-
1
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz J.D., White E. Autophagy and metabolism. Science 2010, 330:1344-1348.
-
(2010)
Science
, vol.330
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
2
-
-
78650510609
-
MTOR: from growth signal integration to cancer, diabetes and ageing
-
Zoncu R., et al. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2010, 12:21-35.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
-
3
-
-
34250788809
-
AKT/PKB signaling: navigating downstream
-
Manning B.D., Cantley L.C. AKT/PKB signaling: navigating downstream. Cell 2007, 129:1261-1274.
-
(2007)
Cell
, vol.129
, pp. 1261-1274
-
-
Manning, B.D.1
Cantley, L.C.2
-
4
-
-
34548359244
-
PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex
-
Fonseca B.D., et al. PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J. Biol. Chem. 2007, 282:24514-24524.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24514-24524
-
-
Fonseca, B.D.1
-
5
-
-
34547133519
-
The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1
-
Oshiro N., et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J. Biol. Chem. 2007, 282:20329-20339.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 20329-20339
-
-
Oshiro, N.1
-
6
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y., et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 2007, 25:903-915.
-
(2007)
Mol. Cell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
-
7
-
-
33847397874
-
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
-
Vander Haar E., et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 2007, 9:316-323.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 316-323
-
-
Vander Haar, E.1
-
8
-
-
34848840368
-
Structural basis for AMP binding to mammalian AMP-activated protein kinase
-
Xiao B., et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 2007, 449:496-500.
-
(2007)
Nature
, vol.449
, pp. 496-500
-
-
Xiao, B.1
-
9
-
-
79954517977
-
Structure of mammalian AMPK and its regulation by ADP
-
Xiao B., et al. Structure of mammalian AMPK and its regulation by ADP. Nature 2011, 472:230-233.
-
(2011)
Nature
, vol.472
, pp. 230-233
-
-
Xiao, B.1
-
10
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K., et al. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115:577-590.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
-
11
-
-
1542618348
-
The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
-
Shaw R.J., et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:3329-3335.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 3329-3335
-
-
Shaw, R.J.1
-
12
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn D.M., et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 2008, 30:214-226.
-
(2008)
Mol. Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
-
13
-
-
34248194200
-
The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways
-
Feng Z., et al. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 2007, 67:3043-3053.
-
(2007)
Cancer Res.
, vol.67
, pp. 3043-3053
-
-
Feng, Z.1
-
14
-
-
20844449238
-
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
-
Jones R.G., et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 2005, 18:283-293.
-
(2005)
Mol. Cell
, vol.18
, pp. 283-293
-
-
Jones, R.G.1
-
15
-
-
10044276783
-
Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex
-
Brugarolas J., et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004, 18:2893-2904.
-
(2004)
Genes Dev.
, vol.18
, pp. 2893-2904
-
-
Brugarolas, J.1
-
16
-
-
0029851704
-
Attractant signaling by an aspartate chemoreceptor dimer with a single cytoplasmic domain
-
Gardina P.J., Manson M.D. Attractant signaling by an aspartate chemoreceptor dimer with a single cytoplasmic domain. Science 1996, 274:425-426.
-
(1996)
Science
, vol.274
, pp. 425-426
-
-
Gardina, P.J.1
Manson, M.D.2
-
17
-
-
33744958084
-
The structure of CodY, a GTP- and isoleucine-responsive regulator of stationary phase and virulence in gram-positive bacteria
-
Levdikov V.M., et al. The structure of CodY, a GTP- and isoleucine-responsive regulator of stationary phase and virulence in gram-positive bacteria. J. Biol. Chem. 2006, 281:11366-11373.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 11366-11373
-
-
Levdikov, V.M.1
-
18
-
-
0033635215
-
Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain
-
Dong J., et al. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol. Cell 2000, 6:269-279.
-
(2000)
Mol. Cell
, vol.6
, pp. 269-279
-
-
Dong, J.1
-
19
-
-
27144510561
-
Translational regulation of GCN4 and the general amino acid control of yeast
-
Hinnebusch A.G. Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 2005, 59:407-450.
-
(2005)
Annu. Rev. Microbiol.
, vol.59
, pp. 407-450
-
-
Hinnebusch, A.G.1
-
20
-
-
0014882244
-
Response of adult rats to low dietary levels of essential amino acids
-
Said A.K., Hegsted D.M. Response of adult rats to low dietary levels of essential amino acids. J. Nutr. 1970, 100:1363-1375.
-
(1970)
J. Nutr.
, vol.100
, pp. 1363-1375
-
-
Said, A.K.1
Hegsted, D.M.2
-
21
-
-
78649338141
-
Autophagy and the integrated stress response
-
Kroemer G., et al. Autophagy and the integrated stress response. Mol. Cell 2010, 40:280-293.
-
(2010)
Mol. Cell
, vol.40
, pp. 280-293
-
-
Kroemer, G.1
-
22
-
-
21244456553
-
Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency
-
Long X., et al. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J. Biol. Chem. 2005, 280:23433-23436.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 23433-23436
-
-
Long, X.1
-
23
-
-
0032486268
-
Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism
-
Hara K., et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 1998, 273:14484-14494.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 14484-14494
-
-
Hara, K.1
-
24
-
-
0032528917
-
Amino acid availability regulates p70 S6 kinase and multiple translation factors
-
Wang X., et al. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem. J. 1998, 334:261-267.
-
(1998)
Biochem. J.
, vol.334
, pp. 261-267
-
-
Wang, X.1
-
25
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim E., et al. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 2008, 10:935-945.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 935-945
-
-
Kim, E.1
-
26
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y., et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320:1496-1501.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
-
27
-
-
0035831451
-
Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B
-
Sekiguchi T., et al. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J. Biol. Chem. 2001, 276:7246-7257.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 7246-7257
-
-
Sekiguchi, T.1
-
28
-
-
0031985372
-
RagA is a functional homologue of S. cerevisiae Gtr1p involved in the Ran/Gsp1-GTPase pathway
-
Hirose E., et al. RagA is a functional homologue of S. cerevisiae Gtr1p involved in the Ran/Gsp1-GTPase pathway. J. Cell Sci. 1998, 111:11-21.
-
(1998)
J. Cell Sci.
, vol.111
, pp. 11-21
-
-
Hirose, E.1
-
29
-
-
79953316595
-
Lysosomal positioning coordinates cellular nutrient responses
-
Korolchuk V.I., et al. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 2011, 13:453-460.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 453-460
-
-
Korolchuk, V.I.1
-
30
-
-
77649140362
-
The late endosome is essential for mTORC1 signaling
-
Flinn R.J., et al. The late endosome is essential for mTORC1 signaling. Mol. Biol. Cell 2010, 21:833-841.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 833-841
-
-
Flinn, R.J.1
-
31
-
-
84855731134
-
Class III PI-3-kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway
-
Yoon M.S., et al. Class III PI-3-kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway. J. Cell Biol. 2011, 195:435-447.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 435-447
-
-
Yoon, M.S.1
-
32
-
-
77955287742
-
Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
-
Kalender A., et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010, 11:390-401.
-
(2010)
Cell Metab.
, vol.11
, pp. 390-401
-
-
Kalender, A.1
-
33
-
-
79956325949
-
Spatial coupling of mTOR and autophagy augments secretory phenotypes
-
Narita M., et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 2011, 332:966-970.
-
(2011)
Science
, vol.332
, pp. 966-970
-
-
Narita, M.1
-
34
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y., et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
-
35
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H-ATPase
-
Zoncu R., et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H-ATPase. Science 2011, 334:678-683.
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
-
36
-
-
44449165125
-
Nuclear translocation of Gln3 in response to nutrient signals requires Golgi-to-endosome trafficking in Saccharomyces cerevisiae
-
Puria R., et al. Nuclear translocation of Gln3 in response to nutrient signals requires Golgi-to-endosome trafficking in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:7194-7199.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 7194-7199
-
-
Puria, R.1
-
37
-
-
34548421080
-
Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae
-
Zurita-Martinez S.A., et al. Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae. Genetics 2007, 176:2139-2150.
-
(2007)
Genetics
, vol.176
, pp. 2139-2150
-
-
Zurita-Martinez, S.A.1
-
38
-
-
26444575415
-
Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase
-
Nobukuni T., et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:14238-14243.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 14238-14243
-
-
Nobukuni, T.1
-
39
-
-
0037345059
-
Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae
-
Wedaman K.P., et al. Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol. Biol. Cell 2003, 14:1204-1220.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 1204-1220
-
-
Wedaman, K.P.1
-
40
-
-
54249110478
-
TOR1 and TOR2 have distinct locations in live cells
-
Sturgill T.W., et al. TOR1 and TOR2 have distinct locations in live cells. Eukaryot. Cell 2008, 7:1819-1830.
-
(2008)
Eukaryot. Cell
, vol.7
, pp. 1819-1830
-
-
Sturgill, T.W.1
-
41
-
-
63749117393
-
TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain
-
Berchtold D., Walther T.C. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol. Biol. Cell 2009, 20:1565-1575.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1565-1575
-
-
Berchtold, D.1
Walther, T.C.2
-
42
-
-
33846109356
-
A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14
-
Bohn G., et al. A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat. Med. 2007, 13:38-45.
-
(2007)
Nat. Med.
, vol.13
, pp. 38-45
-
-
Bohn, G.1
-
43
-
-
0026770670
-
Putative GTP-binding protein, Gtr1, associated with the function of the Pho84 inorganic phosphate transporter in Saccharomyces cerevisiae
-
Bun-Ya M., et al. Putative GTP-binding protein, Gtr1, associated with the function of the Pho84 inorganic phosphate transporter in Saccharomyces cerevisiae. Mol. Cell. Biol. 1992, 12:2958-2966.
-
(1992)
Mol. Cell. Biol.
, vol.12
, pp. 2958-2966
-
-
Bun-Ya, M.1
-
44
-
-
33745745910
-
A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast
-
Gao M., Kaiser C.A. A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat. Cell Biol. 2006, 8:657-667.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 657-667
-
-
Gao, M.1
Kaiser, C.A.2
-
45
-
-
69749113579
-
The Vam6 GEF controls TORC1 by activating the EGO complex
-
Binda M., et al. The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell 2009, 35:563-573.
-
(2009)
Mol. Cell
, vol.35
, pp. 563-573
-
-
Binda, M.1
-
46
-
-
3342936383
-
Crystal structure of the p14/MP1 scaffolding complex: how a twin couple attaches mitogen-activated protein kinase signaling to late endosomes
-
Kurzbauer R., et al. Crystal structure of the p14/MP1 scaffolding complex: how a twin couple attaches mitogen-activated protein kinase signaling to late endosomes. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:10984-10989.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 10984-10989
-
-
Kurzbauer, R.1
-
47
-
-
77956740779
-
Structural conservation of components in the amino acid sensing branch of the TOR pathway in yeast and mammals
-
Kogan K., et al. Structural conservation of components in the amino acid sensing branch of the TOR pathway in yeast and mammals. J. Mol. Biol. 2010, 402:388-398.
-
(2010)
J. Mol. Biol.
, vol.402
, pp. 388-398
-
-
Kogan, K.1
-
48
-
-
80051873144
-
Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation
-
Gong R., et al. Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Genes Dev. 2011, 25:1668-1673.
-
(2011)
Genes Dev.
, vol.25
, pp. 1668-1673
-
-
Gong, R.1
-
49
-
-
33646143793
-
Localization of Rheb to the endomembrane is critical for its signaling function
-
Buerger C., et al. Localization of Rheb to the endomembrane is critical for its signaling function. Biochem. Biophys. Res. Commun. 2006, 344:869-880.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.344
, pp. 869-880
-
-
Buerger, C.1
-
50
-
-
18244362311
-
Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin
-
Saito K., et al. Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. J. Biochem. 2005, 137:423-430.
-
(2005)
J. Biochem.
, vol.137
, pp. 423-430
-
-
Saito, K.1
-
51
-
-
0025170681
-
The fungal vacuole: composition, function, and biogenesis
-
Klionsky D.J., et al. The fungal vacuole: composition, function, and biogenesis. Microbiol. Rev. 1990, 54:266-292.
-
(1990)
Microbiol. Rev.
, vol.54
, pp. 266-292
-
-
Klionsky, D.J.1
-
52
-
-
0024022640
-
Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae
-
Kitamoto K., et al. Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae. J. Bacteriol. 1988, 170:2683-2686.
-
(1988)
J. Bacteriol.
, vol.170
, pp. 2683-2686
-
-
Kitamoto, K.1
-
53
-
-
0019506903
-
Lysosomal pool of free-amino acids
-
Harms E., et al. Lysosomal pool of free-amino acids. Biochem. Biophys. Res. Commun. 1981, 99:830-836.
-
(1981)
Biochem. Biophys. Res. Commun.
, vol.99
, pp. 830-836
-
-
Harms, E.1
-
54
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by mTOR
-
Yu L., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010, 465:942-946.
-
(2010)
Nature
, vol.465
, pp. 942-946
-
-
Yu, L.1
-
55
-
-
62949218373
-
The yeast lysosome-like vacuole: endpoint and crossroads
-
Li S.C., Kane P.M. The yeast lysosome-like vacuole: endpoint and crossroads. Biochim. Biophys. Acta 2009, 1793:650-663.
-
(2009)
Biochim. Biophys. Acta
, vol.1793
, pp. 650-663
-
-
Li, S.C.1
Kane, P.M.2
-
56
-
-
0035968245
-
A family of yeast proteins mediating bidirectional vacuolar amino acid transport
-
Russnak R., et al. A family of yeast proteins mediating bidirectional vacuolar amino acid transport. J. Biol. Chem. 2001, 276:23849-23857.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 23849-23857
-
-
Russnak, R.1
-
57
-
-
77954757143
-
Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation
-
Heublein S., et al. Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation. Oncogene 2010, 29:4068-4079.
-
(2010)
Oncogene
, vol.29
, pp. 4068-4079
-
-
Heublein, S.1
-
58
-
-
84863173801
-
Mechanism of proton/substrate coupling in the heptahelical lysosomal transporter cystinosin
-
Ruivo R., et al. Mechanism of proton/substrate coupling in the heptahelical lysosomal transporter cystinosin. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E210-E217.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
-
-
Ruivo, R.1
-
59
-
-
0035912839
-
Identification and characterization of a lysosomal transporter for small neutral amino acids
-
Sagne C., et al. Identification and characterization of a lysosomal transporter for small neutral amino acids. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:7206-7211.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 7206-7211
-
-
Sagne, C.1
-
60
-
-
84859704385
-
Leucyl-tRNA synthetase controls TORC1 via the EGO complex
-
Bonfils G., et al. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol. Cell 2012, 46:105-110.
-
(2012)
Mol. Cell
, vol.46
, pp. 105-110
-
-
Bonfils, G.1
-
61
-
-
84862777407
-
Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
-
Han J.M., et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 2012, 149:410-424.
-
(2012)
Cell
, vol.149
, pp. 410-424
-
-
Han, J.M.1
-
62
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N., et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 2009, 20:1981-1991.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
-
63
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13:132-141.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
-
64
-
-
21244448694
-
The TOR and EGO protein complexes orchestrate microautophagy in yeast
-
Dubouloz F., et al. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell 2005, 19:15-26.
-
(2005)
Mol. Cell
, vol.19
, pp. 15-26
-
-
Dubouloz, F.1
-
65
-
-
67749122634
-
A gene network regulating lysosomal biogenesis and function
-
Sardiello M., et al. A gene network regulating lysosomal biogenesis and function. Science 2009, 325:473-477.
-
(2009)
Science
, vol.325
, pp. 473-477
-
-
Sardiello, M.1
-
66
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre C., et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332:1429-1433.
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
-
67
-
-
84864874958
-
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
-
Martina J.A., et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012, 8:903-914.
-
(2012)
Autophagy
, vol.8
, pp. 903-914
-
-
Martina, J.A.1
-
68
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre C., et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012, 31:1095-1108.
-
(2012)
EMBO J.
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
-
69
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel K., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 2010, 39:171-183.
-
(2010)
Mol. Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
-
70
-
-
80052841665
-
Regulation of TFEB and V-ATPases by mTORC1
-
Pena-Llopis S., et al. Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 2011, 30:3242-3258.
-
(2011)
EMBO J.
, vol.30
, pp. 3242-3258
-
-
Pena-Llopis, S.1
-
71
-
-
63449111894
-
A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance
-
Newgard C.B., et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9:311-326.
-
(2009)
Cell Metab.
, vol.9
, pp. 311-326
-
-
Newgard, C.B.1
-
72
-
-
14244256097
-
Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance
-
Khamzina L., et al. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 2005, 146:1473-1481.
-
(2005)
Endocrinology
, vol.146
, pp. 1473-1481
-
-
Khamzina, L.1
-
73
-
-
32944457518
-
MTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt
-
O'Reilly K.E., et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006, 66:1500-1508.
-
(2006)
Cancer Res.
, vol.66
, pp. 1500-1508
-
-
O'Reilly, K.E.1
-
74
-
-
4544220704
-
Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity
-
Um S.H., et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004, 431:200-205.
-
(2004)
Nature
, vol.431
, pp. 200-205
-
-
Um, S.H.1
-
75
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
76
-
-
70450204007
-
An emerging role of mTOR in lipid biosynthesis
-
Laplante M., Sabatini D.M. An emerging role of mTOR in lipid biosynthesis. Curr. Biol. 2009, 19:R1046-R1052.
-
(2009)
Curr. Biol.
, vol.19
-
-
Laplante, M.1
Sabatini, D.M.2
-
77
-
-
1642586272
-
Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy
-
Wendel H.G., et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004, 428:332-337.
-
(2004)
Nature
, vol.428
, pp. 332-337
-
-
Wendel, H.G.1
-
78
-
-
37249042829
-
Dissecting eIF4E action in tumorigenesis
-
Wendel H.G., et al. Dissecting eIF4E action in tumorigenesis. Genes Dev. 2007, 21:3232-3237.
-
(2007)
Genes Dev.
, vol.21
, pp. 3232-3237
-
-
Wendel, H.G.1
-
79
-
-
0032512636
-
Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast
-
Noda T., Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 1998, 273:3963-3966.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 3963-3966
-
-
Noda, T.1
Ohsumi, Y.2
-
80
-
-
56249147509
-
Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation
-
Choo A.Y., et al. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:17414-17419.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 17414-17419
-
-
Choo, A.Y.1
-
81
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen C.C., et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 2009, 284:8023-8032.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
-
82
-
-
58649114084
-
MTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice
-
Guertin D.A., et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2009, 15:148-159.
-
(2009)
Cancer Cell
, vol.15
, pp. 148-159
-
-
Guertin, D.A.1
-
83
-
-
75149112670
-
AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity
-
Chresta C.M., et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010, 70:288-298.
-
(2010)
Cancer Res.
, vol.70
, pp. 288-298
-
-
Chresta, C.M.1
-
84
-
-
61349141302
-
Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
-
Feldman M.E., et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009, 7:e38.
-
(2009)
PLoS Biol.
, vol.7
-
-
Feldman, M.E.1
-
85
-
-
67650312583
-
Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR)
-
Garcia-Martinez J.M., et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem. J. 2009, 421:29-42.
-
(2009)
Biochem. J.
, vol.421
, pp. 29-42
-
-
Garcia-Martinez, J.M.1
-
86
-
-
68049137608
-
Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin
-
Yu K., et al. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res. 2009, 69:6232-6240.
-
(2009)
Cancer Res.
, vol.69
, pp. 6232-6240
-
-
Yu, K.1
-
87
-
-
0027770784
-
Identification and characterization of the tuberous sclerosis gene on chromosome 16
-
European Chromosome 16 Tuberous Sclerosis Consortium
-
European Chromosome 16 Tuberous Sclerosis Consortium Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 1993, 75:1305-1315.
-
(1993)
Cell
, vol.75
, pp. 1305-1315
-
-
-
88
-
-
0030879277
-
Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34
-
van Slegtenhorst M., et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997, 277:805-808.
-
(1997)
Science
, vol.277
, pp. 805-808
-
-
van Slegtenhorst, M.1
-
89
-
-
0032495530
-
A serine/threonine kinase gene defective in Peutz-Jeghers syndrome
-
Hemminki A., et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998, 391:184-187.
-
(1998)
Nature
, vol.391
, pp. 184-187
-
-
Hemminki, A.1
-
90
-
-
77951783390
-
STRADalpha deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice
-
Orlova K.A., et al. STRADalpha deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice. J. Clin. Invest. 2010, 120:1591-1602.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 1591-1602
-
-
Orlova, K.A.1
-
91
-
-
0025091465
-
The neurofibromatosis type 1 gene encodes a protein related to GAP
-
Xu G.F., et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 1990, 62:599-608.
-
(1990)
Cell
, vol.62
, pp. 599-608
-
-
Xu, G.F.1
-
92
-
-
0010865059
-
A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor
-
Trofatter J.A., et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 1993, 75:826.
-
(1993)
Cell
, vol.75
, pp. 826
-
-
Trofatter, J.A.1
-
93
-
-
0027240519
-
Identification of the von Hippel-Lindau disease tumor suppressor gene
-
Latif F., et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 1993, 260:1317-1320.
-
(1993)
Science
, vol.260
, pp. 1317-1320
-
-
Latif, F.1
-
94
-
-
0031004088
-
Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome
-
Liaw D., et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet. 1997, 16:64-67.
-
(1997)
Nat. Genet.
, vol.16
, pp. 64-67
-
-
Liaw, D.1
-
95
-
-
0035928416
-
Association of germline mutation in the PTEN tumour suppressor gene and Proteus and Proteus-like syndromes
-
Zhou X., et al. Association of germline mutation in the PTEN tumour suppressor gene and Proteus and Proteus-like syndromes. Lancet 2001, 358:210-211.
-
(2001)
Lancet
, vol.358
, pp. 210-211
-
-
Zhou, X.1
-
96
-
-
0031203265
-
Germline mutations in PTEN are present in Bannayan-Zonana syndrome
-
Marsh D.J., et al. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat. Genet. 1997, 16:333-334.
-
(1997)
Nat. Genet.
, vol.16
, pp. 333-334
-
-
Marsh, D.J.1
-
97
-
-
51849143274
-
Genetic and phenotypic heterogeneity in the PTEN hamartoma tumour syndrome
-
Orloff M.S., Eng C. Genetic and phenotypic heterogeneity in the PTEN hamartoma tumour syndrome. Oncogene 2008, 27:5387-5397.
-
(2008)
Oncogene
, vol.27
, pp. 5387-5397
-
-
Orloff, M.S.1
Eng, C.2
-
98
-
-
84860389181
-
A mosaic activating mutation in AKT1 associated with the Proteus syndrome
-
Lindhurst M.J., et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N. Engl. J. Med. 2011, 365:611-619.
-
(2011)
N. Engl. J. Med.
, vol.365
, pp. 611-619
-
-
Lindhurst, M.J.1
-
99
-
-
80055087787
-
An activating mutation of AKT2 and human hypoglycemia
-
Hussain K., et al. An activating mutation of AKT2 and human hypoglycemia. Science 2011, 334:474.
-
(2011)
Science
, vol.334
, pp. 474
-
-
Hussain, K.1
-
100
-
-
84863393080
-
Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
-
Gerlinger M., et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012, 366:883-892.
-
(2012)
N. Engl. J. Med.
, vol.366
, pp. 883-892
-
-
Gerlinger, M.1
-
101
-
-
77952243626
-
Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer
-
Sato T., et al. Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene 2010, 29:2746-2752.
-
(2010)
Oncogene
, vol.29
, pp. 2746-2752
-
-
Sato, T.1
-
102
-
-
34249779568
-
Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma
-
Hudes G., et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 2007, 356:2271-2281.
-
(2007)
N. Engl. J. Med.
, vol.356
, pp. 2271-2281
-
-
Hudes, G.1
-
103
-
-
38049169559
-
Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis
-
Bissler J.J., et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med. 2008, 358:140-151.
-
(2008)
N. Engl. J. Med.
, vol.358
, pp. 140-151
-
-
Bissler, J.J.1
-
104
-
-
38049177875
-
Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis
-
Davies D.M., et al. Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N. Engl. J. Med. 2008, 358:200-203.
-
(2008)
N. Engl. J. Med.
, vol.358
, pp. 200-203
-
-
Davies, D.M.1
-
105
-
-
33644827461
-
Rapamycin causes regression of astrocytomas in tuberous sclerosis complex
-
Franz D.N., et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann. Neurol. 2006, 59:490-498.
-
(2006)
Ann. Neurol.
, vol.59
, pp. 490-498
-
-
Franz, D.N.1
-
106
-
-
79951794971
-
Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice
-
Miller R.A., et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A: Biol. Sci. Med. Sci. 2011, 66:191-201.
-
(2011)
J. Gerontol. A: Biol. Sci. Med. Sci.
, vol.66
, pp. 191-201
-
-
Miller, R.A.1
-
107
-
-
67650944993
-
Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
-
Harrison D.E., et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009, 460:392-395.
-
(2009)
Nature
, vol.460
, pp. 392-395
-
-
Harrison, D.E.1
-
108
-
-
78650918920
-
FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging
-
Demontis F., Perrimon N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 2010, 143:813-825.
-
(2010)
Cell
, vol.143
, pp. 813-825
-
-
Demontis, F.1
Perrimon, N.2
-
109
-
-
80052303130
-
Autophagy and aging
-
Rubinsztein D.C., et al. Autophagy and aging. Cell 2011, 146:682-695.
-
(2011)
Cell
, vol.146
, pp. 682-695
-
-
Rubinsztein, D.C.1
-
110
-
-
79954425069
-
Protein misfolding disorders and macroautophagy
-
Menzies F.M., et al. Protein misfolding disorders and macroautophagy. Curr. Opin. Cell Biol. 2011, 23:190-197.
-
(2011)
Curr. Opin. Cell Biol.
, vol.23
, pp. 190-197
-
-
Menzies, F.M.1
-
111
-
-
2642586352
-
Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease
-
Ravikumar B., et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 2004, 36:585-595.
-
(2004)
Nat. Genet.
, vol.36
, pp. 585-595
-
-
Ravikumar, B.1
|