-
1
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine, B. &Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27-42 (2008
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
2
-
-
67649467294
-
Dynamics and diversity in autophagy mechanisms: Lessons from yeast
-
Nakatogawa, H., Suzuki, K., Kamada, Y. &Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458-467 (2009
-
(2009)
Nat. Rev. Mol. Cell Biol
, vol.10
, pp. 458-467
-
-
Nakatogawa, H.1
Suzuki, K.2
Kamada, Y.3
Ohsumi, Y.4
-
3
-
-
84891747382
-
The machinery of macroautophagy
-
Feng, Y., He, D., Yao, Z. &Klionsky, D. J. The machinery of macroautophagy. Cell Res. 24, 24-41 (2014
-
(2014)
Cell Res
, vol.24
, pp. 24-41
-
-
Feng, Y.1
He, D.2
Yao, Z.3
Klionsky, D.J.4
-
4
-
-
84878421591
-
Aggrephagy: Lessons from C
-
Lu, Q., Wu, F. &Zhang, H. Aggrephagy: lessons from C. Elegans. Biochem. J. 452, 381-390 (2013
-
(2013)
Elegans. Biochem. J
, vol.452
, pp. 381-390
-
-
Lu, Q.1
Wu, F.2
Zhang, H.3
-
5
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685-701 (2008
-
(2008)
J. Cell Biol
, vol.182
, pp. 685-701
-
-
Axe, E.L.1
-
6
-
-
77955131007
-
Plasma membrane contributes to the formation of pre-autophagosomal structures
-
Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C. &Rubinsztein, D. C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12, 747-757 (2010
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 747-757
-
-
Ravikumar, B.1
Moreau, K.2
Jahreiss, L.3
Puri, C.4
Rubinsztein, D.C.5
-
7
-
-
79960774898
-
Autophagosome precursor maturation requires homotypic fusion
-
Moreau, K., Ravikumar, B., Renna, M., Puri, C. &Rubinsztein, D. C. Autophagosome precursor maturation requires homotypic fusion. Cell 146, 303-317 (2011
-
(2011)
Cell
, vol.146
, pp. 303-317
-
-
Moreau, K.1
Ravikumar, B.2
Renna, M.3
Puri, C.4
Rubinsztein, D.C.5
-
8
-
-
77954184503
-
Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae
-
Geng, J., Nair, U., Yasumura-Yorimitsu, K. &Klionsky, D. J. Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 21, 2257-2269 (2010
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 2257-2269
-
-
Geng, J.1
Nair, U.2
Yasumura-Yorimitsu, K.3
Klionsky, D.J.4
-
9
-
-
78649682788
-
Membrane delivery to the yeast autophagosome from the Golgi-endosomal system
-
Ohashi, Y. &Munro, S. Membrane delivery to the yeast autophagosome from the Golgi-endosomal system. Mol. Biol. Cell 21, 3998-4008 (2010
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 3998-4008
-
-
Ohashi, Y.1
Munro, S.2
-
10
-
-
77954197767
-
Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae
-
Van der Vaart, A., Griffith, J. &Reggiori, F. Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol. Biol. Cell 21, 2270-2284 (2010
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 2270-2284
-
-
Van Der Vaart, A.1
Griffith, J.2
Reggiori, F.3
-
11
-
-
84862611041
-
TBC1D14 regulates autophagosome formation via Rab11-and ULK1-positive recycling endosomes
-
Longatti, A. et al. TBC1D14 regulates autophagosome formation via Rab11-and ULK1-positive recycling endosomes. J. Cell Biol. 197, 659-675 (2012
-
(2012)
J. Cell Biol
, vol.197
, pp. 659-675
-
-
Longatti, A.1
-
12
-
-
84888380983
-
The autophagosome: Origins unknown, biogenesis complex
-
Lamb, C. A., Yoshimori, T. &Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759-774 (2013
-
(2013)
Nat. Rev. Mol. Cell Biol
, vol.14
, pp. 759-774
-
-
Lamb, C.A.1
Yoshimori, T.2
Tooze, S.A.3
-
13
-
-
67549139908
-
Vesicular trafficking and autophagosome formation
-
Longatti, A. &Tooze, S. A. Vesicular trafficking and autophagosome formation. Cell Death Differ. 16, 956-965 (2009
-
(2009)
Cell Death Differ
, vol.16
, pp. 956-965
-
-
Longatti, A.1
Tooze, S.A.2
-
14
-
-
34247623568
-
Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle
-
Cai, H., Reinisch, K. &Ferro-Novick, S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12, 671-682 (2007
-
(2007)
Dev. Cell
, vol.12
, pp. 671-682
-
-
Cai, H.1
Reinisch, K.2
Ferro-Novick, S.3
-
15
-
-
84870880174
-
The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
Itakura, E., Kishi-Itakura, C. &Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256-1269 (2012
-
(2012)
Cell
, vol.151
, pp. 1256-1269
-
-
Itakura, E.1
Kishi-Itakura, C.2
Mizushima, N.3
-
16
-
-
84878615771
-
Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila
-
Takts, S. et al. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 201, 531-539 (2013
-
(2013)
J. Cell Biol
, vol.201
, pp. 531-539
-
-
Takts, S.1
-
17
-
-
72549095406
-
Regulation mechanisms and signaling pathways of autophagy
-
He, C. &Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67-93 (2009
-
(2009)
Annu. Rev. Genet
, vol.43
, pp. 67-93
-
-
He, C.1
Klionsky, D.J.2
-
18
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
-
Sengupta, S., Peterson, T. R. &Sabatini, D. M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 40, 310-322 (2010
-
(2010)
Mol. Cell
, vol.40
, pp. 310-322
-
-
Sengupta, S.1
Peterson, T.R.2
Sabatini, D.M.3
-
19
-
-
77954898129
-
A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions
-
Lipinski, M. M. et al. A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions. Dev. Cell 18, 1041-1052 (2010
-
(2010)
Dev. Cell
, vol.18
, pp. 1041-1052
-
-
Lipinski, M.M.1
-
20
-
-
84891745585
-
Autophagy regulation by nutrient signaling
-
Russell, R. C., Yuan, H. X. &Guan, K. L. Autophagy regulation by nutrient signaling. Cell Res. 24, 42-57 (2014
-
(2014)
Cell Res
, vol.24
, pp. 42-57
-
-
Russell, R.C.1
Yuan, H.X.2
Guan, K.L.3
-
21
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981-1991 (2009
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
-
22
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim, J., Kundu, M., Viollet, B. &Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132-141 (2011
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
23
-
-
84890848742
-
Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy
-
Yuan, H. X., Russell, R. C. &Guan, K. L. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy 9, 1983-1995 (2013
-
(2013)
Autophagy
, vol.9
, pp. 1983-1995
-
-
Yuan, H.X.1
Russell, R.C.2
Guan, K.L.3
-
24
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
Russell, R. C. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15, 741-750 (2013
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 741-750
-
-
Russell, R.C.1
-
25
-
-
84872586081
-
Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
-
Kim, J. et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290-303 (2013
-
(2013)
Cell
, vol.152
, pp. 290-303
-
-
Kim, J.1
-
26
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433 (2011
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
-
27
-
-
84876090708
-
ZKSCAN3 is a master transcriptional repressor of autophagy
-
Chauhan, S. et al. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell 50, 16-28 (2013
-
(2013)
Mol. Cell
, vol.50
, pp. 16-28
-
-
Chauhan, S.1
-
28
-
-
65349155174
-
Early endosomes and endosomal coatomer are required for autophagy
-
Razi, M., Chan, E. Y. &Tooze, S. A. Early endosomes and endosomal coatomer are required for autophagy. J. Cell Biol. 185, 305-321 (2009
-
(2009)
J. Cell Biol
, vol.185
, pp. 305-321
-
-
Razi, M.1
Chan, E.Y.2
Tooze, S.A.3
-
29
-
-
35948983328
-
Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease
-
Filimonenko, M. et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485-500 (2007
-
(2007)
J. Cell Biol
, vol.179
, pp. 485-500
-
-
Filimonenko, M.1
-
30
-
-
74049124412
-
Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease
-
Ju, J. S. et al. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J. Cell Biol. 187, 875-888 (2009
-
(2009)
J. Cell Biol
, vol.187
, pp. 875-888
-
-
Ju, J.S.1
-
31
-
-
77952533111
-
VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD
-
Tresse, E. et al. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6, 217-227 (2010
-
(2010)
Autophagy
, vol.6
, pp. 217-227
-
-
Tresse, E.1
-
32
-
-
84876308090
-
Mice deficient in Epg5 exhibit selective neuronal vulnerability to degeneration
-
Zhao, H. Y. et al. Mice deficient in Epg5 exhibit selective neuronal vulnerability to degeneration. J. Cell Biol. 200, 731-741 (2013
-
(2013)
J. Cell Biol
, vol.200
, pp. 731-741
-
-
Zhao, H.Y.1
-
33
-
-
77956396629
-
O-GlcNAc signaling: A metabolic link between diabetes and cancer?
-
Slawson, C., Copeland, R. J. &Hart, G. W. O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem. Sci. 35, 547-555 (2010
-
(2010)
Trends Biochem. Sci
, vol.35
, pp. 547-555
-
-
Slawson, C.1
Copeland, R.J.2
Hart, G.W.3
-
34
-
-
84875210462
-
Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart
-
Marsh, S. A., Powell, P. C., Dellitalia, L. J. &Chatham, J. C. Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sci. 92, 648-656 (2013
-
(2013)
Life Sci
, vol.92
, pp. 648-656
-
-
Marsh, S.A.1
Powell, P.C.2
Dellitalia, L.J.3
Chatham, J.C.4
-
35
-
-
84900424968
-
Decreased O-linked GlcNAcylation protects from cytotoxicity mediated by huntingtin exon1 protein fragment
-
Kumar, A. et al. Decreased O-linked GlcNAcylation protects from cytotoxicity mediated by huntingtin exon1 protein fragment. J. Biol. Chem. 289, 13543-13553 (2014
-
(2014)
J. Biol. Chem
, vol.289
, pp. 13543-13553
-
-
Kumar, A.1
-
36
-
-
84867908726
-
O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases
-
Wang, P. et al. O-GlcNAc cycling mutants modulate proteotoxicity in Caenorhabditis elegans models of human neurodegenerative diseases. Proc. Natl Acad. Sci. USA 109, 17669-17674 (2012
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 17669-17674
-
-
Wang, P.1
-
37
-
-
84877358993
-
Nutrient-driven O-GlcNAc cycling influences autophagic flux and neurodegenerative proteotoxicity
-
Wang, P. &Hanover, J. A. Nutrient-driven O-GlcNAc cycling influences autophagic flux and neurodegenerative proteotoxicity. Autophagy 9, 604-606 (2013
-
(2013)
Autophagy
, vol.9
, pp. 604-606
-
-
Wang, P.1
Hanover, J.A.2
-
38
-
-
77953713630
-
C. Elegans screen identifies autophagy genes specific to multicellular organisms
-
Tian, Y. et al. C. Elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141, 1042-1055 (2010
-
(2010)
Cell
, vol.141
, pp. 1042-1055
-
-
Tian, Y.1
-
39
-
-
58249085224
-
SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. Elegans
-
Zhang, Y. X. et al. SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. Elegans. Cell 136, 308-321 (2009
-
(2009)
Cell
, vol.136
, pp. 308-321
-
-
Zhang, Y.X.1
-
40
-
-
84901773763
-
Genome-wide screen identifies signaling pathways that regulate autophagy during Caenorhabditis elegans development
-
Guo, B. et al. Genome-wide screen identifies signaling pathways that regulate autophagy during Caenorhabditis elegans development. EMBO Rep. 15, 705-713 (2014
-
(2014)
EMBO Rep
, vol.15
, pp. 705-713
-
-
Guo, B.1
-
41
-
-
75749122303
-
Methods in mammalian autophagy research
-
Mizushima, N., Yoshimori, T. &Levine, B. Methods in mammalian autophagy research. Cell 140, 313-326 (2010
-
(2010)
Cell
, vol.140
, pp. 313-326
-
-
Mizushima, N.1
Yoshimori, T.2
Levine, B.3
-
42
-
-
34548077575
-
Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
-
Kimura, S., Noda, T. &Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452-460 (2007
-
(2007)
Autophagy
, vol.3
, pp. 452-460
-
-
Kimura, S.1
Noda, T.2
Yoshimori, T.3
-
43
-
-
0037128205
-
Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform
-
Mallard, F. et al. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J. Cell Biol. 156, 653-664 (2002
-
(2002)
J. Cell Biol
, vol.156
, pp. 653-664
-
-
Mallard, F.1
-
44
-
-
80052068559
-
O-GlcNAc signalling: Implications for cancer cell biology
-
Slawson, C. &Hart, G. W. O-GlcNAc signalling: implications for cancer cell biology. Nat. Rev. Cancer 11, 678-684 (2011
-
(2011)
Nat. Rev. Cancer
, vol.11
, pp. 678-684
-
-
Slawson, C.1
Hart, G.W.2
-
45
-
-
15444379089
-
Syntaxin 6 and Vti1b form a novel SNARE complex, which is up-regulated in activated macrophages to facilitate exocytosis of tumor necrosis factor
-
Murray, R. Z., Wylie, F. G., Khromykh, T., Hume, D. A. &Stow, J. L. Syntaxin 6 and Vti1b form a novel SNARE complex, which is up-regulated in activated macrophages to facilitate exocytosis of tumor necrosis factor-. J. Biol. Chem. 280, 10478-10483 (2005
-
(2005)
J. Biol. Chem
, vol.280
, pp. 10478-10483
-
-
Murray, R.Z.1
Wylie, F.G.2
Khromykh, T.3
Hume, D.A.4
Stow, J.L.5
-
47
-
-
84898713103
-
Drosophila SNAP-29 is an essential SNARE that binds multiple proteins involved in membrane traffic
-
Xu, H., Mohtashami, M., Stewart, B., Boulianne, G. &Trimble, W. S. Drosophila SNAP-29 is an essential SNARE that binds multiple proteins involved in membrane traffic. PLoS ONE 9, e91471 (2014
-
(2014)
PLoS ONE
, vol.9
, pp. e91471
-
-
Xu, H.1
Mohtashami, M.2
Stewart, B.3
Boulianne, G.4
Trimble, W.S.5
-
48
-
-
0001187825
-
GS32, a novel Golgi SNARE of 32 kDa, interacts preferentially with syntaxin 6
-
Wong, S. H. et al. GS32, a novel Golgi SNARE of 32 kDa, interacts preferentially with syntaxin 6. Mol. Biol. Cell 10, 119-134 (1999
-
(1999)
Mol. Biol. Cell
, vol.10
, pp. 119-134
-
-
Wong, S.H.1
-
49
-
-
79960322956
-
Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells
-
Sato, M. et al. Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells. Mol. Biol. Cell 22, 2579-2587 (2011
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 2579-2587
-
-
Sato, M.1
-
50
-
-
79957622734
-
Essential roles of snap-29 in C. Elegans
-
Kang, J., Bai, Z., Zegarek, M. H., Grant, B. D. &Lee, J. Essential roles of snap-29 in C. Elegans. Dev. Biol. 355, 77-88 (2011
-
(2011)
Dev. Biol
, vol.355
, pp. 77-88
-
-
Kang, J.1
Bai, Z.2
Zegarek, M.H.3
Grant, B.D.4
Lee, J.5
-
52
-
-
84884220705
-
Diverse autophagosome membrane sources coalesce in recycling endosomes
-
Puri, C., Renna, M., Bento, C. F., Moreau, K. &Rubinsztein, D. C. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154, 1285-1299 (2013
-
(2013)
Cell
, vol.154
, pp. 1285-1299
-
-
Puri, C.1
Renna, M.2
Bento, C.F.3
Moreau, K.4
Rubinsztein, D.C.5
-
53
-
-
77949295164
-
The hexosamine signaling pathway: OGlcNAc cycling in feast or famine
-
Hanover, J. A., Krause, M. W. &Love, D. C. The hexosamine signaling pathway: OGlcNAc cycling in feast or famine. Biochim. Biophys. Acta 1800, 80-95 (2010
-
(2010)
Biochim. Biophys. Acta
, vol.1800
, pp. 80-95
-
-
Hanover, J.A.1
Krause, M.W.2
Love, D.C.3
-
54
-
-
84896351253
-
Hexosamine pathway metabolites enhance protein quality control and prolong life
-
Denzel, M. S. et al. Hexosamine pathway metabolites enhance protein quality control and prolong life. Cell 156, 1167-1178 (2014
-
(2014)
Cell
, vol.156
, pp. 1167-1178
-
-
Denzel, M.S.1
|