-
3
-
-
77957150824
-
KRAS, hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma
-
Morris JPT, Wang SC, Hebrok M. KRAS, hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer 2010; 10: 683-95
-
(2010)
Nat Rev Cancer
, vol.10
, pp. 683-695
-
-
Morris, J.1
Wang, S.C.2
Hebrok, M.3
-
4
-
-
0346455774
-
Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma
-
Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 2003; 17: 3112-26
-
(2003)
Genes Dev
, vol.17
, pp. 3112-3126
-
-
Aguirre, A.J.1
Bardeesy, N.2
Sinha, M.3
Lopez, L.4
Tuveson, D.A.5
Horner, J.6
-
5
-
-
79953756460
-
Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy
-
Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 2011; 17: 500-3
-
(2011)
Nat Med
, vol.17
, pp. 500-503
-
-
Collisson, E.A.1
Sadanandam, A.2
Olson, P.3
Gibb, W.J.4
Truitt, M.5
Gu, S.6
-
6
-
-
9144266295
-
Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse
-
Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003; 4: 437-50
-
(2003)
Cancer Cell
, vol.4
, pp. 437-450
-
-
Hingorani, S.R.1
Petricoin, E.F.2
Maitra, A.3
Rajapakse, V.4
King, C.5
Jacobetz, M.A.6
-
7
-
-
65649108558
-
A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival
-
Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N, et al. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell 2009; 15: 489-500
-
(2009)
Cancer Cell
, vol.15
, pp. 489-500
-
-
Singh, A.1
Greninger, P.2
Rhodes, D.3
Koopman, L.4
Violette, S.5
Bardeesy, N.6
-
8
-
-
84860321700
-
Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
-
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher- Sananikone E, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012; 149: 656-70
-
(2012)
Cell
, vol.149
, pp. 656-670
-
-
Ying, H.1
Kimmelman, A.C.2
Lyssiotis, C.A.3
Hua, S.4
Chu, G.C.5
Fletcher-Sananikone, E.6
-
9
-
-
84863012865
-
Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice
-
Collins MA, Bednar F, Zhang Y, Brisset JC, Galban S, Galban CJ, et al. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 2012; 122: 639-53
-
(2012)
J Clin Invest
, vol.122
, pp. 639-653
-
-
Collins, M.A.1
Bednar, F.2
Zhang, Y.3
Brisset, J.C.4
Galban, S.5
Galban, C.J.6
-
10
-
-
84887425166
-
Evolution and dynamics of pancreatic cancer progression
-
Yachida S, Iacobuzio-Donahue CA. Evolution and dynamics of pancreatic cancer progression. Oncogene 2013; 32: 5253-60
-
(2013)
Oncogene
, vol.32
, pp. 5253-5260
-
-
Yachida, S.1
Iacobuzio-Donahue, C.A.2
-
11
-
-
78049398107
-
Distant metastasis occurs late during the genetic evolution of pancreatic cancer
-
Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010; 467: 1114-7
-
(2010)
Nature
, vol.467
, pp. 1114-1117
-
-
Yachida, S.1
Jones, S.2
Bozic, I.3
Antal, T.4
Leary, R.5
Fu, B.6
-
12
-
-
84869236330
-
Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors
-
Yachida S, White CM, Naito Y, Zhong Y, Brosnan JA, Macgregor-Das AM, et al. Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clin Cancer Res 2012; 18: 6339-47
-
(2012)
Clin Cancer Res
, vol.18
, pp. 6339-6347
-
-
Yachida, S.1
White, C.M.2
Naito, Y.3
Zhong, Y.4
Brosnan, J.A.5
Macgregor-Das, A.M.6
-
13
-
-
33645824724
-
Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse
-
Bardeesy N, Aguirre AJ, Chu GC, Cheng KH, Lopez LV, Hezel AF, et al. Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci U S A 2006; 103: 5947-52
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 5947-5952
-
-
Bardeesy, N.1
Aguirre, A.J.2
Chu, G.C.3
Cheng, K.H.4
Lopez, L.V.5
Hezel, A.F.6
-
14
-
-
33751251034
-
Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer
-
Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 2006; 20: 3130-46
-
(2006)
Genes Dev
, vol.20
, pp. 3130-3146
-
-
Bardeesy, N.1
Cheng, K.H.2
Berger, J.H.3
Chu, G.C.4
Pahler, J.5
Olson, P.6
-
15
-
-
19344362405
-
Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice
-
Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005; 7: 469-83
-
(2005)
Cancer Cell
, vol.7
, pp. 469-483
-
-
Hingorani, S.R.1
Wang, L.2
Multani, A.S.3
Combs, C.4
Deramaudt, T.B.5
Hruban, R.H.6
-
16
-
-
84930475656
-
RUNX3 controls a metastatic switch in pancreatic ductal adenocarcinoma
-
Whittle MC, Izeradjene K, Rani PG, Feng L, Carlson MA, DelGiorno KE, et al. RUNX3 controls a metastatic switch in pancreatic ductal adenocarcinoma. Cell 2015; 161: 1345-60
-
(2015)
Cell
, vol.161
, pp. 1345-1360
-
-
Whittle, M.C.1
Izeradjene, K.2
Rani, P.G.3
Feng, L.4
Carlson, M.A.5
Delgiorno, K.E.6
-
17
-
-
84869091997
-
Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes
-
Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012; 491: 399-405
-
(2012)
Nature
, vol.491
, pp. 399-405
-
-
Biankin, A.V.1
Waddell, N.2
Kassahn, K.S.3
Gingras, M.C.4
Muthuswamy, L.B.5
Johns, A.L.6
-
18
-
-
84924056345
-
Whole genomes redefine the mutational landscape of pancreatic cancer
-
Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518: 495-501
-
(2015)
Nature
, vol.518
, pp. 495-501
-
-
Waddell, N.1
Pajic, M.2
Patch, A.M.3
Chang, D.K.4
Kassahn, K.S.5
Bailey, P.6
-
19
-
-
84927632705
-
Metabolic dependencies in RAS-driven cancers
-
Kimmelman AC. Metabolic dependencies in RAS-driven cancers. Clin Cancer Res 2015; 21: 1828-34
-
(2015)
Clin Cancer Res
, vol.21
, pp. 1828-1834
-
-
Kimmelman, A.C.1
-
20
-
-
84885357137
-
Exploiting the bad eating habits of Ras-driven cancers
-
White E. Exploiting the bad eating habits of Ras-driven cancers. Genes Dev 2013; 27: 2065-71
-
(2013)
Genes Dev
, vol.27
, pp. 2065-2071
-
-
White, E.1
-
21
-
-
79955828776
-
Stromal biology and therapy in pancreatic cancer
-
Neesse A, Michl P, Frese KK, Feig C, Cook N, Jacobetz MA, et al. Stromal biology and therapy in pancreatic cancer. Gut 2010; 60: 861-8
-
(2010)
Gut
, vol.60
, pp. 861-868
-
-
Neesse, A.1
Michl, P.2
Frese, K.K.3
Feig, C.4
Cook, N.5
Jacobetz, M.A.6
-
22
-
-
84904010549
-
Cellular and molecular conspirators in pancreas cancer
-
Hingorani SR. Cellular and molecular conspirators in pancreas cancer. Carcinogenesis 2014; 35: 1435
-
(2014)
Carcinogenesis
, vol.35
-
-
Hingorani, S.R.1
-
23
-
-
84904994417
-
Stromal response to Hedgehog signaling restrains pancreatic cancer progression
-
Lee JJ, Perera RM, Wang H, Wu DC, Liu XS, Han S, et al. Stromal response to Hedgehog signaling restrains pancreatic cancer progression . Proc Natl Acad Sci U S A 2014; 111: E3091-100
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
-
-
Lee, J.J.1
Perera, R.M.2
Wang, H.3
Wu, D.C.4
Liu, X.S.5
Han, S.6
-
24
-
-
84902469661
-
Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival
-
Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 2014; 25: 719-34
-
(2014)
Cancer Cell
, vol.25
, pp. 719-734
-
-
Ozdemir, B.C.1
Pentcheva-Hoang, T.2
Carstens, J.L.3
Zheng, X.4
Wu, C.C.5
Simpson, T.R.6
-
25
-
-
84902435628
-
Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma
-
Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 2014; 25: 735-47
-
(2014)
Cancer Cell
, vol.25
, pp. 735-747
-
-
Rhim, A.D.1
Oberstein, P.E.2
Thomas, D.H.3
Mirek, E.T.4
Palermo, C.F.5
Sastra, S.A.6
-
26
-
-
84907485104
-
Vitamin D receptor–mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy
-
Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H, et al. Vitamin D receptor–mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 2014; 159: 80-93
-
(2014)
Cell
, vol.159
, pp. 80-93
-
-
Sherman, M.H.1
Yu, R.T.2
Engle, D.D.3
Ding, N.4
Atkins, A.R.5
Tiriac, H.6
-
27
-
-
84877052290
-
Inflammatory networks and immune surveillance of pancreatic carcinoma
-
Vonderheide RH, Bayne LJ. Inflammatory networks and immune surveillance of pancreatic carcinoma. Curr Opin Immunol 2013; 25: 200-5
-
(2013)
Curr Opin Immunol
, vol.25
, pp. 200-205
-
-
Vonderheide, R.H.1
Bayne, L.J.2
-
28
-
-
78149298209
-
Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha
-
Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 2010; 330: 827-30
-
(2010)
Science
, vol.330
, pp. 827-830
-
-
Kraman, M.1
Bambrough, P.J.2
Arnold, J.N.3
Roberts, E.W.4
Magiera, L.5
Jones, J.O.6
-
29
-
-
84961288972
-
Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein
-
Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, Grabocka E, et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res 2015; 75: 544-53
-
(2015)
Cancer Res
, vol.75
, pp. 544-553
-
-
Kamphorst, J.J.1
Nofal, M.2
Commisso, C.3
Hackett, S.R.4
Lu, W.5
Grabocka, E.6
-
30
-
-
84866557942
-
Causes, consequences, and remedies for growthinduced solid stress in murine and human tumors
-
Stylianopoulos T, Martin JD, Chauhan VP, Jain SR, Diop-Frimpong B, Bardeesy N, et al. Causes, consequences, and remedies for growthinduced solid stress in murine and human tumors. Proc Natl Acad Sci U S A 2012; 109: 15101-8
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 15101-15108
-
-
Stylianopoulos, T.1
Martin, J.D.2
Chauhan, V.P.3
Jain, S.R.4
Diop-Frimpong, B.5
Bardeesy, N.6
-
31
-
-
80053039884
-
The metabolic features of normal pancreas and pancreatic adenocarcinoma: Preliminary result of in vivo proton magnetic resonance spectroscopy at 3.0 T
-
Ma X, Zhao X, Ouyang H, Sun F, Zhang H, Zhou C, et al. The metabolic features of normal pancreas and pancreatic adenocarcinoma: preliminary result of in vivo proton magnetic resonance spectroscopy at 3.0 T. J Comput Assist Tomogr 2011; 35: 539-43
-
(2011)
J Comput Assist Tomogr
, vol.35
, pp. 539-543
-
-
Ma, X.1
Zhao, X.2
Ouyang, H.3
Sun, F.4
Zhang, H.5
Zhou, C.6
-
32
-
-
84922789990
-
Nutrient-sensing mechanisms and pathways
-
Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature 2015; 517: 302-10
-
(2015)
Nature
, vol.517
, pp. 302-310
-
-
Efeyan, A.1
Comb, W.C.2
Sabatini, D.M.3
-
33
-
-
80053035284
-
AMP-activated protein kinase: An energy sensor that regulates all aspects of cell function
-
Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 2011; 25: 1895-908
-
(2011)
Genes Dev
, vol.25
, pp. 1895-1908
-
-
Hardie, D.G.1
-
34
-
-
78650510609
-
MTOR: From growth signal integration to cancer, diabetes and ageing
-
Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21-35
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
-
35
-
-
84858414020
-
Cellular metabolism and disease: What do metabolic outliers teach us?
-
DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 2012; 148: 1132-44
-
(2012)
Cell
, vol.148
, pp. 1132-1144
-
-
Deberardinis, R.J.1
Thompson, C.B.2
-
36
-
-
84890018924
-
Autophagy-mediated tumor promotion
-
Guo JY, Xia B, White E. Autophagy-mediated tumor promotion. Cell 2013; 155: 1216-9
-
(2013)
Cell
, vol.155
, pp. 1216-1219
-
-
Guo, J.Y.1
Xia, B.2
White, E.3
-
37
-
-
84903960967
-
The complex landscape of pancreatic cancer metabolism
-
Sousa CM, Kimmelman AC. The complex landscape of pancreatic cancer metabolism. Carcinogenesis 2014; 35: 1441-50
-
(2014)
Carcinogenesis
, vol.35
, pp. 1441-1450
-
-
Sousa, C.M.1
Kimmelman, A.C.2
-
38
-
-
37449024702
-
The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11-20
-
(2008)
Cell Metab
, vol.7
, pp. 11-20
-
-
Deberardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
Thompson, C.B.4
-
39
-
-
79955398591
-
Otto Warburg’s contributions to current concepts of cancer metabolism
-
Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11: 325-37
-
(2011)
Nat Rev Cancer
, vol.11
, pp. 325-337
-
-
Koppenol, W.H.1
Bounds, P.L.2
Dang, C.V.3
-
40
-
-
77952737658
-
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
-
Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 2010; 107: 8788-93
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 8788-8793
-
-
Weinberg, F.1
Hamanaka, R.2
Wheaton, W.W.3
Weinberg, S.4
Joseph, J.5
Lopez, M.6
-
41
-
-
84914174192
-
Maximum standardized uptake value on 18F-fluoro-2-deoxyglucose positron emission tomography/computed tomography and glucose transporter-1 expression correlates with survival in invasive ductal carcinoma of the pancreas
-
Kitasato Y, Yasunaga M, Okuda K, Kinoshita H, Tanaka H, Okabe Y, et al. Maximum standardized uptake value on 18F-fluoro-2-deoxyglucose positron emission tomography/computed tomography and glucose transporter-1 expression correlates with survival in invasive ductal carcinoma of the pancreas. Pancreas 2014; 43: 1060-5
-
(2014)
Pancreas
, vol.43
, pp. 1060-1065
-
-
Kitasato, Y.1
Yasunaga, M.2
Okuda, K.3
Kinoshita, H.4
Tanaka, H.5
Okabe, Y.6
-
42
-
-
84921026509
-
Preoperative FDG-PET predicts early recurrence and a poor prognosis after resection of pancreatic adenocarcinoma
-
Yamamoto T, Sugiura T, Mizuno T, Okamura Y, Aramaki T, Endo M, et al. Preoperative FDG-PET predicts early recurrence and a poor prognosis after resection of pancreatic adenocarcinoma. Ann Surg Oncol 2014; 22: 677-84
-
(2014)
Ann Surg Oncol
, vol.22
, pp. 677-684
-
-
Yamamoto, T.1
Sugiura, T.2
Mizuno, T.3
Okamura, Y.4
Aramaki, T.5
Endo, M.6
-
43
-
-
76649126249
-
Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression
-
Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 2010; 107: 2037-42
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 2037-2042
-
-
Le, A.1
Cooper, C.R.2
Gouw, A.M.3
Dinavahi, R.4
Maitra, A.5
Deck, L.M.6
-
44
-
-
84874614138
-
Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma
-
Guillaumond F, Leca J, Olivares O, Lavaut MN, Vidal N, Berthezene P, et al. Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci U S A 2013; 110: 3919-24
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 3919-3924
-
-
Guillaumond, F.1
Leca, J.2
Olivares, O.3
Lavaut, M.N.4
Vidal, N.5
Berthezene, P.6
-
45
-
-
84883182637
-
Disrupting proton dynamics and energy metabolism for cancer therapy
-
Parks SK, Chiche J, Pouyssegur J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 2013; 13: 611-23
-
(2013)
Nat Rev Cancer
, vol.13
, pp. 611-623
-
-
Parks, S.K.1
Chiche, J.2
Pouyssegur, J.3
-
46
-
-
84919863195
-
MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies
-
Baek G, Tse YF, Hu Z, Cox D, Buboltz N, McCue P, et al. MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Rep 2014; 9: 2233-49
-
(2014)
Cell Rep
, vol.9
, pp. 2233-2249
-
-
Baek, G.1
Tse, Y.F.2
Hu, Z.3
Cox, D.4
Buboltz, N.5
McCue, P.6
-
47
-
-
84907486950
-
Cell surface lactate receptor GPR81 is crucial for cancer cell survival
-
Roland CL, Arumugam T, Deng D, Liu SH, Philip B, Gomez S, et al. Cell surface lactate receptor GPR81 is crucial for cancer cell survival. Cancer Res 2014; 74: 5301-10
-
(2014)
Cancer Res
, vol.74
, pp. 5301-5310
-
-
Roland, C.L.1
Arumugam, T.2
Deng, D.3
Liu, S.H.4
Philip, B.5
Gomez, S.6
-
48
-
-
84901036434
-
FOXM1 promotes the warburg effect and pancreatic cancer progression via transactivation of LDHA expression
-
Cui J, Shi M, Xie D, Wei D, Jia Z, Zheng S, et al. FOXM1 promotes the warburg effect and pancreatic cancer progression via transactivation of LDHA expression. Clin Cancer Res 2014; 20: 2595-606
-
(2014)
Clin Cancer Res
, vol.20
, pp. 2595-2606
-
-
Cui, J.1
Shi, M.2
Xie, D.3
Wei, D.4
Jia, Z.5
Zheng, S.6
-
49
-
-
84905979612
-
A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer
-
Shi M, Cui J, Du J, Wei D, Jia Z, Zhang J, et al. A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer. Clin Cancer Res 2014; 20: 4370-80
-
(2014)
Clin Cancer Res
, vol.20
, pp. 4370-4380
-
-
Shi, M.1
Cui, J.2
Du, J.3
Wei, D.4
Jia, Z.5
Zhang, J.6
-
50
-
-
79551584971
-
Regulation of intermediary metabolism by protein acetylation
-
Guan KL, Xiong Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 2010; 36: 108-16
-
(2010)
Trends Biochem Sci
, vol.36
, pp. 108-116
-
-
Guan, K.L.1
Xiong, Y.2
-
51
-
-
84906937144
-
Post-translational modifications and the Warburg effect
-
Hitosugi T, Chen J. Post-translational modifications and the Warburg effect. Oncogene 2013; 33: 4279-85
-
(2013)
Oncogene
, vol.33
, pp. 4279-4285
-
-
Hitosugi, T.1
Chen, J.2
-
52
-
-
84876417170
-
Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer
-
Zhao D, Zou SW, Liu Y, Zhou X, Mo Y, Wang P, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell 2013; 23: 464-76
-
(2013)
Cancer Cell
, vol.23
, pp. 464-476
-
-
Zhao, D.1
Zou, S.W.2
Liu, Y.3
Zhou, X.4
Mo, Y.5
Wang, P.6
-
53
-
-
84883497454
-
Glutamine and cancer: Cell biology, physiology, and clinical opportunities
-
Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 2013; 123: 3678-84
-
(2013)
J Clin Invest
, vol.123
, pp. 3678-3684
-
-
Hensley, C.T.1
Wasti, A.T.2
Deberardinis, R.J.3
-
54
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 2008; 105: 18782-7
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 18782-18787
-
-
Wise, D.R.1
Deberardinis, R.J.2
Mancuso, A.3
Sayed, N.4
Zhang, X.Y.5
Pfeiffer, H.K.6
-
56
-
-
84875894714
-
Glutamine supports pancreatic cancer growth through a KRASregulated metabolic pathway
-
Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRASregulated metabolic pathway. Nature 2013; 496: 101-5
-
(2013)
Nature
, vol.496
, pp. 101-105
-
-
Son, J.1
Lyssiotis, C.A.2
Ying, H.3
Wang, X.4
Hua, S.5
Ligorio, M.6
-
57
-
-
84927698067
-
SIRT3- dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth
-
Yang H, Zhou L, Shi Q, Zhao Y, Lin H, Zhang M, et al. SIRT3- dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. EMBO J 2015; 34: 1110-25
-
(2015)
EMBO J
, vol.34
, pp. 1110-1125
-
-
Yang, H.1
Zhou, L.2
Shi, Q.3
Zhao, Y.4
Lin, H.5
Zhang, M.6
-
58
-
-
79960060305
-
Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
-
DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475: 106-9
-
(2011)
Nature
, vol.475
, pp. 106-109
-
-
Denicola, G.M.1
Karreth, F.A.2
Humpton, T.J.3
Gopinathan, A.4
Wei, C.5
Frese, K.6
-
59
-
-
84919903877
-
Acetate is a bioenergetic substrate for human glioblastoma and brain metastases
-
Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 2014; 159: 1603-14
-
(2014)
Cell
, vol.159
, pp. 1603-1614
-
-
Mashimo, T.1
Pichumani, K.2
Vemireddy, V.3
Hatanpaa, K.J.4
Singh, D.K.5
Sirasanagandla, S.6
-
60
-
-
84862016091
-
Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo
-
Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 2012; 15: 827-37
-
(2012)
Cell Metab
, vol.15
, pp. 827-837
-
-
Marin-Valencia, I.1
Yang, C.2
Mashimo, T.3
Cho, S.4
Baek, H.5
Yang, X.L.6
-
61
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz JD, White E. Autophagy and metabolism. Science 2010; 330: 1344-8
-
(2010)
Science
, vol.330
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
62
-
-
78649338141
-
Autophagy and the integrated stress response
-
Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell 2010; 40: 280-93
-
(2010)
Mol Cell
, vol.40
, pp. 280-293
-
-
Kroemer, G.1
Marino, G.2
Levine, B.3
-
63
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132: 27-42
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
64
-
-
79960585318
-
Ammoniainduced autophagy is independent of ULK1/ULK2 kinases
-
Cheong H, Lindsten T, Wu J, Lu C, Thompson CB. Ammoniainduced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci U S A 2011; 108: 11121-6
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 11121-11126
-
-
Cheong, H.1
Lindsten, T.2
Wu, J.3
Lu, C.4
Thompson, C.B.5
-
65
-
-
79952228407
-
Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
-
Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 2011; 25: 460-70
-
(2011)
Genes Dev
, vol.25
, pp. 460-470
-
-
Guo, J.Y.1
Chen, H.Y.2
Mathew, R.3
Fan, J.4
Strohecker, A.M.5
Karsli-Uzunbas, G.6
-
66
-
-
84879777723
-
Autophagy suppresses progression of K-rasinduced lung tumors to oncocytomas and maintains lipid homeostasis
-
Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, et al. Autophagy suppresses progression of K-rasinduced lung tumors to oncocytomas and maintains lipid homeostasis . Genes Dev 2013; 27: 1447-61
-
(2013)
Genes Dev
, vol.27
, pp. 1447-1461
-
-
Guo, J.Y.1
Karsli-Uzunbas, G.2
Mathew, R.3
Aisner, S.C.4
Kamphorst, J.J.5
Strohecker, A.M.6
-
67
-
-
84905497318
-
Autophagy is required for glucose homeostasis and lung tumor maintenance
-
Karsli-Uzunbas G, Guo JY, Price S, Teng X, Laddha SV, Khor S, et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov 2014; 4: 914-27
-
(2014)
Cancer Discov
, vol.4
, pp. 914-927
-
-
Karsli-Uzunbas, G.1
Guo, J.Y.2
Price, S.3
Teng, X.4
Laddha, S.V.5
Khor, S.6
-
68
-
-
84897946801
-
Autophagydependent production of secreted factors facilitates oncogenic RASdriven invasion
-
Lock R, Kenific CM, Leidal AM, Salas E, Debnath J. Autophagydependent production of secreted factors facilitates oncogenic RASdriven invasion. Cancer Discov 2014; 4: 466-79
-
(2014)
Cancer Discov
, vol.4
, pp. 466-479
-
-
Lock, R.1
Kenific, C.M.2
Leidal, A.M.3
Salas, E.4
Debnath, J.5
-
69
-
-
78751511180
-
Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation
-
Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 2011; 22: 165-78
-
(2011)
Mol Biol Cell
, vol.22
, pp. 165-178
-
-
Lock, R.1
Roy, S.2
Kenific, C.M.3
Su, J.S.4
Salas, E.5
Ronen, S.M.6
-
70
-
-
84907893352
-
Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent
-
Morgan MJ, Gamez G, Menke C, Hernandez A, Thorburn J, Gidan F, et al. Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent. Autophagy 2014; 10: 1814-26
-
(2014)
Autophagy
, vol.10
, pp. 1814-1826
-
-
Morgan, M.J.1
Gamez, G.2
Menke, C.3
Hernandez, A.4
Thorburn, J.5
Gidan, F.6
-
71
-
-
84892882660
-
A dual role for autophagy in a murine model of lung cancer
-
Rao S, Tortola L, Perlot T, Wirnsberger G, Novatchkova M, Nitsch R, et al. A dual role for autophagy in a murine model of lung cancer. Nat Commun 2014; 5: 3056
-
(2014)
Nat Commun
, vol.5
, pp. 3056
-
-
Rao, S.1
Tortola, L.2
Perlot, T.3
Wirnsberger, G.4
Novatchkova, M.5
Nitsch, R.6
-
72
-
-
84885350394
-
Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors
-
Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ, Mathew R, et al. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 2013; 3: 1272-85
-
(2013)
Cancer Discov
, vol.3
, pp. 1272-1285
-
-
Strohecker, A.M.1
Guo, J.Y.2
Karsli-Uzunbas, G.3
Price, S.M.4
Chen, G.J.5
Mathew, R.6
-
73
-
-
79960401862
-
Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis
-
Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 2011; 25: 1510-27
-
(2011)
Genes Dev
, vol.25
, pp. 1510-1527
-
-
Wei, H.1
Wei, S.2
Gan, B.3
Peng, X.4
Zou, W.5
Guan, J.L.6
-
74
-
-
84939508539
-
Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma
-
Xie X, Koh JY, Price S, White E, Mehnert JM. Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov 2015; 5: 410-23
-
(2015)
Cancer Discov
, vol.5
, pp. 410-423
-
-
Xie, X.1
Koh, J.Y.2
Price, S.3
White, E.4
Mehnert, J.M.5
-
75
-
-
79952229430
-
Pancreatic cancers require autophagy for tumor growth
-
Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev 2011; 25: 717-29
-
(2011)
Genes Dev
, vol.25
, pp. 717-729
-
-
Yang, S.1
Wang, X.2
Contino, G.3
Liesa, M.4
Sahin, E.5
Ying, H.6
-
76
-
-
84901271607
-
Plac8 links oncogenic mutations to regulation of autophagy and is critical to pancreatic cancer progression
-
Kinsey C, Balakrishnan V, O’Dell MR, Huang JL, Newman L, Whitney- Miller CL, et al. Plac8 links oncogenic mutations to regulation of autophagy and is critical to pancreatic cancer progression. Cell Rep 2014; 7: 1143-55
-
(2014)
Cell Rep
, vol.7
, pp. 1143-1155
-
-
Kinsey, C.1
Balakrishnan, V.2
O’Dell, M.R.3
Huang, J.L.4
Newman, L.5
Whitney-Miller, C.L.6
-
77
-
-
84890432985
-
P53 status determines the role of autophagy in pancreatic tumour development
-
Rosenfeldt MT, O’Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 2013; 504: 296-300
-
(2013)
Nature
, vol.504
, pp. 296-300
-
-
Rosenfeldt, M.T.1
O’Prey, J.2
Morton, J.P.3
Nixon, C.4
Mackay, G.5
Mrowinska, A.6
-
78
-
-
84905499163
-
Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations
-
Yang A, Rajeshkumar NV, Wang X, Yabuuchi S, Alexander BM, Chu GC, et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov 2014; 4: 905-13
-
(2014)
Cancer Discov
, vol.4
, pp. 905-913
-
-
Yang, A.1
Rajeshkumar, N.V.2
Wang, X.3
Yabuuchi, S.4
Alexander, B.M.5
Chu, G.C.6
-
79
-
-
84878396462
-
Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells
-
Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 2013; 497: 633-7
-
(2013)
Nature
, vol.497
, pp. 633-637
-
-
Commisso, C.1
Davidson, S.M.2
Soydaner-Azeloglu, R.G.3
Parker, S.J.4
Kamphorst, J.J.5
Hackett, S.6
-
80
-
-
84864581956
-
Metabolite detection of pancreatic carcinoma by in vivo proton MR spectroscopy at 3T: Initial results
-
Yao X, Zeng M, Wang H, Fei S, Rao S, Ji Y. Metabolite detection of pancreatic carcinoma by in vivo proton MR spectroscopy at 3T: initial results. Radiol Med 2012; 117: 780-8
-
(2012)
Radiol Med
, vol.117
, pp. 780-788
-
-
Yao, X.1
Zeng, M.2
Wang, H.3
Fei, S.4
Rao, S.5
Ji, Y.6
-
81
-
-
84878464291
-
Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids
-
Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R, White EP, et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci U S A 2013; 110: 8882-7
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 8882-8887
-
-
Kamphorst, J.J.1
Cross, J.R.2
Fan, J.3
De Stanchina, E.4
Mathew, R.5
White, E.P.6
-
82
-
-
84923673721
-
Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma
-
Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A 2015; 112: 2473-8
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 2473-2478
-
-
Guillaumond, F.1
Bidaut, G.2
Ouaissi, M.3
Servais, S.4
Gouirand, V.5
Olivares, O.6
-
83
-
-
84876664386
-
Cancer-associated lysosomal changes: Friends or foes?
-
Kallunki T, Olsen OD, Jaattela M. Cancer-associated lysosomal changes: friends or foes? Oncogene 2012; 32: 1995-2004
-
(2012)
Oncogene
, vol.32
, pp. 1995-2004
-
-
Kallunki, T.1
Olsen, O.D.2
Jaattela, M.3
-
84
-
-
84939787271
-
Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism
-
Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 2015;524:361–5
-
(2015)
Nature
, vol.524
, pp. 361-365
-
-
Perera, R.M.1
Stoykova, S.2
Nicolay, B.N.3
Ross, K.N.4
Fitamant, J.5
Boukhali, M.6
-
85
-
-
67749122634
-
A gene network regulating lysosomal biogenesis and function
-
Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, et al. A gene network regulating lysosomal biogenesis and function. Science 2009; 325: 473-7
-
(2009)
Science
, vol.325
, pp. 473-477
-
-
Sardiello, M.1
Palmieri, M.2
Di Ronza, A.3
Medina, D.L.4
Valenza, M.5
Gennarino, V.A.6
-
86
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. Science 2011; 332: 1429-33
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
Di Malta, C.2
Polito, V.A.3
Garcia Arencibia, M.4
Vetrini, F.5
Erdin, S.6
-
87
-
-
84876812269
-
Signals from the lysosome: A control centre for cellular clearance and energy metabolism
-
Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 2013; 14: 283-96
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 283-296
-
-
Settembre, C.1
Fraldi, A.2
Medina, D.L.3
Ballabio, A.4
-
88
-
-
84893055506
-
The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris
-
Martina JA, Diab HI, Lishu L, Jeong AL, Patange S, Raben N, et al. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal 2014; 7: ra9
-
(2014)
Sci Signal
, vol.7
-
-
Martina, J.A.1
Diab, H.I.2
Lishu, L.3
Jeong, A.L.4
Patange, S.5
Raben, N.6
-
89
-
-
84862539692
-
The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
-
Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 2012; 5: ra42
-
(2012)
Sci Signal
, vol.5
-
-
Roczniak-Ferguson, A.1
Petit, C.S.2
Froehlich, F.3
Qian, S.4
Ky, J.5
Angarola, B.6
-
90
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Huynh T, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 2012; 31: 1095-108
-
(2012)
EMBO J
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
Zoncu, R.2
Medina, D.L.3
Vetrini, F.4
Erdin, S.5
Huynh, T.6
-
91
-
-
80052753295
-
Biology and clinical relevance of the micropthalmia family of transcription factors in human cancer
-
Haq R, Fisher DE. Biology and clinical relevance of the micropthalmia family of transcription factors in human cancer. J Clin Oncol 2011; 29: 3474-82
-
(2011)
J Clin Oncol
, vol.29
, pp. 3474-3482
-
-
Haq, R.1
Fisher, D.E.2
-
92
-
-
84868148725
-
Failure of amino acid homeostasis causes cell death following proteasome inhibition
-
Suraweera A, Munch C, Hanssum A, Bertolotti A. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol Cell 2012; 48: 242-53
-
(2012)
Mol Cell
, vol.48
, pp. 242-253
-
-
Suraweera, A.1
Munch, C.2
Hanssum, A.3
Bertolotti, A.4
-
93
-
-
84899746695
-
Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
-
Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014; 509: 105-9
-
(2014)
Nature
, vol.509
, pp. 105-109
-
-
Mancias, J.D.1
Wang, X.2
Gygi, S.P.3
Harper, J.W.4
Kimmelman, A.C.5
-
94
-
-
84907994253
-
Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity
-
Mathew R, Khor S, Hackett SR, Rabinowitz JD, Perlman DH, White E. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol Cell 2014; 55: 916-30
-
(2014)
Mol Cell
, vol.55
, pp. 916-930
-
-
Mathew, R.1
Khor, S.2
Hackett, S.R.3
Rabinowitz, J.D.4
Perlman, D.H.5
White, E.6
-
95
-
-
84938198681
-
Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: Mechanisms and targets for therapy
-
Tameire F, Verginadis II, Koumenis C. Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: mechanisms and targets for therapy. Semin Cancer Biol 2015; 3: 3-15
-
(2015)
Semin Cancer Biol
, vol.3
, pp. 3-15
-
-
Tameire, F.1
Verginadis, I.I.2
Koumenis, C.3
-
96
-
-
84897442023
-
Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs
-
Hashimoto D, Blauer M, Hirota M, Ikonen NH, Sand J, Laukkarinen J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur J Cancer 2014; 50: 1382-90
-
(2014)
Eur J Cancer
, vol.50
, pp. 1382-1390
-
-
Hashimoto, D.1
Blauer, M.2
Hirota, M.3
Ikonen, N.H.4
Sand, J.5
Laukkarinen, J.6
-
97
-
-
84887437596
-
Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment
-
Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 2013; 4: e838
-
(2013)
Cell Death Dis
, vol.4
-
-
Sui, X.1
Chen, R.2
Wang, Z.3
Huang, Z.4
Kong, N.5
Zhang, M.6
-
98
-
-
84886789682
-
MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells
-
Wang P, Zhang J, Zhang L, Zhu Z, Fan J, Chen L, et al. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology 2013; 145: 1133-43, e12
-
(2013)
Gastroenterology
, vol.145
-
-
Wang, P.1
Zhang, J.2
Zhang, L.3
Zhu, Z.4
Fan, J.5
Chen, L.6
-
99
-
-
84920388778
-
Autophagy and its effects: Making sense of doubleedged swords
-
Thorburn A. Autophagy and its effects: making sense of doubleedged swords. PLoS Biol 2014; 12: e1001967
-
(2014)
Plos Biol
, vol.12
-
-
Thorburn, A.1
-
100
-
-
84861526009
-
Deconvoluting the context-dependent role for autophagy in cancer
-
White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 2012; 12: 401-10
-
(2012)
Nat Rev Cancer
, vol.12
, pp. 401-410
-
-
White, E.1
-
101
-
-
83455198203
-
Obesity and pancreatic cancer: Overview of epidemiologic evidence and biologic mechanisms
-
Bracci PM. Obesity and pancreatic cancer: overview of epidemiologic evidence and biologic mechanisms. Mol Carcinog 2012; 51: 53-63
-
(2012)
Mol Carcinog
, vol.51
, pp. 53-63
-
-
Bracci, P.M.1
-
102
-
-
84942899732
-
Obesity and fatty pancreatic infiltration are risk factors for pancreatic precancerous lesions (PanIN)
-
Rebours V, Gaujoux S, d’Assignies G, Sauvanet A, Ruszniewski P, Levy P, et al. Obesity and fatty pancreatic infiltration are risk factors for pancreatic precancerous lesions (PanIN). Clin Cancer Res 2015; 21: 3522-8
-
(2015)
Clin Cancer Res
, vol.21
, pp. 3522-3528
-
-
Rebours, V.1
Gaujoux, S.2
D’Assignies, G.3
Sauvanet, A.4
Ruszniewski, P.5
Levy, P.6
-
103
-
-
67649227786
-
Body mass index and risk, age of onset, and survival in patients with pancreatic cancer
-
Li D, Morris JS, Liu J, Hassan MM, Day RS, Bondy ML, et al. Body mass index and risk, age of onset, and survival in patients with pancreatic cancer. JAMA 2009; 301: 2553-62
-
(2009)
JAMA
, vol.301
, pp. 2553-2562
-
-
Li, D.1
Morris, J.S.2
Liu, J.3
Hassan, M.M.4
Day, R.S.5
Bondy, M.L.6
-
104
-
-
84892896996
-
Prediagnostic body mass index and pancreatic cancer survival
-
Yuan C, Bao Y, Wu C, Kraft P, Ogino S, Ng K, et al. Prediagnostic body mass index and pancreatic cancer survival. J Clin Oncol 2013; 31: 4229-34
-
(2013)
J Clin Oncol
, vol.31
, pp. 4229-4234
-
-
Yuan, C.1
Bao, Y.2
Wu, C.3
Kraft, P.4
Ogino, S.5
Ng, K.6
-
105
-
-
62549089788
-
Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion
-
Khasawneh J, Schulz MD, Walch A, Rozman J, Hrabe de Angelis M, Klingenspor M, et al. Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc Natl Acad Sci U S A 2009; 106: 3354-9
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 3354-3359
-
-
Khasawneh, J.1
Schulz, M.D.2
Walch, A.3
Rozman, J.4
Hrabe De Angelis, M.5
Klingenspor, M.6
-
106
-
-
84888267890
-
A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice
-
Philip B, Roland CL, Daniluk J, Liu Y, Chatterjee D, Gomez SB, et al. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology 2013; 145: 1449-58
-
(2013)
Gastroenterology
, vol.145
, pp. 1449-1458
-
-
Philip, B.1
Roland, C.L.2
Daniluk, J.3
Liu, Y.4
Chatterjee, D.5
Gomez, S.B.6
-
107
-
-
84884171074
-
Calorie restriction delays the progression of lesions to pancreatic cancer in the LSL-KrasG12D; Pdx-1/Cre mouse model of pancreatic cancer
-
Lanza-Jacoby S, Yan G, Radice G, LePhong C, Baliff J, Hess R. Calorie restriction delays the progression of lesions to pancreatic cancer in the LSL-KrasG12D; Pdx-1/Cre mouse model of pancreatic cancer. Exp Biol Med 2013; 238: 787-97
-
(2013)
Exp Biol Med
, vol.238
, pp. 787-797
-
-
Lanza-Jacoby, S.1
Yan, G.2
Radice, G.3
Lephong, C.4
Baliff, J.5
Hess, R.6
-
109
-
-
84871542969
-
Endogenous n-3 polyunsaturated fatty acids delay progression of pancreatic ductal adenocarcinoma in Fat-1-p48(Cre/+)-LSLKras(G12D/+) mice
-
Mohammed A, Janakiram NB, Brewer M, Duff A, Lightfoot S, Brush RS, et al. Endogenous n-3 polyunsaturated fatty acids delay progression of pancreatic ductal adenocarcinoma in Fat-1-p48(Cre/+)-LSLKras(G12D/+) mice. Neoplasia 2012; 14: 1249-59
-
(2012)
Neoplasia
, vol.14
, pp. 1249-1259
-
-
Mohammed, A.1
Janakiram, N.B.2
Brewer, M.3
Duff, A.4
Lightfoot, S.5
Brush, R.S.6
-
110
-
-
78649919255
-
A high omega-3 fatty acid diet mitigates murine pancreatic precancer development
-
Strouch MJ, Ding Y, Salabat MR, Melstrom LG, Adrian K, Quinn C, et al. A high omega-3 fatty acid diet mitigates murine pancreatic precancer development. J Surg Res 2011; 165: 75-81
-
(2011)
J Surg Res
, vol.165
, pp. 75-81
-
-
Strouch, M.J.1
Ding, Y.2
Salabat, M.R.3
Melstrom, L.G.4
Adrian, K.5
Quinn, C.6
-
111
-
-
21244485747
-
Type-II diabetes and pancreatic cancer: A metaanalysis of 36 studies
-
Huxley R, Ansary-Moghaddam A, Berrington de Gonzalez A, Barzi F, Woodward M. Type-II diabetes and pancreatic cancer: a metaanalysis of 36 studies. Br J Cancer 2005; 92: 2076-83
-
(2005)
Br J Cancer
, vol.92
, pp. 2076-2083
-
-
Huxley, R.1
Ansary-Moghaddam, A.2
Berrington De Gonzalez, A.3
Barzi, F.4
Woodward, M.5
-
113
-
-
84880538920
-
Hyperglycemia, insulin resistance, impaired pancreatic beta-cell function, and risk of pancreatic cancer
-
Wolpin BM, Bao Y, Qian ZR, Wu C, Kraft P, Ogino S, et al. Hyperglycemia, insulin resistance, impaired pancreatic beta-cell function, and risk of pancreatic cancer. J Natl Cancer Inst 2013; 105: 1027-35
-
(2013)
J Natl Cancer Inst
, vol.105
, pp. 1027-1035
-
-
Wolpin, B.M.1
Bao, Y.2
Qian, Z.R.3
Wu, C.4
Kraft, P.5
Ogino, S.6
-
114
-
-
67650945180
-
Antidiabetic therapies affect risk of pancreatic cancer
-
Li D, Yeung SC, Hassan MM, Konopleva M, Abbruzzese JL. Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 2009; 137: 482-8
-
(2009)
Gastroenterology
, vol.137
, pp. 482-488
-
-
Li, D.1
Yeung, S.C.2
Hassan, M.M.3
Konopleva, M.4
Abbruzzese, J.L.5
-
115
-
-
84920617128
-
Survival among patients with pancreatic cancer and long-standing or recentonset diabetes mellitus
-
Yuan C, Rubinson DA, Qian ZR, Wu C, Kraft P, Bao Y, et al. Survival among patients with pancreatic cancer and long-standing or recentonset diabetes mellitus. J Clin Oncol 2014; 33: 29-35
-
(2014)
J Clin Oncol
, vol.33
, pp. 29-35
-
-
Yuan, C.1
Rubinson, D.A.2
Qian, Z.R.3
Wu, C.4
Kraft, P.5
Bao, Y.6
-
116
-
-
37349014799
-
Pancreatic cancer-associated diabetes mellitus: Prevalence and temporal association with diagnosis of cancer
-
Chari ST, Leibson CL, Rabe KG, Timmons LJ, Ransom J, de Andrade M, et al. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology 2008; 134: 95-101
-
(2008)
Gastroenterology
, vol.134
, pp. 95-101
-
-
Chari, S.T.1
Leibson, C.L.2
Rabe, K.G.3
Timmons, L.J.4
Ransom, J.5
De Andrade, M.6
-
117
-
-
84869816038
-
Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in beta cells and mice
-
Aggarwal G, Ramachandran V, Javeed N, Arumugam T, Dutta S, Klee GG, et al. Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in beta cells and mice. Gastroenterology 2012; 143: 1510-7, e1
-
(2012)
Gastroenterology
, vol.143
-
-
Aggarwal, G.1
Ramachandran, V.2
Javeed, N.3
Arumugam, T.4
Dutta, S.5
Klee, G.G.6
-
119
-
-
41349090088
-
Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus
-
Pannala R, Leirness JB, Bamlet WR, Basu A, Petersen GM, Chari ST. Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology 2008; 134: 981-7
-
(2008)
Gastroenterology
, vol.134
, pp. 981-987
-
-
Pannala, R.1
Leirness, J.B.2
Bamlet, W.R.3
Basu, A.4
Petersen, G.M.5
Chari, S.T.6
-
120
-
-
84905718750
-
Control of gluconeogenesis by metformin: Does redox trump energy charge?
-
Baur JA, Birnbaum MJ. Control of gluconeogenesis by metformin: does redox trump energy charge? Cell Metab 2014; 20: 197-9
-
(2014)
Cell Metab
, vol.20
, pp. 197-199
-
-
Baur, J.A.1
Birnbaum, M.J.2
-
121
-
-
84940738579
-
Molecular pathways: Is AMPK a friend or a foe in cancer?
-
Hardie DG. Molecular pathways: is AMPK a friend or a foe in cancer? Clin Cancer Res 2015;21:3836–40
-
(2015)
Clin Cancer Res
, vol.21
, pp. 3836-3840
-
-
Hardie, D.G.1
-
122
-
-
84907545906
-
AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis
-
Hardie DG. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 2015; 33: 1-7
-
(2015)
Curr Opin Cell Biol
, vol.33
, pp. 1-7
-
-
Hardie, D.G.1
-
123
-
-
84904686912
-
Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells
-
Janzer A, German NJ, Gonzalez-Herrera KN, Asara JM, Haigis MC, Struhl K. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc Natl Acad Sci U S A 2014; 111: 10574-9
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 10574-10579
-
-
Janzer, A.1
German, N.J.2
Gonzalez-Herrera, K.N.3
Asara, J.M.4
Haigis, M.C.5
Struhl, K.6
-
124
-
-
84891723543
-
Antidiabetic drug metformin prevents progression of pancreatic cancer by targeting in part cancer stem cells and mTOR signaling
-
Mohammed A, Janakiram NB, Brewer M, Ritchie RL, Marya A, Lightfoot S, et al. Antidiabetic drug metformin prevents progression of pancreatic cancer by targeting in part cancer stem cells and mTOR signaling. Transl Oncol 2014; 6: 649-59
-
(2014)
Transl Oncol
, vol.6
, pp. 649-659
-
-
Mohammed, A.1
Janakiram, N.B.2
Brewer, M.3
Ritchie, R.L.4
Marya, A.5
Lightfoot, S.6
-
125
-
-
84964694199
-
Metformin and rapamycin reduce pancreatic cancer growth in obese prediabetic mice by distinct MicroRNA-regulated mechanisms
-
Cifarelli V, Lashinger LM, Devlin KL, Dunlap SM, Huang J, Kaaks R, et al. Metformin and rapamycin reduce pancreatic cancer growth in obese prediabetic mice by distinct MicroRNA-regulated mechanisms . Diabetes 2015; 64: 1632-42
-
(2015)
Diabetes
, vol.64
, pp. 1632-1642
-
-
Cifarelli, V.1
Lashinger, L.M.2
Devlin, K.L.3
Dunlap, S.M.4
Huang, J.5
Kaaks, R.6
-
126
-
-
84880047529
-
Metformin inhibits the growth of human pancreatic cancer xenografts
-
Kisfalvi K, Moro A, Sinnett-Smith J, Eibl G, Rozengurt E. Metformin inhibits the growth of human pancreatic cancer xenografts. Pancreas 2013; 42: 781-5
-
(2013)
Pancreas
, vol.42
, pp. 781-785
-
-
Kisfalvi, K.1
Moro, A.2
Sinnett-Smith, J.3
Eibl, G.4
Rozengurt, E.5
-
127
-
-
84921950738
-
Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development
-
Mayers JR, Wu C, Clish CB, Kraft P, Torrence ME, Fiske BP, et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med 2014; 20: 1193-8
-
(2014)
Nat Med
, vol.20
, pp. 1193-1198
-
-
Mayers, J.R.1
Wu, C.2
Clish, C.B.3
Kraft, P.4
Torrence, M.E.5
Fiske, B.P.6
-
128
-
-
84930968311
-
Leucine supplementation differentially enhances pancreatic cancer growth in lean and overweight mice
-
Liu KA, Lashinger LM, Rasmussen AJ, Hursting SD. Leucine supplementation differentially enhances pancreatic cancer growth in lean and overweight mice. Cancer Metab 2014; 2: 6
-
(2014)
Cancer Metab
, vol.2
-
-
Liu, K.A.1
Lashinger, L.M.2
Rasmussen, A.J.3
Hursting, S.D.4
-
129
-
-
84864646651
-
Cancer cachexia: Mediators, signaling, and metabolic pathways
-
Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 2012; 16: 153-66
-
(2012)
Cell Metab
, vol.16
, pp. 153-166
-
-
Fearon, K.C.1
Glass, D.J.2
Guttridge, D.C.3
-
130
-
-
84973341728
-
Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue
-
Sagar G, Sah RP, Javeed N, Dutta SK, Smyrk TC, Lau JS, et al. Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut 2015 Apr 28 [Epub ahead of print].
-
(2015)
Gut
-
-
Sagar, G.1
Sah, R.P.2
Javeed, N.3
Dutta, S.K.4
Smyrk, T.C.5
Lau, J.S.6
-
131
-
-
84855511420
-
Plasma 25-hydroxyvitamin D and risk of pancreatic cancer
-
Wolpin BM, Ng K, Bao Y, Kraft P, Stampfer MJ, Michaud DS, et al. Plasma 25-hydroxyvitamin D and risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2011; 21: 82-91
-
(2011)
Cancer Epidemiol Biomarkers Prev
, vol.21
, pp. 82-91
-
-
Wolpin, B.M.1
Ng, K.2
Bao, Y.3
Kraft, P.4
Stampfer, M.J.5
Michaud, D.S.6
-
132
-
-
84901933891
-
Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma
-
Wolpin BM, Rubinson DA, Wang X, Chan JA, Cleary JM, Enzinger PC, et al. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 2014; 19: 637-8
-
(2014)
Oncologist
, vol.19
, pp. 637-638
-
-
Wolpin, B.M.1
Rubinson, D.A.2
Wang, X.3
Chan, J.A.4
Cleary, J.M.5
Enzinger, P.C.6
-
133
-
-
84911906578
-
A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy
-
Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L, Fassy F, et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol 2014; 10: 1013-9
-
(2014)
Nat Chem Biol
, vol.10
, pp. 1013-1019
-
-
Ronan, B.1
Flamand, O.2
Vescovi, L.3
Dureuil, C.4
Durand, L.5
Fassy, F.6
-
134
-
-
84927600481
-
KRAS as a therapeutic target
-
McCormick F. KRAS as a therapeutic target. Clin Cancer Res 2015; 21: 1797-801
-
(2015)
Clin Cancer Res
, vol.21
, pp. 1797-1801
-
-
McCormick, F.1
-
135
-
-
84977919228
-
Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function
-
Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 2014; 517: 205-8
-
(2014)
Nature
, vol.517
, pp. 205-208
-
-
Viale, A.1
Pettazzoni, P.2
Lyssiotis, C.A.3
Ying, H.4
Sanchez, N.5
Marchesini, M.6
-
136
-
-
82855170859
-
Mitochondrial oxidative stress in cancerassociated fibroblasts drives lactate production, promoting breast cancer tumor growth: Understanding the aging and cancer connection
-
Balliet RM, Capparelli C, Guido C, Pestell TG, Martinez-Outschoorn UE, Lin Z, et al. Mitochondrial oxidative stress in cancerassociated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection . Cell Cycle 2011; 10: 4065-73
-
(2011)
Cell Cycle
, vol.10
, pp. 4065-4073
-
-
Balliet, R.M.1
Capparelli, C.2
Guido, C.3
Pestell, T.G.4
Martinez-Outschoorn, U.E.5
Lin, Z.6
-
137
-
-
84856100695
-
Is cancer a metabolic rebellion against host aging? In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism
-
Ertel A, Tsirigos A, Whitaker-Menezes D, Birbe RC, Pavlides S, Martinez-Outschoorn UE, et al. Is cancer a metabolic rebellion against host aging? In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism. Cell Cycle 2012; 11: 253-63
-
(2012)
Cell Cycle
, vol.11
, pp. 253-263
-
-
Ertel, A.1
Tsirigos, A.2
Whitaker-Menezes, D.3
Birbe, R.C.4
Pavlides, S.5
Martinez-Outschoorn, U.E.6
-
138
-
-
84872576236
-
Metabolism of inflammation limited by AMPK and pseudo-starvation
-
O’Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 2013; 493: 346-55
-
(2013)
Nature
, vol.493
, pp. 346-355
-
-
O’Neill, L.A.1
Hardie, D.G.2
-
139
-
-
84856103868
-
Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment
-
Rattigan YI, Patel BB, Ackerstaff E, Sukenick G, Koutcher JA, Glod JW, et al. Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Exp Cell Res 2011; 318: 326-35
-
(2011)
Exp Cell Res
, vol.318
, pp. 326-335
-
-
Rattigan, Y.I.1
Patel, B.B.2
Ackerstaff, E.3
Sukenick, G.4
Koutcher, J.A.5
Glod, J.W.6
-
140
-
-
84855434874
-
Caveolin-1 and cancer metabolism in the tumor microenvironment: Markers, models, and mechanisms
-
Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol 2012; 7: 423-67.
-
(2012)
Annu Rev Pathol
, vol.7
, pp. 423-467
-
-
Sotgia, F.1
Martinez-Outschoorn, U.E.2
Howell, A.3
Pestell, R.G.4
Pavlides, S.5
Lisanti, M.P.6
|