • Guo, J. Y., Xia, B., & White, E. Autophagy-mediated tumor promotion. Cell 155, 1216-1219 (2013
    • (2013) Cell , vol.155 , pp. 1216-1219
    • Guo, J.Y.1    Xia, B.2    White, E.3
  • 60
    • 84907994253 scopus 로고    scopus 로고
    • Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity
    • Mathew, R., et al. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol. Cell 55, 916-930 (2014
    • (2014) Mol. Cell , vol.55 , pp. 916-930
    • Mathew, R.1
  • 61
    • 77955789211 scopus 로고    scopus 로고
    • Altered lipid content inhibits autophagic vesicular fusion
    • Koga, H., Kaushik, S., & Cuervo, A. M. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 24, 3052-3065 (2010
    • (2010) FASEB J. , vol.24 , pp. 3052-3065
    • Koga, H.1    Kaushik, S.2    Cuervo, A.M.3
  • 63
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • Yang, L., Li, P., Fu, S., Calay, E. S., & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467-478 (2010
    • (2010) Cell Metab , vol.11 , pp. 467-478
    • Yang, L.1    Li, P.2    Fu, S.3    Calay, E.S.4    Hotamisligil, G.S.5
  • 64
    • 84923331724 scopus 로고    scopus 로고
    • Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes
    • Lim, Y. M., et al. Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat. Commun. 5, 4934 (2014
    • (2014) Nat. Commun , vol.5 , pp. 4934
    • Lim, Y.M.1
  • 65
    • 77951665859 scopus 로고    scopus 로고
    • Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease
    • Martinez-Vicente, M., et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci. 13, 567-576 (2010
    • (2010) Nat. Neurosci , vol.13 , pp. 567-576
    • Martinez-Vicente, M.1
  • 66
    • 79960951346 scopus 로고    scopus 로고
    • Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance
    • Kaushik, S., et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab. 14, 173-183 (2011
    • (2011) Cell Metab , vol.14 , pp. 173-183
    • Kaushik, S.1
  • 67
    • 84859444880 scopus 로고    scopus 로고
    • Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues
    • Hernández-Gea, V., et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938-946 (2012
    • (2012) Gastroenterology , vol.142 , pp. 938-946
    • Hernández-Gea, V.1
  • 68
    • 84892536117 scopus 로고    scopus 로고
    • Lipid droplet autophagy in the yeast Saccharomyces cerevisiae
    • van Zutphen, T., et al. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 25, 290-301 (2014
    • (2014) Mol. Biol. Cell , vol.25 , pp. 290-301
    • Van Zutphen, T.1
  • 69
    • 0028245065 scopus 로고
    • Exogenous VLDL stimulates apolipoprotein B secretion from HepG2 cells by both pre-And post-Translational mechanisms
    • Wu, X., Sakata, N., Dixon, J., & Ginsberg, H. N. Exogenous VLDL stimulates apolipoprotein B secretion from HepG2 cells by both pre-And post-Translational mechanisms. J. Lipid Res. 35, 1200-1210 (1994
    • (1994) J. Lipid Res , vol.35 , pp. 1200-1210
    • Wu, X.1    Sakata, N.2    Dixon, J.3    Ginsberg, H.N.4
  • 70
    • 69449107552 scopus 로고    scopus 로고
    • Lipases in lysosomes what for?
    • Czaja, M. J., & Cuervo, A. M. Lipases in lysosomes, what for?. Autophagy 5, 866-867 (2009
    • (2009) Autophagy , vol.5 , pp. 866-867
    • Czaja, M.J.1    Cuervo, A.M.2
  • 71
    • 84878533962 scopus 로고    scopus 로고
    • MXL 3 and HLH 30 transcriptionally link lipolysis and autophagy to nutrient availability
    • O'Rourke, E. J., & Ruvkun, G. MXL 3 and HLH 30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 15, 668-676 (2013
    • (2013) Nat. Cell Biol , vol.15 , pp. 668-676
    • O'rourke, E.J.1    Ruvkun, G.2
  • 72
    • 80955177196 scopus 로고    scopus 로고
    • TFEB links autophagy to lysosomal biogenesis
    • Settembre, C., et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433 (2011
    • (2011) Science , vol.332 , pp. 1429-1433
    • Settembre, C.1
  • 73
    • 84878606239 scopus 로고    scopus 로고
    • TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
    • Settembre, C., et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647-658 (2013
    • (2013) Nat. Cell Biol , vol.15 , pp. 647-658
    • Settembre, C.1
  • 74
    • 84923031534 scopus 로고    scopus 로고
    • Nutrient-sensing nuclear receptors coordinate autophagy
    • Lee, J. M., et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516, 112-115 (2014
    • (2014) Nature , vol.516 , pp. 112-115
    • Lee, J.M.1
  • 75
    • 84922968506 scopus 로고    scopus 로고
    • Transcriptional regulation of autophagy by an FXR-CREB axis
    • Seok, S., et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 516, 108-111 (2014
    • (2014) Nature , vol.516 , pp. 108-111
    • Seok, S.1
  • 76
    • 63349104160 scopus 로고    scopus 로고
    • The MAP1 LC3 conjugation system is involved in lipid droplet formation
    • Shibata, M., et al. The MAP1 LC3 conjugation system is involved in lipid droplet formation. Biochem. Biophys. Res. Commun. 382, 419-423 (2009
    • (2009) Biochem. Biophys. Res. Commun , vol.382 , pp. 419-423
    • Shibata, M.1
  • 77
    • 84870995648 scopus 로고    scopus 로고
    • Regulation of lipid stores and metabolism by lipophagy
    • Liu, K., & Czaja, M. J. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 20, 3-11 (2012
    • (2012) Cell Death Differ , vol.20 , pp. 3-11
    • Liu, K.1    Czaja, M.J.2
  • 78
    • 84887527969 scopus 로고    scopus 로고
    • Lipid droplet breakdown requires Dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes
    • Schulze, R. J., et al. Lipid droplet breakdown requires Dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J. Cell Biol. 203, 315-326 (2013
    • (2013) J. Cell Biol , vol.203 , pp. 315-326
    • Schulze, R.J.1
  • 79
    • 84892727198 scopus 로고    scopus 로고
    • What we talk about when we talk about fat
    • Rosen, E. D., & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20-44 (2014
    • (2014) Cell , vol.156 , pp. 20-44
    • Rosen, E.D.1    Spiegelman, B.M.2
  • 80
    • 84864287504 scopus 로고    scopus 로고
    • Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
    • Wu, J., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366-376 (2012
    • (2012) Cell , vol.150 , pp. 366-376
    • Wu, J.1
  • 81
    • 73449117508 scopus 로고    scopus 로고
    • Targeted deletion of autophagy-related 5 (Atg5) impairs adipogenesis in a cellular model and in mice
    • Baerga, R., Zhang, Y., Chen, P. H., Goldman, S., & Jin, S. Targeted deletion of autophagy-related 5 (Atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 5, 1118-1130 (2009
    • (2009) Autophagy , vol.5 , pp. 1118-1130
    • Baerga, R.1    Zhang, Y.2    Chen, P.H.3    Goldman, S.4    Jin, S.5
  • 82
    • 70449448312 scopus 로고    scopus 로고
    • Autophagy regulates adipose mass and differentiation in mice
    • Singh, R., et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329-3339 (2009
    • (2009) J. Clin. Invest , vol.119 , pp. 3329-3339
    • Singh, R.1
  • 83
    • 73949124173 scopus 로고    scopus 로고
    • Adipose-specific deletion of autophagy-related gene 7 (Atg7) in mice reveals a role in adipogenesis
    • Zhang, Y., et al. Adipose-specific deletion of autophagy-related gene 7 (Atg7) in mice reveals a role in adipogenesis. Proc. Natl Acad. Sci. USA 106, 19860-19865 (2009
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 19860-19865
    • Zhang, Y.1
  • 84
    • 84883488843 scopus 로고    scopus 로고
    • Autophagy in Myf5+ progenitors regulates energy and glucose homeostasis through control of brown fat and skeletal muscle development
    • Martinez-Lopez, N., et al. Autophagy in Myf5+ progenitors regulates energy and glucose homeostasis through control of brown fat and skeletal muscle development. EMBO Rep. 14, 795-803 (2013
    • (2013) EMBO Rep , vol.14 , pp. 795-803
    • Martinez-Lopez, N.1
  • 85
    • 84872057896 scopus 로고    scopus 로고
    • Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
    • Kim, K. H., et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83-92 (2013
    • (2013) Nat. Med , vol.19 , pp. 83-92
    • Kim, K.H.1
  • 86
    • 80052712323 scopus 로고    scopus 로고
    • Defective hypothalamic autophagy directs the central pathogenesis of obesity via the I?B kinase β (IKKβ)/NF ?B pathway
    • Meng, Q., & Cai, D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the I?B kinase β (IKKβ)/NF ?B pathway. J. Biol. Chem. 286, 32324-32332 (2011
    • (2011) J. Biol. Chem , vol.286 , pp. 32324-32332
    • Meng, Q.1    Cai, D.2
  • 87
    • 84863229947 scopus 로고    scopus 로고
    • Loss of autophagy in hypothalamic POMC neurons impairs lipolysis
    • Kaushik, S., et al. Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep. 13, 258-265 (2012
    • (2012) EMBO Rep , vol.13 , pp. 258-265
    • Kaushik, S.1
  • 88
    • 84856953003 scopus 로고    scopus 로고
    • Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation
    • Coupé, B., et al. Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab. 15, 47-255 (2012
    • (2012) Cell Metab , vol.15 , pp. 47-255
    • Coupé, B.1
  • 89
    • 84859416906 scopus 로고    scopus 로고
    • Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response
    • Quan, W., et al. Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology 153, 1817-1826 (2012
    • (2012) Endocrinology , vol.153 , pp. 1817-1826
    • Quan, W.1
  • 90
    • 84923359391 scopus 로고    scopus 로고
    • Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity
    • Malhotra, R., Warne, J. P., Salas, E., Xu, A. W., & Debnath, J. Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity. Autophagy 11, 145-154 (2015
    • (2015) Autophagy , vol.11 , pp. 145-154
    • Malhotra, R.1    Warne, J.P.2    Salas, E.3    Xu, A.W.4    Debnath, J.5
  • 91
    • 0033809401 scopus 로고    scopus 로고
    • Glycogen autophagy in newborn rat hepatocytes
    • Kalamidas, S. A., & Kotoulas, O. B. Glycogen autophagy in newborn rat hepatocytes. Histol. Histopathol. 15, 1011-1018 (2000
    • (2000) Histol. Histopathol , vol.15 , pp. 1011-1018
    • Kalamidas, S.A.1    Kotoulas, O.B.2
  • 93
    • 21644475161 scopus 로고    scopus 로고
    • Glycogen autophagy in the liver and heart of newborn rats the effects of glucagon, adrenalin or rapamycin
    • Kondomerkos, D. J., Kalamidas, S. A., Kotoulas, O. B., & Hann, A. C. Glycogen autophagy in the liver and heart of newborn rats. The effects of glucagon, adrenalin or rapamycin. Histol. Histopathol. 20, 689-696 (2005
    • (2005) Histol. Histopathol , vol.20 , pp. 689-696
    • Kondomerkos, D.J.1    Kalamidas, S.A.2    Kotoulas, O.B.3    Hann, A.C.4
  • 94
    • 1542283812 scopus 로고    scopus 로고
    • In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
    • Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T., & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101-1111 (2003
    • (2003) Mol. Biol. Cell , vol.15 , pp. 1101-1111
    • Mizushima, N.1    Yamamoto, A.2    Matsui, M.3    Yoshimori, T.4    Ohsumi, Y.5
  • 95
    • 84905497318 scopus 로고    scopus 로고
    • Autophagy is required for glucose homeostasis and lung tumor maintenance
    • Karsli-Uzunbas, G., et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 4, 914-927 (2014
    • (2014) Cancer Discov , vol.4 , pp. 914-927
    • Karsli-Uzunbas, G.1
  • 96
    • 83455243361 scopus 로고    scopus 로고
    • Autophagy in lysosomal myopathies
    • Malicdan, M. C. V., & Nishino, I. Autophagy in lysosomal myopathies. Brain Pathol. 22, 82-88 (2012
    • (2012) Brain Pathol , vol.22 , pp. 82-88
    • Malicdan, M.C.V.1    Nishino, I.2
  • 97
    • 57049094929 scopus 로고    scopus 로고
    • Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease
    • Raben, N., et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum. Mol. Genet. 17, 3897-3908 (2008
    • (2008) Hum. Mol. Genet , vol.17 , pp. 3897-3908
    • Raben, N.1
  • 98
    • 77649200841 scopus 로고    scopus 로고
    • Autophagy in skeletal muscle: Implications for Pompe disease
    • Shea, L., & Raben, N. Autophagy in skeletal muscle: implications for Pompe disease. Int. J. Clin. Pharmacol. Ther. 47, S42-S47 (2009
    • (2009) Int. J. Clin. Pharmacol. Ther , vol.47 , pp. S42-S47
    • Shea, L.1    Raben, N.2
  • 99
    • 84877601173 scopus 로고    scopus 로고
    • Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease
    • Spampanato, C., et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol. Med. 5, 691-706 (2013
    • (2013) EMBO Mol. Med , vol.5 , pp. 691-706
    • Spampanato, C.1
  • 100
    • 84889069304 scopus 로고    scopus 로고
    • Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy
    • Zirin, J., Nieuwenhuis, J., & Perrimon, N. Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol. 11, e1001708 (2013
    • (2013) PLoS Biol , vol.11 , pp. e1001708
    • Zirin, J.1    Nieuwenhuis, J.2    Perrimon, N.3
  • 101
    • 84863393597 scopus 로고    scopus 로고
    • Exercise-induced BCL2 regulated autophagy is required for muscle glucose homeostasis
    • He, C., et al. Exercise-induced BCL2 regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511-515 (2012
    • (2012) Nature , vol.481 , pp. 511-515
    • He, C.1
  • 102
    • 52749093177 scopus 로고    scopus 로고
    • Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
    • Ebato, C., et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 8, 325-332 (2008
    • (2008) Cell Metab , vol.8 , pp. 325-332
    • Ebato, C.1
  • 103
    • 52749094770 scopus 로고    scopus 로고
    • Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia
    • Jung, H. S., et al. Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia. Cell Metab. 8, 318-324 (2008
    • (2008) Cell Metab , vol.8 , pp. 318-324
    • Jung, H.S.1
  • 104
    • 34548368589 scopus 로고    scopus 로고
    • Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine β-cells
    • Marsh, B. J., et al. Regulated autophagy controls hormone content in secretory-deficient pancreatic endocrine β-cells. Mol. Endocrinol. 21, 2255-2269 (2007
    • (2007) Mol. Endocrinol , vol.21 , pp. 2255-2269
    • Marsh, B.J.1
  • 105
    • 84923279437 scopus 로고    scopus 로고
    • Insulin secretory granules control autophagy in pancreatic β cells
    • Goginashvili, A., et al. Insulin secretory granules control autophagy in pancreatic β cells. Science 347, 878-882 (2015
    • (2015) Science , vol.347 , pp. 878-882
    • Goginashvili, A.1
  • 106
    • 84897946801 scopus 로고    scopus 로고
    • Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion
    • Lock, R., Kenific, C. M., Leidal, A. M., Salas, E., & Debnath, J. Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov. 4, 466-479 (2014
    • (2014) Cancer Discov , vol.4 , pp. 466-479
    • Lock, R.1    Kenific, C.M.2    Leidal, A.M.3    Salas, E.4    Debnath, J.5
  • 108
    • 79956115511 scopus 로고    scopus 로고
    • Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells
    • Asano, T., et al. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol. Cell. Biol. 31, 2040-2052 (2011
    • (2011) Mol. Cell. Biol , vol.31 , pp. 2040-2052
    • Asano, T.1
  • 109
    • 84907042842 scopus 로고    scopus 로고
    • Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells
    • Kishi-Itakura, C., Koyama-Honda, I., Itakura, E., & Mizushima, N. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J. Cell Sci.127, 4089-4102 (2014
    • (2014) J. Cell Sci , vol.127 , pp. 4089-4102
    • Kishi-Itakura, C.1    Koyama-Honda, I.2    Itakura, E.3    Mizushima, N.4
  • 110
    • 0029951486 scopus 로고    scopus 로고
    • Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells
    • Yeh, S., & Chang, C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl Acad. Sci. USA 93, 5517-5521 (1996
    • (1996) Proc. Natl Acad. Sci. USA , vol.93 , pp. 5517-5521
    • Yeh, S.1    Chang, C.2
  • 111
    • 84870913730 scopus 로고    scopus 로고
    • Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct X linked dominant form of NBIA
    • Haack, T. B., et al. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X linked dominant form of NBIA. Am. J. Hum. Genet. 91, 1144-1149 (2012
    • (2012) Am. J. Hum. Genet , vol.91 , pp. 1144-1149
    • Haack, T.B.1
  • 112
    • 84875757691 scopus 로고    scopus 로고
    • De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood
    • Saitsu, H., et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat. Genet. 45, 445-449 (2013
    • (2013) Nat. Genet , vol.45 , pp. 445-449
    • Saitsu, H.1
  • 113
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075 (2008
    • (2008) Nature , vol.451 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3    Klionsky, D.J.4
  • 114
    • 34249714158 scopus 로고    scopus 로고
    • The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
    • Nakai, A., et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13, 619-624 (2007
    • (2007) Nat. Med , vol.13 , pp. 619-624
    • Nakai, A.1
  • 115
    • 70449927247 scopus 로고    scopus 로고
    • Autophagy is required to maintain muscle mass
    • Masiero, E., et al. Autophagy is required to maintain muscle mass. Cell Metab. 10, 507-515 (2009
    • (2009) Cell Metab , vol.10 , pp. 507-515
    • Masiero, E.1
  • 116
    • 34250183177 scopus 로고    scopus 로고
    • HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS
    • Pandey, U. B., et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 860-864 (2007
    • (2007) Nature , vol.447 , pp. 860-864
    • Pandey, U.B.1
  • 117
    • 82855181806 scopus 로고    scopus 로고
    • Proteasome malfunction activates macroautophagy in the heart
    • Zheng, Q., Su, H., Tian, Z., & Wang, X. Proteasome malfunction activates macroautophagy in the heart. Am. J. Cardiovasc. Dis. 1, 214-226 (2011
    • (2011) Am. J. Cardiovasc. Dis , vol.1 , pp. 214-226
    • Zheng, Q.1    Su, H.2    Tian, Z.3    Wang, X.4
  • 118
    • 84868148725 scopus 로고    scopus 로고
    • Failure of amino acid homeostasis causes cell death following proteasome inhibition
    • Suraweera, A., Mch, C., Hanssum, A., & Bertolotti, A. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol. Cell 48, 242-253 (2012
    • (2012) Mol. Cell , vol.48 , pp. 242-253
    • Suraweera, A.1    Mch, C.2    Hanssum, A.3    Bertolotti, A.4
  • 119
    • 29344464782 scopus 로고    scopus 로고
    • Protein synthesis upon acute nutrient restriction relies on proteasome function
    • Vabulas, R. M., & Hartl, F. U. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 310, 1960-1963 (2005
    • (2005) Science , vol.310 , pp. 1960-1963
    • Vabulas, R.M.1    Hartl, F.U.2
  • 120
    • 84872345477 scopus 로고    scopus 로고
    • Proteasome-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) is essential for autophagy suppression and muscle remodeling following denervation
    • Quy, P. N., Kuma, A., Pierre, P., & Mizushima, N. Proteasome-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) is essential for autophagy suppression and muscle remodeling following denervation. J. Biol. Chem. 288, 1125-1134 (2013
    • (2013) J. Biol. Chem , vol.288 , pp. 1125-1134
    • Quy, P.N.1    Kuma, A.2    Pierre, P.3    Mizushima, N.4
  • 121
    • 0033671965 scopus 로고    scopus 로고
    • Retention of mutant α1-Antitrypsin Z in endoplasmic reticulum is associated with an autophagic response
    • Teckman, J. H., & Perlmutter, D. H. Retention of mutant α1-Antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G961-G974 (2000
    • (2000) Am. J. Physiol. Gastrointest. Liver Physiol , vol.279 , pp. G961-G974
    • Teckman, J.H.1    Perlmutter, D.H.2
  • 122
    • 33845480131 scopus 로고    scopus 로고
    • Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response
    • Bernales, S., McDonald, K. L., & Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4, e423 (2006
    • (2006) PLoS Biol , vol.4 , pp. e423
    • Bernales, S.1    McDonald, K.L.2    Walter, P.3
  • 123
    • 33749579383 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress triggers autophagy
    • Yorimitsu, T., Nair, U., Yang, Z., & Klionsky, D. J. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281, 30299-30304 (2006
    • (2006) J. Biol. Chem , vol.281 , pp. 30299-30304
    • Yorimitsu, T.1    Nair, U.2    Yang, Z.3    Klionsky, D.J.4
  • 124
    • 84938097353 scopus 로고    scopus 로고
    • Reticulophagy and ribophagy: Regulated degradation of protein production factories
    • Ogata, M., et al. Reticulophagy and ribophagy: regulated degradation of protein production factories. Mol. Cell. Biol. 2012, 9220-9231 (2006
    • (2006) Mol. Cell. Biol , vol.2012 , pp. 9220-9231
    • Ogata, M.1
  • 125
    • 33947497050 scopus 로고    scopus 로고
    • Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival
    • Ding, W. X., et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem. 282, 4702-4710 (2007
    • (2007) J. Biol. Chem , vol.282 , pp. 4702-4710
    • Ding, W.X.1
  • 126
    • 58849089529 scopus 로고    scopus 로고
    • Mechanisms of regulated unconventional protein secretion
    • Nickel, W., & Rabouille, C. Mechanisms of regulated unconventional protein secretion. Nat. Rev. Mol. Cell Biol. 10, 148-155 (2009
    • (2009) Nat. Rev. Mol. Cell Biol , vol.10 , pp. 148-155
    • Nickel, W.1    Rabouille, C.2
  • 127
    • 77149152566 scopus 로고    scopus 로고
    • Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation
    • Manjithaya, R., Anjard, C., Loomis, W. F., & Subramani, S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J. Cell Biol. 188, 537-546 (2010
    • (2010) J. Cell Biol , vol.188 , pp. 537-546
    • Manjithaya, R.1    Anjard, C.2    Loomis, W.F.3    Subramani, S.4
  • 128
    • 77149155386 scopus 로고    scopus 로고
    • Unconventional secretion of Acb1 is mediated by autophagosomes
    • Duran, J. M., Anjard, C., Stefan, C., Loomis, W. F., & Malhotra, V. Unconventional secretion of Acb1 is mediated by autophagosomes. J. Cell Biol. 188, 527-536 (2010
    • (2010) J. Cell Biol , vol.188 , pp. 527-536
    • Duran, J.M.1    Anjard, C.2    Stefan, C.3    Loomis, W.F.4    Malhotra, V.5
  • 129
    • 84855490021 scopus 로고    scopus 로고
    • Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion
    • Bruns, C., McCaffery, J. M., & Curwin, A. J. Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. J. Cell Biol. 195, 979-992 (2011
    • (2011) J. Cell Biol , vol.195 , pp. 979-992
    • Bruns, C.1    McCaffery, J.M.2    Curwin, A.J.3
  • 130
    • 82455210868 scopus 로고    scopus 로고
    • Autophagy-based unconventional secretory pathway for extracellular delivery of IL 1β
    • Dupont, N., et al Autophagy-based unconventional secretory pathway for extracellular delivery of IL 1β. EMBO J. 30, 4701-4711 (2011
    • (2011) EMBO J. , vol.30 , pp. 4701-4711
    • Dupont, N.1
  • 131
    • 80052277733 scopus 로고    scopus 로고
    • Rescue of δf508 CFTR trafficking via a GRASP-dependent unconventional secretion pathway
    • Gee, H. Y., Noh, S. H., Tang, B. L., Kim, K. H., & Lee, M. G. Rescue of δF508 CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell 146, 746-760 (2011
    • (2011) Cell , vol.146 , pp. 746-760
    • Gee, H.Y.1    Noh, S.H.2    Tang, B.L.3    Kim, K.H.4    Lee, M.G.5
  • 132
    • 34547604776 scopus 로고    scopus 로고
    • The Golgi-Associated protein GRASP is required for unconventional protein secretion during development
    • Kinseth, M. A., et al. The Golgi-Associated protein GRASP is required for unconventional protein secretion during development. Cell 130, 524-534 (2007
    • (2007) Cell , vol.130 , pp. 524-534
    • Kinseth, M.A.1
  • 133
    • 84930445399 scopus 로고    scopus 로고
    • Remodeling of secretory compartments creates CUPS during nutrient starvation
    • Cruz-Garcia, D., et al. Remodeling of secretory compartments creates CUPS during nutrient starvation. J. Cell Biol. 207, 695-703 (2014
    • (2014) J. Cell Biol , vol.207 , pp. 695-703
    • Cruz-Garcia, D.1
  • 134
    • 79955577268 scopus 로고    scopus 로고
    • Crucial role for autophagy in degranulation of mast cells
    • Ushio, H., et al. Crucial role for autophagy in degranulation of mast cells. J. Allergy Clin. Immunol. 127, 1267-1276.e6 (2011
    • (2011) J. Allergy Clin. Immunol , vol.127 , pp. 1267-1267e6
    • Ushio, H.1
  • 135
    • 84923852038 scopus 로고    scopus 로고
    • ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function
    • Murrow, L., Malhotra, R., & Debnath, J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat. Cell Biol. 17, 300-310 (2015
    • (2015) Nat. Cell Biol , vol.17 , pp. 300-310
    • Murrow, L.1    Malhotra, R.2    Debnath, J.3
  • 136
    • 84864295258 scopus 로고    scopus 로고
    • Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation
    • Deretic, V., Jiang, S., & Dupont, N. Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol. 22, 397-406 (2012
    • (2012) Trends Cell Biol , vol.22 , pp. 397-406
    • Deretic, V.1    Jiang, S.2    Dupont, N.3
  • 137
    • 64349123107 scopus 로고    scopus 로고
    • Autophagy mediates the mitotic senescence transition
    • Young, A. R. J., et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 23, 798-803 (2009
    • (2009) Genes Dev , vol.23 , pp. 798-803
    • Young, A.R.J.1
  • 138
    • 84856213604 scopus 로고    scopus 로고
    • Autophagy and mitochondria in Pompe disease: Nothing is so new as what has long been forgotten
    • Raben, N., Wong, A., Ralston, E., & Myerowitz, R. Autophagy and mitochondria in Pompe disease: nothing is so new as what has long been forgotten. Am. J. Med. Genet. C Semin. Med. Genet. 160C, 13-21 (2012
    • (2012) Am. J. Med. Genet. C Semin. Med. Genet , vol.160 C , pp. 13-21
    • Raben, N.1    Wong, A.2    Ralston, E.3    Myerowitz, R.4
  • 139
    • 17044440789 scopus 로고    scopus 로고
    • Primary LAMP 2 deficiency causes X linked vacuolar cardiomyopathy and myopathy (Danon disease
    • Nishino, I., et al. Primary LAMP 2 deficiency causes X linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406, 906-910 (2000
    • (2000) Nature , vol.406 , pp. 906-910
    • Nishino, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.