-
1
-
-
84866431363
-
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
-
Bar-Peled, L., L.D. Schweitzer, R. Zoncu, and D.M. Sabatini. 2012. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell. 150:1196-1208. http://dx.doi.org/10.1016/j.cell.2012.07.032
-
(2012)
Cell.
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
2
-
-
33748301944
-
Microphthalmia-associated transcription factor interactions with 14-3-3 modulate differentiation of committed myeloid precursors
-
Bronisz, A., S.M. Sharma, R. Hu, J. Godlewski, G. Tzivion, K.C. Mansky, and M.C. Ostrowski. 2006. Microphthalmia-associated transcription factor interactions with 14-3-3 modulate differentiation of committed myeloid precursors. Mol. Biol. Cell. 17:3897-3906. http://dx.doi.org/10.1091/mbc.E06-05-0470
-
(2006)
Mol. Biol. Cell.
, vol.17
, pp. 3897-3906
-
-
Bronisz, A.1
Sharma, S.M.2
Hu, R.3
Godlewski, J.4
Tzivion, G.5
Mansky, K.C.6
Ostrowski, M.C.7
-
3
-
-
67749122578
-
Frequent mutations in the MITF pathway in melanoma
-
Cronin, J.C., J. Wunderlich, S.K. Loftus, T.D. Prickett, X. Wei, K. Ridd, S. Vemula, A.S. Burrell, N.S. Agrawal, J.C. Lin, et al. 2009. Frequent mutations in the MITF pathway in melanoma. Pigment Cell Melanoma Res. 22:435-444. http://dx.doi.org/10.1111/j.1755-148X.2009.00578.x
-
(2009)
Pigment Cell Melanoma Res.
, vol.22
, pp. 435-444
-
-
Cronin, J.C.1
Wunderlich, J.2
Loftus, S.K.3
Prickett, T.D.4
Wei, X.5
Ridd, K.6
Vemula, S.7
Burrell, A.S.8
Agrawal, N.S.9
Lin, J.C.10
-
4
-
-
33745745910
-
A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast
-
Gao, M., and C.A. Kaiser. 2006. A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat. Cell Biol. 8:657-667. http://dx.doi.org/10.1038/ncb1419
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 657-667
-
-
Gao, M.1
Kaiser, C.A.2
-
5
-
-
80051873144
-
Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation
-
Gong, R., L. Li, Y. Liu, P. Wang, H. Yang, L. Wang, J. Cheng, K.L. Guan, and Y. Xu. 2011. Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Genes Dev. 25:1668-1673. http://dx.doi.org/10.1101/gad.16968011
-
(2011)
Genes Dev.
, vol.25
, pp. 1668-1673
-
-
Gong, R.1
Li, L.2
Liu, Y.3
Wang, P.4
Yang, H.5
Wang, L.6
Cheng, J.7
Guan, K.L.8
Xu, Y.9
-
6
-
-
84860649957
-
Induction of melanogenesis by rapamycin in human MNT-1 melanoma cells
-
Hah, Y.S., H.Y. Cho, T.Y. Lim, D.H. Park, H.M. Kim, J. Yoon, J.G. Kim, C.Y. Kim, and T.J. Yoon. 2012. Induction of melanogenesis by rapamycin in human MNT-1 melanoma cells. Ann. Dermatol. 24:151-157. http://dx.doi.org/10.5021/ad.2012.24.2.151
-
(2012)
Ann. Dermatol.
, vol.24
, pp. 151-157
-
-
Hah, Y.S.1
Cho, H.Y.2
Lim, T.Y.3
Park, D.H.4
Kim, H.M.5
Yoon, J.6
Kim, J.G.7
Kim, C.Y.8
Yoon, T.J.9
-
7
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara, K., Y. Maruki, X. Long, K. Yoshino, N. Oshiro, S. Hidayat, C. Tokunaga, J. Avruch, and K. Yonezawa. 2002. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 110:177-189. http://dx.doi.org/10.1016/S0092-8674(02)00833-4
-
(2002)
Cell.
, vol.110
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
Yoshino, K.4
Oshiro, N.5
Hidayat, S.6
Tokunaga, C.7
Avruch, J.8
Yonezawa, K.9
-
8
-
-
79953324545
-
WIPI1 coordinates melanogenic gene transcription and melanosome formation via TORC1 inhibition
-
Ho, H., R. Kapadia, S. Al-Tahan, S. Ahmad, and A.K. Ganesan. 2011. WIPI1 coordinates melanogenic gene transcription and melanosome formation via TORC1 inhibition. J. Biol. Chem. 286:12509-12523. http://dx.doi.org/10.1074/jbc.M110.200543
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 12509-12523
-
-
Ho, H.1
Kapadia, R.2
Al-Tahan, S.3
Ahmad, S.4
Ganesan, A.K.5
-
9
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa, N., T. Hara, T. Kaizuka, C. Kishi, A. Takamura, Y. Miura, S. Iemura, T. Natsume, K. Takehana, N. Yamada, et al. 2009a. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell. 20:1981-1991. http://dx.doi.org/10.1091/mbc.E08-12-1248
-
(2009)
Mol. Biol. Cell.
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
Iemura, S.7
Natsume, T.8
Takehana, K.9
Yamada, N.10
-
10
-
-
70349644856
-
Atg101, a novel mammalian autophagy protein interacting with Atg13
-
Hosokawa, N., T. Sasaki, S. Iemura, T. Natsume, T. Hara, and N. Mizushima. 2009b. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy. 5:973-979. http://dx.doi.org/10.4161/auto.5.7.9296
-
(2009)
Autophagy.
, vol.5
, pp. 973-979
-
-
Hosokawa, N.1
Sasaki, T.2
Iemura, S.3
Natsume, T.4
Hara, T.5
Mizushima, N.6
-
11
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto, E., R. Loewith, A. Schmidt, S. Lin, M.A. Rüegg, A. Hall, and M.N. Hall. 2004. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6:1122-1128. http://dx.doi.org/10.1038/ncb1183
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
Lin, S.4
Rüegg, M.A.5
Hall, A.6
Hall, M.N.7
-
12
-
-
0037178786
-
mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim, D.H., D.D. Sarbassov, S.M. Ali, J.E. King, R.R. Latek, H. Erdjument- Bromage, P. Tempst, and D.M. Sabatini. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 110:163-175. http://dx.doi.org/10.1016/S0092-8674(02)00808-5
-
(2002)
Cell.
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
13
-
-
84859778293
-
mTOR signaling in growth control and disease
-
Laplante, M., and D.M. Sabatini. 2012. mTOR signaling in growth control and disease. Cell. 149:274-293. http://dx.doi.org/10.1016/j.cell.2012.03.017 Martina, J.A., Y. Chen, M. Gucek, and R. Puertollano. 2012. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 8:903-914. http://dx.doi.org/10.4161/auto.19653
-
(2012)
Cell.
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
14
-
-
84864874958
-
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
-
Martina, J.A., Y. Chen, M. Gucek, and R. Puertollano. 2012. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 8:903-914. http://dx.doi.org/10.4161/auto.19653
-
(2012)
Autophagy.
, vol.8
, pp. 903-914
-
-
Martina, J.A.1
Chen, Y.2
Gucek, M.3
Puertollano, R.4
-
15
-
-
80052729465
-
Transcriptional activation of lysosomal exocytosis promotes cellular clearance
-
Medina, D.L., A. Fraldi, V. Bouche, F. Annunziata, G. Mansueto, C. Spampanato, C. Puri, A. Pignata, J.A. Martina, M. Sardiello, et al. 2011. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell. 21:421-430. http://dx.doi.org/10.1016/j.devcel.2011.07.016
-
(2011)
Dev. Cell.
, vol.21
, pp. 421-430
-
-
Medina, D.L.1
Fraldi, A.2
Bouche, V.3
Annunziata, F.4
Mansueto, G.5
Spampanato, C.6
Puri, C.7
Pignata, A.8
Martina, J.A.9
Sardiello, M.10
-
16
-
-
0037507252
-
The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif
-
Nojima, H., C. Tokunaga, S. Eguchi, N. Oshiro, S. Hidayat, K. Yoshino, K. Hara, N. Tanaka, J. Avruch, and K. Yonezawa. 2003. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J. Biol. Chem. 278:15461-15464. http://dx.doi.org/10.1074/jbc.C200665200
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 15461-15464
-
-
Nojima, H.1
Tokunaga, C.2
Eguchi, S.3
Oshiro, N.4
Hidayat, S.5
Yoshino, K.6
Hara, K.7
Tanaka, N.8
Avruch, J.9
Yonezawa, K.10
-
17
-
-
80052716148
-
Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways
-
Palmieri, M., S. Impey, H. Kang, A. di Ronza, C. Pelz, M. Sardiello, and A. Ballabio. 2011. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20:3852-3866. http://dx.doi.org/10.1093/hmg/ddr306
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 3852-3866
-
-
Palmieri, M.1
Impey, S.2
Kang, H.3
di Ronza, A.4
Pelz, C.5
Sardiello, M.6
Ballabio, A.7
-
18
-
-
84862539692
-
The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
-
Roczniak-Ferguson, A., C.S. Petit, F. Froehlich, S. Qian, J. Ky, B. Angarola, T.C. Walther, and S.M. Ferguson. 2012. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5:ra42. http://dx.doi.org/10.1126/scisignal.2002790
-
(2012)
Sci. Signal.
, vol.5
-
-
Roczniak-Ferguson, A.1
Petit, C.S.2
Froehlich, F.3
Qian, S.4
Ky, J.5
Angarola, B.6
Walther, T.C.7
Ferguson, S.M.8
-
19
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak, Y., T.R. Peterson, Y.D. Shaul, R.A. Lindquist, C.C. Thoreen, L. Bar-Peled, and D.M. Sabatini. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 320:1496-1501. http://dx.doi.org/10.1126/science.1157535
-
(2008)
Science.
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
20
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak, Y., L. Bar-Peled, R. Zoncu, A.L. Markhard, S. Nada, and D.M. Sabatini. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 141:290-303. http://dx.doi.org/10.1016/j.cell.2010.02.024
-
(2010)
Cell.
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
21
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov, D.D., S.M. Ali, D.H. Kim, D.A. Guertin, R.R. Latek, H. Erdjument-Bromage, P. Tempst, and D.M. Sabatini. 2004. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14:1296-1302. http://dx.doi.org/10.1016/j.cub.2004.06.054
-
(2004)
Curr. Biol.
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.H.3
Guertin, D.A.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
22
-
-
74849083093
-
Lysosomal enhancement: a CLEAR answer to cellular degradative needs
-
Sardiello, M., and A. Ballabio. 2009. Lysosomal enhancement: a CLEAR answer to cellular degradative needs. Cell Cycle. 8:4021-4022. http://dx.doi.org/10.4161/cc.8.24.10263
-
(2009)
Cell Cycle.
, vol.8
, pp. 4021-4022
-
-
Sardiello, M.1
Ballabio, A.2
-
23
-
-
67749122634
-
A gene network regulating lysosomal biogenesis and function
-
Sardiello, M., M. Palmieri, A. di Ronza, D.L. Medina, M. Valenza, V.A. Gennarino, C. Di Malta, F. Donaudy, V. Embrione, R.S. Polishchuk, et al. 2009. A gene network regulating lysosomal biogenesis and function. Science. 325:473-477.
-
(2009)
Science.
, vol.325
, pp. 473-477
-
-
Sardiello, M.1
Palmieri, M.2
di Ronza, A.3
Medina, D.L.4
Valenza, M.5
Gennarino, V.A.6
Di Malta, C.7
Donaudy, F.8
Embrione, V.9
Polishchuk, R.S.10
-
24
-
-
0038643484
-
Rheb promotes cell growth as a component of the insulin/TOR signalling network
-
Saucedo, L.J., X. Gao, D.A. Chiarelli, L. Li, D. Pan, and B.A. Edgar. 2003. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 5:566-571. http://dx.doi.org/10.1038/ncb996
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 566-571
-
-
Saucedo, L.J.1
Gao, X.2
Chiarelli, D.A.3
Li, L.4
Pan, D.5
Edgar, B.A.6
-
25
-
-
0035831451
-
Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B
-
Sekiguchi, T., E. Hirose, N. Nakashima, M. Ii, and T. Nishimoto. 2001. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J. Biol. Chem. 276:7246-7257. http://dx.doi.org/10.1074/jbc.M004389200
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 7246-7257
-
-
Sekiguchi, T.1
Hirose, E.2
Nakashima, N.3
Ii, M.4
Nishimoto, T.5
-
26
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre, C., C. Di Malta, V.A. Polito, M. Garcia Arencibia, F. Vetrini, S. Erdin, S.U. Erdin, T. Huynh, D. Medina, P. Colella, et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science. 332:1429-1433. http://dx.doi.org/10.1126/science.1204592
-
(2011)
Science.
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
Di Malta, C.2
Polito, V.A.3
Garcia Arencibia, M.4
Vetrini, F.5
Erdin, S.6
Erdin, S.U.7
Huynh, T.8
Medina, D.9
Colella, P.10
-
27
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre, C., R. Zoncu, D.L. Medina, F. Vetrini, S. Erdin, S. Erdin, T. Huynh, M. Ferron, G. Karsenty, M.C. Vellard, et al. 2012. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31:1095-1108. http://dx.doi.org/10.1038/emboj.2012.32
-
(2012)
EMBO J.
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
Zoncu, R.2
Medina, D.L.3
Vetrini, F.4
Erdin, S.5
Erdin, S.6
Huynh, T.7
Ferron, M.8
Karsenty, G.9
Vellard, M.C.10
-
28
-
-
0038304516
-
Rheb is an essential regulator of S6K in controlling cell growth in Drosophila
-
Stocker, H., T. Radimerski, B. Schindelholz, F. Wittwer, P. Belawat, P. Daram, S. Breuer, G. Thomas, and E. Hafen. 2003. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat. Cell Biol. 5:559-565. http://dx.doi.org/10.1038/ncb995
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 559-565
-
-
Stocker, H.1
Radimerski, T.2
Schindelholz, B.3
Wittwer, F.4
Belawat, P.5
Daram, P.6
Breuer, S.7
Thomas, G.8
Hafen, E.9
-
29
-
-
0032248265
-
A big gene linked to small eyes encodes multiple Mitf isoforms: many promoters make light work
-
Yasumoto, K., S. Amae, T. Udono, N. Fuse, K. Takeda, and S. Shibahara. 1998. A big gene linked to small eyes encodes multiple Mitf isoforms: many promoters make light work. Pigment Cell Res. 11:329-336. http://dx.doi.org/10.1111/j.1600-0749.1998.tb00491.x
-
(1998)
Pigment Cell Res.
, vol.11
, pp. 329-336
-
-
Yasumoto, K.1
Amae, S.2
Udono, T.3
Fuse, N.4
Takeda, K.5
Shibahara, S.6
-
30
-
-
80555143078
-
mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
Zoncu, R., L. Bar-Peled, A. Efeyan, S. Wang, Y. Sancak, and D.M. Sabatini. 2011a. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science. 334:678- 683. http://dx.doi.org/10.1126/science.1207056
-
(2011)
Science.
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
31
-
-
78650510609
-
mTOR: from growth signal integration to cancer, diabetes and ageing
-
Zoncu, R., A. Efeyan, and D.M. Sabatini. 2011b. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12:21-35. http://dx.doi.org/10.1038/nrm3025
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
|